
Chapter 3: Situation Theory

Background

Jon Barwise and John Perry[1] initially presented situation theory (ST) in 1983 in Sit-

uations and Attitudes (S&A). Since then, Barwise and Perry have changed their

thinking on several important issues presented in S&A. Also, there are now many

other people working on their own versions of ST differing in significant ways from

the material in S&A. S&A remains the most extensive presentation of ST and situa-

tion semantics (SS), and much of the material is still conceptually relevant even

though formally obsolete.

There are several major publications about situation theory:

1979:  Perry published “The Problem of the Essential Indexical”, developing

ideas that play a key role in the development of situation semantics.

[Perry 1979]

1981: Dretske published Knowledge and the Flow of Information, a major in-

fluence on Barwise and Perry. [Dretske 1981]

1983: Barwise and Perry published Situations and Attitudes, the first major

publication in situation theory and semantics. [Barwise&Perry 1983]

1987: Barwise and Etchemendy published The Liar: An Essay on Truth and

Circularity. [Barwise&Etchemendy 1987]

1988: Peter Aczel published Non-Well-Founded Sets, the source of Barwise’s

revised metatheory. [Aczel 1988]

1988: Barwise published The Situation in Logic, a collection of many of his

papers spanning from 1981 to 1988. [Barwise 1988]

1990: Robin Cooper, Kuniaki Mukai, and John Perry then edited Situation

Theory and its Applications, a collection of papers which represent

work that evolved out of the First Conference on Situation Theory and

Its Applications, March, 1989. [Cooper, et. al. 1990]

1991: Keith Devlin published Logic and Information. [Devlin 1991]

[1] [Barwise&Perry 1983]
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The particular formulation for situation theory that is used in this work is based on

material in Logic and Information [Devlin 1991], Situation Theory and Its Applica-

tions [Cooper, et. al. 1990], The Situation in Logic [Barwise 1988], and Situations

and Attitudes [Barwise&Perry 1983].  Some material from [Barwise&Perry 1983] is

updated to use the more modern formalisms found in [Cooper, et. al. 1990]. The

most concise and readily understood presentation of issues underlying situation theo-

ry can be found in Barwise’s “Situations, Facts, and True Propositions”[2]. In this

paper, Barwise presents several points about what situation theory should be. The

new expression of situation theory presented below addresses several of these points.

[2] p. 221 - 254 in [Barwise 1988].
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Informal Overview

Situation theory is addressed to problems of information and meaning - how can

people mean, how can they possess and communicate information, what is meaning,

what is information.  It also addresses mental states such as knowledge and belief,

and mental processes of inference and perception.

Situation theory is based on the idea that all of the issues of information and meaning

must be understood in the light of the “reasoning agent” being situated in the world,

and that the most basic concept in the analysis is the “situation” - some part of the

world (generally, a part of the world “accessible” to the agent). By definition, one

can determine the “state of affairs” with respect to a situation; either a state of affairs

holds in some situation or it does not. If a state of affairs holds with respect to some

part of the world, a situation, then that situation is said to support that state of affairs.

A state of affairs is actual if it is supported by at least one situation. An actual state

of affairs can be called a fact. The neutral technical term in situation theory for states

of affairs is infon.  This term is adopted to refer to the idea that infons are the basic

units of information.

The major result of this chapter is the development of a comprehensive definition of

the supports relation, and an axiom system for infons which characterizes the sup-

ports relation. This chapter proves the first hypothesis set forth in chapter 1:

First Hypothesis: A version of situation theory can be defined which has a charac-
terizing logic (an “infon” logic) similar in form and expressivity to classical first
order logic.

The definition of the supports relation is central to the definition of situation theory.

The supports relation presented here respects four postulates:

1. Coherence postulate: No real situation s supports a state of affairs

and its negation.

2. Compatibility postulate: For any two (real) situations s1 and s2, there

is a (real) situation s such that s1 and s2 are portions of s.
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3. Persistence postulate: If s1 is a portion of s then any state of affairs

[infon] that holds in s1 also holds in s.

4. Duality postulate: For every state of affairs [infon], there is a  state

of affairs [infon] that is its dual, or negation.

Barwise identifies the first three as “cherished principles” of situation theory.[3] He

was willing to forego the third postulate, persistence, in order to introduce the “the-

sis” that every infon (state of affairs) has a dual (negation). He felt it necessary to vi-

olate “persistence” to introduce the dual of an existentially quantified infon (i.e. a

universally quantified infon). This thesis takes a different approach to infon logic

and situation theory which preserves all four postulates. Particularly noteworthy in

this regard is that the persistence property holds for all infons, including existentially

and universally quantified infons. Also, every infon has a dual. It is unique to the sit-

uation theory developed in this thesis that all of these postulates hold.

Formal Presentation

The version of situation theory developed here is a full analog of classical first order

predicate logic, with semantics for ∧, ∨, ⇒ , –, ∃, and ∀ (conjunction, disjunction,

conditional, negation, existential, and universal operators, respectively). This is not

all of situation theory. Elements of situation theory not addressed by this thesis in-

clude: abstract relations, partial infons, parameters as primitive objects, restriction

(of parameters), and higher order infon logic. These elements of situation theory are

all areas for further development of the research on which this thesis reports.

There are two major elements of situation theory, a definition of when a situation

“supports” an infon and an axiom system for infons. The axiom system for infons is

determined by the supports relation: If a situation supports an infon, and one can de-

rive via the axiom system a second infon from the first infon, then the situation must

also support the second infon. Thus, the axiom system must be defined in such a way

that it preserves the “supports” relation. This is the “soundness” requirement for the

axiom system.  The other major requirement for the axiom system is that any infon

[3] p. 235 in [Barwise 1988].
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that is supported by all situations be derivable as a theorem of the axiom system.

This is the “completeness” requirement for the axiom system. This chapter proves

that the axiom system is sound. The non-quantificational infon logic axiom system is

shown to be complete with respect to the non-quantificational conditions for the sup-

ports relation. It is conjectured that the quantificational axiom system is also com-

plete.

The “axioms” in the infon axiom system are compound infons that are supported by

all situations. They are tautologies with respect to the supports relation.

The following discussion develops definitions for the supports relation and an axiom

system, and argues that the defined supports relation is consistent with the ideas of

situation theory and that the axiom system is support-preserving. This is a complex

presentation and is done in several parts. Several concepts are defined in addition to

the supports relation, the language of infon logic, and the axiom system for infon

logic. These additional concepts include:

axiom system (also known as  “Hilbert system”),

Scott consequence relation (“SCR”),

Tarski consequence relation (“TCR”),

propositional Kripke structure,

strong propositional Kripke structure,

Kripke structure,

and strong Kripke structure.

Also, several axiom systems are presented: 

H – Heyting’s Predicate Calculus,

h – the propositional fragment of H,

h- – the negation-free propositional fragment of H,

H++ – the conditional-only fragment of H,

nh – the strong negation propositional fragment of H, and

NH – the strong negation version of H.
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All of the axiom systems identified above, except NH, are presented by Gabbay[4] .

NH is developed in this thesis.

The steps of the presentation of the development of the supports relation and the

infon logic are summarized below:

1) The supports relation and the infon logic axiom system definitions are pre-

viewed. The subsequent discussion develops these definitions and argues

that the defined infon axiom system characterizes the defined supports rela-

tion.

2) The language of infon logic is defined.

3) The conditions on the supports relation are given that relate to propositional

connective-free infons.

4) The strong propositional Kripke structure for semantic interpretation is in-

troduced.

5) The supports relation definition is extended with conditions defining the

support of confirmation and denial of conjunction and disjunction.

6) The conditional-free supports relation is shown to define a conditional-free

strong propositional Kripke structure.

7) The Scott and Tarski consequence relations are defined.

8) The supports relation conditions for implication are developed with regard to

a “minimal” concept of implication with respect to the Scott consequence re-

lation.

9) Strong negation axioms are introduced into the H system to give the NH sys-

tem.

10) The propositional supports relation is shown to define a strong propositional

Kripke structure.

11) The propositional fragment with strong negation of Heyting’s predicate cal-

culus is shown to be the “supports-preserving” axiom system for the proposi-

tional supports relation.

12) The quantificational conditions for the supports relation are given.

13) Heyting’s Predicate Calculus, axiom system H, is presented.

14) The quantified Kripke structure is introduced.

15) The strong Kripke structure is defined.

[4] [Gabbay 1981]
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16) The full supports relation is shown to define a strong Kripke structure.

17) The NH axiom system is proposed as the supports-preserving axiom system

for the full supports relation.
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1) The supports relation and infon logic axiom system are pre-

viewed

The entire supports relation and the infon logic axiom system are given below. These

are developed and explained in detail in the following discussion. The supports rela-

tion is presented in Exhibit 3. 1 on page 27. To briefly present the notation and defi-

nitions used in Exhibit 3. 1: s and t are used to stand for situations,  and σ and τ stand

for infons. The dual of an infon σ is written σ. As is discussed below, it is part of the

design of the infon logic that the negation of an infon is logically equivalent to the

dual of that infon. The symbol ‘|=’ is read “supports”. The symbol ‘≤S’ is read “is

part of” and relates two situations.  A parameter is an infon logic variable. It can

have at most one value “mapped” to it. An anchoring is a function from parameters

to infon logic terms which specifies a set of such bindings. A non-parametric an-

choring is one for which the range of the anchoring function does not contain any pa-

rameters. This is the only kind of anchoring considered in this thesis. A more extend-

ed version of the situation theory presented here would incorporate parameters as

“first class” terms in the logic, allowing one to quantify over them and establish rela-

tions between them, etc. Here they only serve their classically limited purposes. The

constituents of a situation are all of those “things” which appear as arguments for

any of the infons which that situation supports.

The infon axiom system NH is presented in Exhibit 3. 2 on page 28. The variables A,

B, and C stand for any infon logic formula. These infon formula schemes are axioms

in the sense that for any instance of one of these formula schemes, that instance is

supported by all situations. An instance of an infon formula scheme is created by

mapping the formula variables of the scheme to well-formed infon logic formulae,

one formula per distinctly named variable of the scheme. The schematic formulae

A(x) and A(y) stand for any well-formed infon logic formula which has x or y as a

free parameter, respectively. A parameter is free if it is not in the scope of an existen-

tial or universal operator which binds it.
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Support postulate 1: Confirmation of Basic Infons: For all situations s and basic infons σ,
s |= σ iff the basic infon σ is a state-of-affairs which obtains in the situation s. Equiv-
alently, s |= σ iff the situation s carries the information σ. (see page 36)

Support postulate 2: Denial of Basic Infons: For all situations s and basic infons σ, s |= σ
iff the basic infon σ is a state-of-affairs such that the dual of σ obtains in the situation
s. (see page 36)

Support condition 1. Consistency  of Basic Infons: For all situations s and basic infons σ, s
|≠ σ or s |≠ σ. This can also be stated as: it is not the case that s |= σ and s |= σ.
(see page 36)

Support condition 2. Partiality  of Basic Infons:  For all situations s such that s is not the
entire world, there exists a basic infon σ such that s |≠ σ and s |≠ σ. (see page 36)

Support condition 3. Persistence of Basic Infons: For all situations s, s’ , and basic infons
σ, (if s ≤S  s’ and s |= σ, then s’ |= σ). (see page 37)

Support condition 6. Confirmation of Conjunction: s |= σ ∧ τ iff s |= σ and s |= τ.
(see page 41)

Support condition 7. Denial of Conjunction: s |= –(σ ∧ τ) iff s |= σ or s |= τ. (see page 42)
Support condition 8. Confirmation of Disjunction: s |= σ ∨ τ iff s |= σ or s |= τ.

(see page 42)
Support condition 9. Denial of Disjunction: s |= –(σ ∨ τ) iff s |= σ and s |= τ. (see page 42)
Support condition 10. Confirmation of Conditional: s |= σ ⇒ τ iff for all t such that s ≤S t, t

|= σ implies t |= τ. (see page 48)
Support condition 11. Denial of Conditional: s |= –(σ ⇒ τ) iff  s |= σ  and s |= τ.

(see page 48)
Support condition 12. Confirmation of Universal Quantification: s |= ∀xσ iff for all situa-

tions t and non-parametric anchorings f t = {x/a}, a  ∈ constituents(t), s ≤S t implies t

|= σ[f t ]. (see page 50)

Support condition 13. Denial of Universal Quantification: s |= –∀xσ iff there exists a non-
parametric anchoring f = {x/a}, a ∈ constituents(s),  such that s |= –σ[ f ].
(see page 50)

Support condition 14. Confirmation of Existential Quantification: s |= ∃xσ iff there exists
some non-parametric anchoring f = {x/a}, a ∈ constituents(s) such that s |= σ[ f ].
(see page 50)

Support condition 15. Denial of Existential Quantification: s |= –∃xσ iff for all situations t
and non-parametric anchorings f = {x/a}, a ∈  constituents(t), s ≤S t implies t |= –σ[f

]. (see page 50)

Exhibit 3. 1: Definition of the Supports Relation.



2) The language of infon logic is defined.

The primitive terms in ST are situations, relations, and objects. The full ST also in-

cludes parameters as primitive objects.  There are several special primitive relations,

supports, involves, precludes, material implication, and a number of location rela-

tions (precedes, temporally overlaps, spatially overlaps, temporally contains, spa-

tially contains, temporally overlappingly precedes). The composite terms of ST are

infons , object types,  situation types, and propositions. A situation is a part of the

real world. A relation is a property of an n-tuple (n ≥ 1) of terms. Objects are “indi-
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NH0 = {

A ⇒ (B ⇒ A),
(A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒C )),
A ∧ B ⇒ A,
A ∧ B ⇒ B,
A ⇒ (B ⇒ A ∧ B),
A ⇒ (A ∨ B ), 
B ⇒ (A ∨ B ),
(A ⇒ C) ⇒ ((B ⇒ C ) ⇒ (A ∨ B ⇒ C )),
A(x) ⇒ ∃y A(y),
∀y A(y) ⇒ A(x),
– –A ⇔  A,
–(A ⇒ B) ⇔ A ∧ –B,
–(A ∧ B) ⇔ –A ∨ –B,
–(A ∨ B) ⇔ –A ∧ –B,
A ∧ –A ⇒ B,
–∃xA(x) ⇔ ∀x –A(x),
–∀xA(x) ⇔ ∃x –A(x)}

For x not free in B:
NH1 = {

(A, A⇒B/B),
(A(x) ⇒ B / ∃xA(x) ⇒ B), 
(B ⇒ A(x) / B ⇒ ∀xA(x))}

NH2 = {({ A,  A ⇒ B}/{ B})}

A ⇔ B is defined to be a notation for (A ⇒ B) ∧ (B ⇒ A).

Exhibit 3. 2: Hilbert Axiom System for Infon Logic.



viduated” parts of the world.[5]  A departure of ST from traditional logic is that rela-

tions are primitive, they are intensional concepts, not defined by their extension.

Thus, there can be two different relations that have different intensions and the same

extension. This is not possible in the traditional logical formulation, if two relations

have the same extension then they must be the same relation.

There are two kinds of formulae in ST, propositions and infons. A proposition is ei-

ther true or false and corresponds roughly with traditional logic meta-logic state-

ments. The logic of propositions is that of first order predicate calculus. An infon is

neither true nor false in isolation, but is supported or unsupported (true or false) with

respect to a situation. An infon is basic or compound. An infon is composed of a re-

lation, a set of (role-named) arguments, and a polarity. If the relation of the infon is

any relation except the infon logic connectives (∧Ι, ∨Ι, –, ∀Ι, ∃Ι, and ⇒Ι), then the

infon is a basic infon. As an example, to make the basic infon that block A is on

block B, which might be written ‘On(A, B)’ in a first order theory, one might write

‘ 〈〈On, [location:L, top:A, bottom:B]; +〉〉’. The “+” in the example basic infon is the

polarity of the infon. Polarities are either positive or negative (+ or -). An infon with

positive polarity is used to claim that the relation holds with respect to the argument

values, the negative polarity is used to claim that the relation does not hold with re-

spect to the argument values. The role-names (“top” and “bottom” in the example)

allow one to specify a partial infon, one that does not have argument values for all of

the roles defined for  the infon’s relation. Thus, an infon that simply said that A was

on something could be written as  〈〈On, [location:L, top:A]; +〉〉. There is not a con-

sensus in the situation theory literature on the meaning of partial infons, and there is

some disagreement as to whether the concept is needed. They do not appear to be

necessary for the investigations of this thesis in belief and perception. Thus, this

issue of partial infons is not explored in this thesis.  That is, all of the infons are com-

plete. Thus, basic infons are written using positional arguments instead of named ar-

guments. So, the example basic infon becomes: 〈〈On, L, A, B; +〉〉.

[5] Individuation is only discussed in three places in the ST literature, and then briefly.One reference
is in an appendix of “Situations, Facts, and True Propositions” on pp. 251-253 of [Barwise 1988].
Another is in “Notes on Branch Points in Situation Theory” on pp. 260-261 of [Barwise 1988].
Finally, there is a discussion in [Devlin 1991].
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Most relations have an explicit location argument, which specifies the time and

space about which the infon “speaks”. By convention, this argument will be the first

argument. For some relations the “time” aspect of the location is all that is relevant,

and for others the “space” aspect is all that is relevant. Because of this some presen-

tations of ST handle time and space as independent quantities and independent argu-

ments. It is convenient in this thesis to leave them combined.

Compound Infons

Basic infons can be used to make compound infons. The “logic” of these compound

infons is called infon logic. Infon logic has several  connectives and quantifiers: ∧Ι,

∨Ι, –, ∀Ι, ∃Ι, and ⇒I (conjunction, disjunction, negation, universal quantification, ex-

istential quantification, and conditional, respectively).  The “I” subscript of the sym-

bol identifies the symbol as being used in infons. The meanings of these connectives

must be analyzed in terms of the ‘supports’ relation - analyzing under what circum-

stances a situation supports a compound infon using these symbols. This analysis

yields some different results from the meaning associated with these symbols in clas-

sical logic, closer to the meanings used in intuitionistic logic. 

The dual  of an infon is another infon with the same relation and arguments, but the

other polarity. An infon is equivalent to the dual of its dual.[6]

A compound infon is an infon that has one of the infon logic connectives as its rela-

tion, and has arguments appropriate to that connective.

An inductive definition of well-formed infons is:

Basis: If A is a basic infon, then it is a well-formed infon.

Let A and B be well-formed infons, x be a parameter, and i be either polarity (‘+’ or

‘-’);

1) 〈〈–, A;i 〉〉 is a well-formed infon

2) 〈〈∧Ι, A, B; i 〉〉 is a well-formed infon

[6] Different developments of ST are possible where an infon and the dual of its dual are not (neces-
sarily) equivalent. This is explained in some detail in [Barwise&Etchemendy 1990].
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3) 〈〈∨Ι, A, B;i 〉〉 is a well-formed infon

4) 〈〈⇒Ι, A, B;i〉〉 is a well-formed infon

5) 〈〈∃Ι, x, A;i〉〉 is a well-formed infon

6) 〈〈∀Ι, x, A;i〉〉 is a well-formed infon.

The notation defined for infon logic is translated into infons as follows:

1) ‘–A’ is 〈〈–, A;+〉〉.[7]

2) ‘A ∧Ι B’ is 〈〈∧Ι, A, B; + 〉〉.

3) ‘A ∨Ι B’ is 〈〈∨Ι, A, B; + 〉〉.

4) ‘A ⇒Ι B’ is 〈〈⇒Ι, A, B; + 〉〉.

5) ‘∃ΙxA’ is 〈〈∃Ι, x, A;+〉〉.

6) ‘∀ΙxA’ is 〈〈∀Ι, x, A;+〉〉.

In the discussion that follows, the “I” subscript is left off of the infon connectives to

increase readability. It should be clear from context if a particular formula is meant

to be read as an infon, in which case the connectives in the formula should be read as

infon connectives. A well-formed formula in the infon logic is one which represents

a well-formed infon, as presented above. This is given the common abbreviation of

“wff” in the following discussion. The semantics of these compound infons is de-

fined in the various Support Conditions, as summarized in Exhibit 3. 1 on page 27.

Situations

A situation is any space and time region of reality (the universe). Space and time are

pre-theoretic concepts in this thesis - the common notions of these concepts are in-

tended. 

There is one relation defined on situations, “part of”, written ‘s ≤S t’ and read “s is

[7]  –A is logically equivalent to the dual of A,  A. This is expressed by
Support condition 4 on page 41 and Support condition 5 on page 41.
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part of t”. A situation s may be part of another situation s’ in that the region identi-

fied by s may be contained in another (“larger”) region s’. Some implications of this

idea of “part of” are found in the following discussion of the persistence condition of

the “supports” relation. A situation can be “modeled” by a set of infons - all of those

infons that the situation supports in some scheme of individuation. Such a set of in-

fons is called an abstract situation. 

There is a temptation to represent the abstract situation via a conjunction in infon

logic of the basic infons in this model set. There are two aspects of this set of infons

that make this impossible, however. One is that a wff of infon logic must be finite,

and the set of infons is infinite. The set of infons may have a finite set of axiom in-

fons from which the entire set can be derived (via infon logic). This finite axiomatic

infon set can be converted to a wff that is the conjunction of its contents, yielding a

wff that implies the modeling set of infons. There need not be such a finite axiomati-

zation of the model set, however - any situation, by virtue of being part of the real

world, supports infinitely many independent facts about what exists at the infinitely

many distinct locations in the space-time region of the situation if one’s scheme of

individuation allows for real/continuous locations (versus discrete locations).

A second problem with using a conjunction of basic infons to represent a situation

stems from circular references. Since a situation can support infons that refer to the

containing situation, the set of infons of a situation can be a circular set. Such a set is

an example of a non-wellfounded set. This circularity cannot be expressed in a con-

junction of basic infons, one needs an “infon parameter” that is equivalent to the en-

tire conjunction and can be used as a term in the basic infons of the conjunction.

Given this, one can define a recursive infon - but there is no mechanism in infon

logic with which to reason about such an infon.[8] As an example, suppose s is a situ-

ation where Pat is looking in a mirror. Pat sees s (Pat sees Pat looking in the mirror).

s supports the infon 〈〈sees, Pat, s; +〉〉. In the situation theory of this thesis, this is a

well-formed, simply handled infon since s is a reference to a situation. If instead one

represents situations as conjunctions of basic infons, then s is an infon formula vari-

able which requires some kind of higher-order logic to handle.

[8] A recursive wff is different from the reflective wffs of Z modal logic. There, all of the “recur-
sive” references must be in modal expressions.
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Other Elements of Infon Logic

The idea of the partial infon is approximated by existential infons. The example par-

tial infon can be represented as  〈〈∃, x, 〈〈On, A, x; +〉〉; +〉〉 (As an infon formula: ‘∃x

On(A, x)’). This is subtly different from the partial infon in that the partial infon can

be supported by a situation that “says nothing” about the unspecified argument roles,

but an existential infon is not supported by such a situation. An existential infon

which has a basic infon as its infon formula argument requires that something be said

about all of the arguments to that basic infon. This gives different approaches to the

knowledge representation problem of indeterminacy vs. semantic primitives identi-

fied by Barr&Feigenbaum and the incompleteness item of the Brachman&Levesque

basic epistemology category.

Having the situation as part of the theory is an important departure from traditional

logics. The analogous concept for a combination in ST of a situation and an anchor

in traditional logic is the “model” or “interpretation”, which is a meta-logical con-

cept.[9] In the initial presentation of ST, situations (and anchors) were not part of the

logic, instead, abstract situations were present in the logic. These abstract situations

are finite, partial, characterizations of real situations via “sentences” of that theory. 

The constituents of a situation are all of the objects that are values of arguments for

any of the infons supported by that situation. One of the important points of ST is

that this collection of constituents can be self-referential - the situation may itself be

referred to as the value of an argument of an infon. Thus, the situation may be one of

its own constituents. This is one reason for taking situations as primitives in ST. The

extension of a situation is the collection of all of the infons that the situation sup-

ports. An infon’s argument can be a reference to the entire situation which supports

that infon. The set of constituents of such a situation contains the situation. This cir-

cularity can be described by a kind of set called a non-wellfounded set[10]. 

[9] The Z modal logic of Frank Brown is also an exception in this area in that the “world” (as in a
“possible world” semantics of a traditional modal logic) has an explicit representation in the
logic, instead of being meta-logical.

[10]This set theory is presented in [Aczel 1988]. 
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A situation type, written [s | S ] where S is an infon, defines a collection of all situa-

tions s such that s |= S.

An object type or abstract relation, written [x | P(x)] where P is an infon free in argu-

ment-value-uses of parameter x, defines a collection of all objects in a situation s

where s |= P. This can be viewed as a lambda-like expression where:

s |= 〈〈[x | P(x)], a;+〉〉 iff s |= P(a),

where P(x) is some infon free in x , ‘a’ is some constant, and P(a) is P with all free

occurrences of x replaced by ‘a’.[11] An example of a use of this notation is given by

Barwise gives an example where the infon 〈〈admires, a, b;+〉〉 is used to form two de-

rivative properties, ‘admiring b’ and ‘being admired by a’ :

(admires b) = [x | 〈〈admires, x , b; +〉〉]
(admired by a) = [x | 〈〈admires, a , x; +〉〉][12]

Barwise makes the point that this gives rise to three distinct (syntactically) infons

which are strongly equivalent - if any one of them is supported by a situation, then

all three of them are supported by that situation. These three infons can be written as:

〈〈admires, a, b;+〉〉
〈〈 (admires b), a;+〉〉

〈〈 (admired by a), b;+〉〉
Abstract relations are not dealt with formally in the following material.

The parameter as an explicit element of the full ST language is another important

deviation from traditional logics, where parameters (or variables) are part of the me-

ta-language. This allows one to reason about parameters, and their presence or ab-

sence, within ST. This is part of making ST a fully reflective logic. The parameter

can be restricted to a particular domain by applying a restricting infon to it that also

contains that parameter.  Only values of the parameter that makes the restricting

infon hold are in the (restricted) domain of the parameter.

Since parameters are part of the language of ST, the associating of parameters with

[11]This notation and interpretation is presented on p. 233 of [Barwise 1988].

[12]p. 233 in [Barwise 1988].
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values must also be represented.  This associating “function” is called an anchor (it

anchors the parameters). An anchor is a function that takes an infon as an argument

and returns that infon with the appropriate parameter substitutions.

The involves relation, written [s | S ] ⇒inv [t | T ], is a proposition that asserts that

whenever there exists a situation of type [s | S ], then there also exists a situation of

type [t | T ]. There is a strong relationship between the involves relation ‘⇒inv’ and

the infon conditional ‘⇒I’: For all bindings of the parameters in S and T, [s | S ] ⇒inv

[t | T ] is true iff S  ⇒I  T is factual (i.e. is supported by some situation). The pre-

cludes relation, written [s | S ] ⊥ [t | T ], is a proposition that asserts that whenever

there exists a situation of type [s | S ], then there does not exist a situation of type [t |

T ]. This is the opposite of the involves relation. This is related to the infon condi-

tional by:  For all bindings of the parameters in S and T, [s | S ] ⊥ [t | T ] is true iff S

⇒I T is not factual (i.e. is not supported by any situation).

There is a conditional form of the involves and precludes relations, S ⇒inv T | R and

S ⊥ T | R respectively, where the relation does not hold unless the condition situation

type (R) holds. Different situation types in the same constraint may share parameters.

Thus, a binding of some shared parameter in R specializes S and T. This introduces

the idea of parametrized infons and situation types.

Having presented these various aspects of infon logic, the propositional elements are

focussed on in the following material, then quantification is added. The infon logic

axiom system does not deal with involves, precludes, parameters, and situation

types. Parameters are only dealt with in the traditional metalogical fashion. This the-

sis does not address parameter restriction.

3) The conditions on the supports relation are given that relate

to propositional connective-free infons.
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The supports relation, written |=, is between situations and infons: s |= σ, which is

read “s supports σ”, s a situation and σ an infon. The negation of the relation, written

|≠, is an abbreviation of “it is not the case that s |= σ”: s |≠ σ is read “s does not sup-

port σ”. The supports relation for situations s and basic (and non-parametric) infons

σ is characterized by the following “intuitions” and “conditions”:

Support postulate 1. Confirmation of basic infons: For all s and σ,  s |= σ
iff the basic infon σ is a state-of-affairs that obtains in the situation s.

Equivalently, s |= σ iff the situation s carries the information σ.[13]

Support postulate 2. Denial of basic infons: For all s and σ, s |= σ iff the

basic infon σ is a state-of-affairs such that the dual of σ obtains in the situ-

ation s.[14] (As mentioned above, the dual of σ is the same infon as σ but

with the opposite polarity.)

Support condition 1. Consistency of basic infons: For all s and basic in-

fons σ, s |≠ σ or s |≠ σ.[15] This condition on the supports relation requires

that situations are consistent - a situation can’t confirm and deny the same

piece of information. This condition derives from situations being part of

the real world, and in non-quantum analyses of the real world a state of af-

fairs can’t be both “the case” and “not the case” in a single situation. This

is another statement of the Coherence postulate.

Support condition 2. Partiality of situations: For all s such that s is not the

entire world, there exists a basic infon σ such that s |≠ σ and s |≠ σ.[16] This

condition on the supports relation is a direct consequence of the partial na-

ture of situations. Since a situation is part of the real world, there are facts

about the real world about which the situation has nothing to say - that the

situation neither confirms nor denies.

[13]This notion of “carrying information” is presented in [Barwise&Perry 1983].

[14]A discussion of the support of the dual of an infon can be found on p. 234 of [Barwise 1988].
Here Barwise argues for every infon having a dual, as is done in the situation theory of this the-
sis. 

[15]The consistency of situations is discussed on p. 235 of [Barwise 1988].

[16]The partiality of situations is discussed in many places, since this is a statement of one of the fun-
damental tenets of situation theory. For instance, a discussion can be found on p. 234 of
[Barwise 1988].
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Support condition 3. Persistence of basic infons: For all s, s’ , and basic

infons σ, (if s ≤S  s’ and s |= σ, then s’ |= σ).[17] This condition requires that

if a situation carries a piece of information, then any “larger” situation of

which it is part also carries that piece of information. One can say that an

infon persists from a situation s that supports it into any situation of which

s is a part. This is a restatement of the Persistence postulate.

If the situation under consideration is the entire universe (or world) w, then

Support postulate 1, Support postulate 2, and Support condition 1 are all true of that

situation.  The negation of Support condition 2, totality instead of partiality, applies

to w. Support condition 3, persistence, simply doesn’t apply since w is defined to not

be part of any situation but itself. 

Define a truth valuation function t over infons by: tw(σ) = 1 if w |= σ, and 0 if w |= σ.

Since w is total (negation of Support condition 2) and consistent, tw is a total func-

tion over basic infons. Thus, tw is a model in classical propositional logical terms if

the basic non-parametric infons are considered as atomic propositions.

Support postulate 1, Support postulate 2, and Support condition 1, and negation of

Support condition 2 are what should hold of a truth valuation (with some appropriate

rephrasing). This is not to say that there is an equivalence between all of classical

propositional logic and situation theory. At this point in the discussion, no connec-

tives have been defined for basic infons so no conclusions can be drawn about the

similarity to classical connectives. But, there is this simple similarity for the frag-

ment of classical propositional logic that has only atomic propositions and negation

and the fragment of situation theory that has only non-parametric basic infons, duals,

and the one situation w, the whole universe.

The truth valuation function defined over an arbitrary situation s that is not w has

properties that are similar to those of a model for intuitionistic proposition logic. In

this case,  Support postulate 1, Support postulate 2, Support condition 1, and

Support condition 2 (instead of “not Support condition 2”) all hold, appropriately re-

[17]A discussion of persistence can be found in pp. 235-236 in [Barwise 1988].
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phrased. The status of the persistence condition, Support condition 3,  with respect to

intuitionism is not clear in this simple interpretation. To make a comparison some

idea of there being a containment-based pre-ordering of models for intuitionistic

logic is needed. This can be found in the Kripke interpretation discussed below.

4) The strong propositional Kripke structure for semantic inter-

pretation is introduced.

The following discussion formalizes the relationship between the interpretation of

the non-parametric basic infon fragment of situation theory and interpretations of in-

tuitionistic and classical propositional logics. There are several general formal mech-

anisms for discussing the interpretation of logic. Three of these mechanisms and

their relationships to various logics, particularly the intuitionistic and classical prop-

ositional and predicate logics, are presented in detail in [Gabbay 1981]. Gabbay pre-

sents the Kripke, Beth and Topological interpretations. He shows substantial equiva-

lences between these different interpretations. This allows one to use any one of

them, without loss of generality. Gabbay focuses on the Kripke interpretation. 

A propositional Kripke structure has the form (S, R, O, D)[18], where (S, R, O) is a

pre-ordered set with a first element O and D is a function such that for each t ∈ S

and atomic q, D(t, q) ∈ {0, 1}. (R is the relation that pre-orders the elements of S. By

the definition of a pre-ordering relation, R is a transitive and reflexive relation.) (S,

R, O, D) has the persistence property: If tRs and D(t, q) = 1 then D(s, q) = 1.

The truth value of a well-formed-formula (wff) A at a point t ∈ S, written [A]t, is de-

fined by induction as follows:

1) [A]t = D(t, A), for A atomic; [f ]t = 0.

2) [A ∧ B]t = 1 iff [A]t = 1 and [B]t = 1.

3) [A ∨ B]t = 1 iff [A]t = 1 or [B]t = 1.

4) [A ⇒ B]t = 1 iff for all s, if t Rs and [A]s = 1, then [B]s = 1.

[18]Definition 8 on p. 64 of [Gabbay 1981]. 
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A structure is said to validate A iff [ A]O = 1. In this case A is also said to hold in the

structure. (S, R, O) validates A iff for any D, (S, R, O, D) validates A.

Although the above approach to a Kripke structure is the more generally useful inter-

pretation in a variety of logics, non-classical as well as classical, it is not the appro-

priate interpretation for situation theory. As is shown below, this is because of the

peculiar nature of negation (the dual operator) and the partial nature of situations in

situation theory. This difficulty is found when defining a truth valuation function, D,

that honors the conditions of situation theory.

There are three approaches to the definition of the truth valuation function. One is to

define D(t,q) = 1 iff t |= q, D(t,q) = 0, otherwise. The other two define D(t, q) = 1 iff

( t |= q and polarity of q is positive), they differ on the way to define D(t, q) = 0; ei-

ther D(t, q) = 0 iff ( t |= q and polarity of q is negative), or D(t, q) = 0 iff D(t, q) ≠ 1.

The first approach incorrectly allows a situation to support both an infon and its

dual; it allows D(t,q) = D(t,q) = 1. The second approach gives a version of D that is

partial, the latter one that is total, but doesn’t distinguish between the support of the

negative of an infon and the non-support of that infon (or its negative).The definition

of a Kripke structure indicates that D must be total, so the first approach doesn’t

work. The third approach doesn’t distinguish between significantly different circum-

stances, so it is not satisfactory either. Thus, none of these approaches is acceptable

as models of situation theory.

There is an appropriate interpretation, however. It is known as the strong Kripke

propositional structure. Its definition is given below.

A strong propositional Kripke structure has the form (S, R, O, α)[19], where (S, R, O)

is a partially ordered set with a first element O and α is a function such that for each

t ∈ S and atomic q, α(t, q) ∈ {-1, 0, 1}. (R is the relation that partially orders the ele-

ments of S. By the definition of a partially ordering relation, R is a transitive and re-

flexive relation.) If tRs and α(t, q) ≠ 0 then α(t, q) = α(s, q).

[19]Definition 8 on p. 125 of [Gabbay 1981].
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The truth value of a well-formed-formula (wff) A at a point t ∈ S, written [A]t, is de-

fined by induction as follows:

1) [A]t = α(t, A), for A atomic.

2) [A ∧ B]t = min([A]t, [B]t).

3) [A ∨ B]t = max([A]t, [B]t).

4) [A ⇒ B]t = 1 iff for all s, if t Rs and [A]s = 1, then [B]s = 1.

5) [A ⇒ B]t = -1 iff  [A]t = 1 then [B]t = -1.

6) [–A]t = 1 iff [A]t = -1.

A structure is said to validate A iff [ A]O = 1. In this case A is also said to hold in the

structure. (S, R, O) validates A iff for any α, (S, R, O, α) validates A.

The definitions of the connectives ∧, ∨, and⇒ are discussed in the next section. At

this point, only the connective-free aspect of the Kripke structure is being examined.

Non-parametric basic infons in situation theory can be described in terms of a propo-

sitional Kripke structure as follows: The atomic propositions of the structure are the

non-parametric basic infons (of either polarity). The set[20] S is the set of all situa-

tions. The relation R is the “part of” relation between situations. Define O to be the

minimal situation with respect to R that supports no infons. For technical reasons in

dealing with quantification, it is convenient to define this minimal situation O to

have one propertyless constituent.[21] The truth valuation function is defined by:

α(t, q) = 1 iff t |= q,

α(t, q) = -1 iff t |= q,

α(t, q) = 0 iff t |≠ q and t |≠ q.

α is a function since only one of the three conditions can hold for a given pair of t

and q. The persistence condition(Support condition 3, page 37) on the supports rela-

tion gives the property that if α(t, q) ≠ 0 and t Rs then α(t, q) = α(s, q), as required

by the definition of a strong propositional Kripke structure. This function is total,

[20] It may be a problem to consider S a set, unless one is using something like Aczel’s ZFC-/AFA.

[21]  Since O is, by definition, part of every situation, then the constituent of O can be a constituent of
every situation. 
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and since no infon and its dual is supported by the same situation, α(t, q) = α(t, q) iff

α(t, q) = α(t, q) = 0.

Given the above definition of a situation theoretic Kripke structure, no non-paramet-

ric basic infon is validated. That is, there is no basic infon that is supported by all sit-

uations, including the minimal situation.

5) The supports relation definition is extended with conditions

defining the support of confirmation and denial of conjunction

and disjunction.

The above discussion of a situation theory propositional Kripke structure can be ex-

tended to include non-parametric compound infons constructed using the connec-

tives ∧, ∨, and⇒. First, the conditions on the supports relation must be extended to

include these compound infons. The notation here has a special interpretation. As

noted above in the discussion of compound infons, the compound infon ‘σ ∧ τ’ is ac-

tually a short-hand notation for a second-order infon: 〈〈‘∧’,  σ, τ; +〉〉. Similarly, ‘σ ∨

τ’ is actually a short-hand notation for a second-order infon: 〈〈‘∨’,  σ, τ; +〉〉. These

are second order infons since they take other infons as arguments. The notation for

the duals of these infons is ‘–(σ ∧ τ)’ and  ‘–(σ ∨ τ)’, respectively. A presentation of

the following interpretations of these connectives can be found on pp. 234-235 of

[Barwise 1988].

Support condition 4. Confirmation of Negation: For all non-parametric in-

fons σ, s |= –σ iff s |= σ. This is a simple claim that to say a situation con-

firms the second-order ‘–σ’ infon is the same as claiming that situation

supports the dual of σ.

Support condition 5. Denial of Negation: For all non-parametric infons σ, s

|= – – σ iff s |= σ. For a situation s to deny the second-order ‘–σ’ infon is

the same as claiming that s supports σ.

Support condition 6.  Confirmation of Conjunction: For all non-parametric
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infons σ and τ, s |= σ ∧ τ iff s |= σ and s |= τ. This follows naturally from

the idea of situations as part of the real world; the conjunction of two

states-of-affairs is supported by some part of the real world if each of the

states-of-affairs is individually supported.

Support condition 7. Denial of Conjunction: For all non-parametric infons σ
and τ, s |= –(σ ∧ τ) iff s |= σ or s |= τ. This follows naturally from the idea

of situations as part of the real world; the conjunction of two states-of-af-

fairs is negated by some part of the real world if at least one of the states-

of-affairs is individually negated (i.e. has its dual supported).

Support condition 8. Confirmation of Disjunction: For all non-parametric

infons σ and τ,  s |= σ ∨ τ iff s |= σ or s |= τ. This also follows naturally

from the idea of situations as part of the real world; the disjunction of two

states-of-affairs is supported by some part of the real world if either or

both of the states-of-affairs is individually supported. 

Support condition 9. Denial of Disjunction: For all non-parametric infons σ

and τ,  s |= –(σ ∨ τ) iff s |= σ and s |= τ. The disjunction of two states-of-

affairs is denied by some part of the real world if both of the states-of-af-

fairs is individually denied. 

These additional definitions of the supports relation honor the original definitions as

well. Particularly, it is true for compound infons as well as for basic infons that the

support of an infon ‘persists’ from a situation to any containing situation. This is

stated in the following theorem:

Theorem 1: All conditional-free infons are persistent.[22]

6) The conditional-free supports relation is shown to define a
conditional-free strong propositional Kripke structure.

The α function of the Kripke structure is validly extended with these additional defi-

nitions for ‘supports’ by making q range over the set of all infons, instead of just the

basic infons (corresponding to the atomic wffs). For this Kripke structure to be con-

[22]The IL (Infon Logic) theorems are proved in Appendix 1.
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sistent with the ‘supports’ conditions, [A]t  = α(t, A) must hold for all conditional-

free A.  To aid in proving this theorem, it is useful to note that: If (α(t, A) = 1 iff [A]t

= 1) and (α(t, A) = -1 iff [A]t = -1), then (α(t, A) = [A]t).

Theorem 2: For all wffs A and situations t, if (α(t, A) = 1 iff [A]t = 1) and (α(t,

A) = -1 iff [A]t = -1), then (α(t, A) = [A]t).

The main theorem, that the conditional-free propositional supports relation defines a

strong Kripke structure, follows:

Theorem 3: For all conditional-free propositional A, [A]t  = α(t, A).

7) The Scott and Tarski consequence relations are defined.

To motivate the interpretation of the “conditional” connective ‘⇒’, some back-

ground is required.[23] First, the idea of consequence is defined. If one is given a set

of infons that are supported by some situation s, then there is some set of infons that

can be inferred – that are also clearly supported. This is very generally to describe a

kind of reasoning that people do constantly. This relationship between infons (or, tra-

ditionally, propositions) is called “consequence”. The inferred infons are a conse-

quence of the given infons. Dana Scott and Tarski have defined the properties that

any  formalism for a “consequence operator”  should have. These follow from the in-

formal understanding of consequence. They produced somewhat different formaliza-

tions, but there is a well understood relationship between these formalizations. Scott

consequence operators are written ‘ ||-’,  and Tarski consequence operators are writ-

ten ‘|-’.  Scott consequence operators are a more general notion. They are defined as

follows:

[23] [Barwise 1988], p. 184, introduces the conditional connective by simply giving an axiom for it -
that it is reflexive and transitive, a pre-order. This axiom also states that modus ponens holds for
infon conditional. It is interesting to note that modus tolens does not hold for the conditional con-
nective defined here. Barwise provides too little information to determine if modus tolens holds
for his notion of implication. This thesis argues for why the definitions in this thesis are the cor-
rect ones. Barwise does not define when an implication holds, which is a major undertaking of
this subsection.
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Let ϕ and ψ be finite, possibly empty, sets of well-formed formulae of the language

of the operator, L. ||- is a Scott consequence relation iff the following conditions

hold[24]:

a) ϕ ||- ϕ, for ϕ ≠ Ø.

b) if ϕ ||- ψ then ϕ ∪ ϕ’ ||- ψ ∪ ψ’ for any ϕ’ and ψ’.

c) if ϕ ∪{ A} ||- ψ and ϕ ||- ψ ∪{ A}  then  ϕ ||- ψ. [Cut Rule]

Additional definitions: 

For ∆ and Θ sets of wffs, ∆ ||- Θ iff for some ∆ ⊇ ϕ and Θ ⊇ ψ, ϕ ||- ψ.

A Scott consequence relation is consistent iff ~(Ø ||- Ø).

Notational abbreviations:

ϕ, A ||- ψ is the same as ϕ ∪{ A} ||- ψ.

ϕ,ϕ’ ||- ψ,ψ’ is the same as ϕ ∪ ϕ’ ||- ψ ∪ ψ’.

ϕ,A1, A2, …, An ||- ψ is the same as ϕ ∪{ A1, A2, …, An} ||- ψ.

|– is a  Tarski consequence relation iff the following conditions hold[25]:

a) A |– A.

b) if ϕ |– A then ϕ, ϕ’ |– A.

c) if ϕ, C |– A and ϕ |– C then ϕ |– A. [Cut Rule]

The right-hand side argument of |– is always a single wff.

The minimal meaning for ‘⇒’ can be expressed by the deduction theorem:

ϕ ∪ {A} ||– {B} iff ϕ ||– {A ⇒ B}.

Let ||–DT be the minimal SCR for which the deduction theorem holds.

The Scott consequence relation (SCR) that is to be defined for situation theory infons

must satisfy the deduction theorem, this is the minimal meaning accepted in this the-

sis for the ‘⇒’ connective in infons – the ‘⇒’ connective must satisfy at least this

constraint.

[24]p. 6 of [Gabbay 1981].

[25]p. 7 of [Gabbay 1981].
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An axiom (or Hilbert) system for some language L is defined by a triple (H0, H1,

H2)[26], where H0 is a set of axiom schemas, H1 is a set of provability rules, and H2 is

a set of consequence rules. An axiom schema (in H0) is some wff in L, with proposi-

tional variables as one or more terms. A provability rule is of the form ‘A1,…,

An/B’, where this rule is used in constructing a proof from the axiom schemas in H0.

A consequence rule is of the form {A1,…, An}/{B}, where this rule is used in con-

structing a proof of B given some set ϕ of wffs (and the things provable from the ax-

ioms). An axiom system can be used to define a Tarski consequence relation (TCR)

‘|–H’ as follows:

1) |–H A iff there exists a finite sequence of wff B1,…,Bk = A such that each

Bi of the sequence is either a substitution instance of a member of H0, or

for some wffs A1,…,An, appearing earlier than Bi in the sequence,

(A1,…,An/Bi) is a rule in H1.

2) ϕ |–H A iff there exists a finite sequence of wffs B1,…,Bn such that both

(a) and (b) below hold:

(a) For each i ≤ n, either (i), (ii), or (iii) below hold:

i) Bi ∈ ϕ, or

ii) |–H Bi (by 1 above), or

iii) There exists A1,…,Ak earlier in the sequence such that

{ A1,…,Ak}/{ Bi} is a substitution instance of a rule in H2.

(b) Either (i) or (ii) below hold:

i) A = B, or

ii) { B1,…,Bn}/ A is a substitution instance of a rule in H2.

The relation |–H is proved by Gabbay to be a Tarski system for any axiom system H

=  (H0, H1, H2). Further, he proves that for any Tarski system |– there is an axiom

[26]p. 9 of [Gabbay 1981].
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system H such that |– = |–H.

8) The supports relation conditions for implication are devel-

oped with regard to a “minimal” concept of implication with re-

spect to the Scott consequence relation.

Now to get back to the problem of the ‘⇒’ connective. Define an axiom system H++

as follows:

H++
0 = {A⇒ (B ⇒A), [A⇒ (B⇒C)]⇒[(A ⇒ B) ⇒ (A ⇒ C)]}.

H++
1 = {(A, A ⇒B/B)}

H++
2 = {({A, A ⇒B}/{B})}

Gabbay proves the following equivalence: |–H++ A iff Ø ||–DT {A} [27]. This says that

a wff A is a Tarski consequence of the H++ axiom system if and only if A is a tautol-

ogy of the  ||–DT SCR, which is the smallest SCR for which the deduction theorem

holds. H++ is known as the conditional fragment of Heyting’s propositional calculus.

This discussion leads to the conclusion that infon logic includes the axioms of H++.

The infon logic axiom system includes the simple axioms of ‘∨’ and ‘∧’ with ‘ ⇒’,

which gives the propositional fragment of Heyting’s Predicate Calculus (HPC) Gab-

bay calls h-.

The axiom system for h is[28]:

h0 = {

(a) A ⇒ (B ⇒ A),

(b) (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒C )),

(c) A ∧ B ⇒ A,  A ∧ B ⇒ B,

(d) A ⇒ (B ⇒ A ∧ B),

[27]p. 23 in [Gabbay 1981].

[28]p. 63 in [Gabbay 1981].
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(e) A ⇒ (A ∨ B ), B ⇒ (A ∨ B ),

(f) (A ⇒ C) ⇒ ((B ⇒ C ) ⇒ (A ∨ B ⇒ C )),

(g) f  ⇒ A }

h1 = {(A, A ⇒B/B)}

h2 = {({A, A ⇒B}/{B})}

h1 and h2 are the same as for H++, and define modus ponens.

The axiom system h- is h without axiom ‘g’.  h- is the negation-free propositional

fragment of HPC.

9) Strong negation axioms are introduced into the h system to

give the nh system.

The strong negation Heyting propositional axiom system, called nh,  is h- plus the

following axioms for negation:

0) – –A ⇔  A.

1) –(A ⇒ B) ⇔ A ∧ –B.

2) –(A ∧ B) ⇔ –A ∨ –B.

3) –(A ∨ B) ⇔ –A ∧ –B.

4) A ∧ –A ⇒ B.

nh is H++ plus axioms for ∧, ∨ and –. These axioms are presented by Gabbay[29] stat-

ing “Some authors introduced another type of negation into HPC, called strong nega-

tion.” Unfortunately, he does not identify any of these strong-negation-introducing

authors.

The important result here is that the Scott consequence system defined from the

strong propositional Kripke structure has exactly the same theorems as the Tarski

consequence system defined from nh. Thus, nh is a minimal appropriate axiom sys-

tem for the strong propositional Kripke structure. Since the conditional-free supports

relation conditions can be used to define a (conditional-free) strong propositional

[29]p. 124 of [Gabbay 1981].
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Kripke structure, and the nh conditional axioms are just those desired for infon im-

plication, then extending the supports relation for the conditional connective in such

a way as to allow definition of a full strong propositional Kripke structure provides

the desired idea of implication in infon logic.

The extension to the supports relation implied by the foregoing is:

Support condition 10. Confirmation of Conditional: For all non-parametric infons σ

and τ, s |= σ ⇒ τ iff for all t such that s ≤S t, t |= σ implies t |= τ. 

Support condition 11.  Denial of Conditional: For all non-parametric infons σ and

τ, s |= –(σ ⇒ τ) iff  s |= σ and s |= τ.

The persistence of conditional-free infons can be extended to include conditional in-

fons. Thus, all propositional infons can be shown to be persistent.

Theorem 4: Propositional infons are persistent.

To claim that the set of infons a situation supports contains a conditional infon is

also to claim that that set of infons is closed with respect to that conditional infon.

This is based on Support condition 10. 

10) The propositional supports relation is shown to define a

strong propositional Kripke structure.

The proof that α(t, P) = [P]t for all conditional-free infons P can be extended to in-

clude the ‘⇒’ connective by  proving that  α(t, A ⇒ B) = [A ⇒ B]t, if  α(t, A) = [A]t

and  α(t, B) = [B]t.

Theorem 5: If  α(t, A) = [A]t and  α(t, B) = [B]t, then  α(t, A ⇒ B) = [A ⇒ B]t.

11) The propositional fragment with strong negation of Heyt-
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ing’s predicate calculus is shown to be the “supports-preserv-

ing” axiom system for the propositional supports relation.

The above discussion establishes that the axiom system for situation theory quantifi-

er-free infon logic is Heyting’s propositional logic with strong negation (nh), and

that the definition of the “supports” relation is as given in Support postulate 1,

Support postulate 2, and Support condition 1 through Support condition 11.

12) The quantificational conditions for the supports relation are

given.

The remaining problem for infon logic is to define the meaning of quantification in

infon logic, and to axiomatize this meaning. First, some notation for dealing with pa-

rameters:

f t ={x/a, y/b, ...} is an anchor, a set of assignments of parameters to “values” (which

may themselves be parameters). σ[f t  ] is the infon produced by “applying” the an-

chor f t to the infon σ. Applying an anchor consists of substituting all of the left-hand

side parameters of the pairs in the anchor with the associated right-hand side item.

A parametric infon is an infon that has one or more free parameters. A parameter is

free in an infon if it is not used as the first argument to a quantifier (in that infon). A

parametric infon is written as ‘σ(x)’, where σ is any infon and the parameter x is free

in σ.

This thesis defines the interpretation of quantifiers in a manner different from the sit-

uation theory literature. On p. 235 of [Barwise 1988], confirmation of existential

quantification is done in the same way, but the negation is handled differently. Bar-

wise foregoes the persistence postulate to have a very simple definition of the nega-

tion of existential quantification:  s |= –∃xσ iff for all non-parametric anchorings f =

{ x/a}, a ∈ constituents(s) s |= –σ[f ]. But, for an only marginally more complex no-

tion of the denial of existential quantification, the persistence postulate can be saved.
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Also, if one accepts this somewhat more complex definition the existential and uni-

versal quantifiers are naturally duals. The approach used here is more general, in that

it can be restricted to have the same meaning as that used by Barwise by the addition

of more conjuncts to the quantified infon.

The quantificational supports conditions are as follows:

Support condition 12. Confirmation of Universal Quantification: For all infons σ
parametric only in x, s |= ∀xσ iff for all situations t and non-parametric anchorings f

= {x/a}, a  ∈ constituents(t), s ≤S t implies t |= σ[f ].

Support condition 13. Denial of Universal Quantification: For all infons σ paramet-

ric only in x, s |= –∀xσ iff there exists a non-parametric anchoring f = {x/a}, a ∈
constituents(s),  such that s |= –σ[f ].

Support condition 14. Confirmation of Existential Quantification: For all infons σ
parametric only in x,  s |= ∃xσ iff there exists some non-parametric anchoring f =

{ x/a}, a ∈ constituents(s) such that s |= σ[f ]. 

Support condition 15. Denial of Existential Quantification: For all infons σ para-

metric only in x,  s |= –∃xσ iff for all situations t and non-parametric anchorings f =

{ x/a}, a ∈ constituents(t), s ≤S t implies t |= –σ[f ].

By these conditions, s |= –∀xσ iff s |= ∃x –σ, and s |= –∃xσ iff s |= ∀x –σ. Thus,

universal and existential quantification are “dual” operators with respect to negation

in situation theory infon logic, as they are in classical logic.

If  s |= ∀xσ and s ≤S t , then for all f t,  t |= σ[f t], by Support condition 12. Let r  be

any situation such that t ≤S r . Since s ≤S r (by transitivity), then for all f r,  r  |= σ[f r].

Thus, for all r  such that t ≤S r ,  for all f r, r |= σ[f r]. t |= ∀xσ if for all r  such that t ≤S

r ,  for all f r, r  |= σ[f r], by Support condition 12. Therefore, if  s |= ∀xσ and s ≤S t ,

then t |= ∀xσ. Thus, ∀xσ is a persistent infon. A similar argument can be made to

show that the dual of ∀xσ, –∃xσ, is persistent.
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If  s |= ∃xσ then there exists f s such that  s |= σ[f s], by Support condition 14. If s ≤S

t, then if  s |= σ[f s], then t  |= σ[f s] by persistence of infons (there is a possible re-

cursion here - assume that σ[f s] is not quantified). There exists f t such that f s = f t ,

since s ≤S t. Thus, if t   |= σ[f s] then t |= σ[f t]. If t |= σ[f t], then  t |= ∃xσ, by

Support condition 14. Therefore, If  s |= ∃xσ and  s ≤S t, then t |= ∃xσ. Thus, ∃xσ is a

persistent infon. A similar argument can be made for –∀xσ.

By the preceding arguments, the quantified infons are persistent.
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13) Heyting’s Predicate Calculus, axiom system H, is presented.

The axiom system H, Heyting’s Predicate Calculus (HPC), is an extension of h:

H0 = h0 ∪ {

(h) A(x) ⇒ ∃y A(y),

(k) ∀y A(y) ⇒ A(x)}

H1 = h1 ∪ {

(A(x) ⇒ B / ∃xA(x) ⇒ B), 

(B ⇒ A(x) / B ⇒ ∀xA(x))}

H2 = h2.

14) The (quantified) Kripke structure is introduced.

A Kripke structure[30] is an extension of the propositional Kripke structure to handle

variables and quantification. Kripke structures have the form (N, S, R, O, D, U),

where S ⊇ N, S2 ⊇ R, O ∈ S, and the following hold:

(a) R is a reflexive and transitive relation on S.

(b) ORx for all x ∈ S.

(c) t ∈ N and tRs imply s ∈ N.

(d) U is a function associating with each  t ∈ S a nonempty set Ut and if sRs’ then

Us’  ⊇ Us.

(e) D is a function such that for each n-place atomic A, and each t, Ut
n ⊇ D(t, A).

D has the property that if tRs then D(s, A) ⊇ D(t, A), for all atomic A. If t ∈ N

then D(t, A) = Ut
n.

Let g:V -> Ut, t ∈ S (V the set of variables of H). Define the truth value of A, [A]t
g,

[30]p. 43 in [Gabbay 1981].
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by induction on A as follows[31]:

(a) [A(x1, …, xn)]t
g= 1 iff (g(x1), …, g(xn)) ∈ D(t, A) if A is atomic with x1, …, xn

free in A.

(b) [A ∧ B]t
g= 1 iff [A]t

g= 1 and [B]t
g= 1.

(c) [A ∨ B]t
g= 1 iff [A]t

g= 1 or [B]t
g= 1.

(d) [f ]t
g= 1 iff f  ∈ N.

(e) [A ⇒ B]t
g= 1 iff for all s, if tRs and [A]s

g= 1 then [B]s
g= 1.

(f) [∃xA(x)]t
g= 1 iff for some g’ = xg, [A(x)]t

g’= 1 where  g’ = xg means that for

all y ≠ x, g(y) = g’ (y).

(g) [∀xA(x)]t
g= 1 iff for all s,  g’  (if tRs and  g’ = xg then [A(x)]s

g’= 1).

(h) A is said to hold in the structure under g iff [A]O
g = 1.

Gabbay[32] defines a Scott consequence relation defined on a class of  Kripke struc-

tures. He shows that all of the tautologies of this SCR are exactly the theorems of

Heyting’s Predicate Calculus (HPC), which is identified with the axiom system H. 

15) The strong Kripke structure is defined.

Strong Kripke structures are a combination of quantified Kripke structures and

strong propositional Kripke structures.[33] They have the form (N, S, R, O, α, U),

where S ⊇ N, S2 ⊇ R, O ∈ S, and the following hold:

(a) R is a reflexive and transitive relation on S.

(b) ORx for all x ∈ S.

(c) t ∈ N and tRs imply s ∈ N.

(d) U is a function associating with each  t ∈ S a nonempty set Ut, and if sRs’ then

Us’  ⊇ Us.

[31]p. 44 in [Gabbay 1981].

[32]p.46 in [Gabbay 1981].

[33]  This structure is original to this thesis.
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(e) α is a function such that for each n-place atomic A, and each t, Ut
n ⊇ α(t, A,

k). α has the property that if tRs then α(s, A, k) ⊇ α(t, A, k), for all atomic A

and k ∈ {1, -1}. If t ∈ N then α(t, A, 1) = Ut
n and α(t, A, -1) = Ø. (The degen-

erate case for α is when n = 0. In this case  α(t, A, k) is either empty or con-

tains the empty set.)

Let g:V -> Ut, t ∈ S (V the set of variables of NH). Define the truth value of A, [A]t
g,

by induction on A as follows[34]:

(1) [A(x1, …, xn)]t
g= k iff (g(x1), …, g(xn)) ∈ α(t, A, k) if A is atomic with x1, …,

xn free in A, k ∈ {-1, 1}.

(2) [A ∧ B]t
g= min([A]t

g, [B]t
g).

(3) [A ∨ B]t
g= max([A]t

g, [B]t
g).

(4) [A ⇒ B]t
g= 1 iff for all s, if tRs and [A]s

g= 1 then [B]s
g= 1.

[A ⇒ B]t
g= -1 iff [A]t

g= 1 and [B]t
g= -1.

(5) [–A]t
g = 1 iff [A]t

g = -1.

(6) [∃xA(x)]t
g= 1 iff for some g’ = xg, [A(x)]t

g’= 1 where  g’ = xg means that for

all y ≠ x, g(y) = g’ (y).

[∃xA(x)]t
g= -1 iff for all s,  g’  (if tRs and  g’ = xg then [A(x)]s

g’= -1).

(7) [∀xA(x)]t
g= 1 iff for all s,  g’  (if tRs and  g’ = xg then [A(x)]s

g’= 1).

[∀xA(x)]t
g= -1 iff for some g’ = xg, [A(x)]t

g’= -1.

(8) A is said to hold in the structure under g iff [A]O
g = 1.

The axiom system for infon logic is NH, which is H with the axiom for f  ⇒ A re-

placed by the axioms for strong negation, 0 through 4 given above, plus axioms for

negation of quantifiers:

(5) –∃xA(x) ⇔ ∀x –A(x),

(6) –∀xA(x) ⇔ ∃x –A(x).

[34]p. 44 in [Gabbay 1981].
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The theorems of NH are the tautologies of the SCR defined on the class of Kripke

structures which consists of the strong Kripke structure based on situation theory.

The TCR for NH is written ‘ |-NH’. 

16) The full supports relation is shown to define a strong Krip-

ke structure.

The SCR for the class of Kripke structures which consists of the situation theory

infon logic Kripke structure is written ‘||-ST’. 

A strong Kripke structure can be defined for situation theory and the supports condi-

tion as follows: Let R be the ‘part of’ relation. Let O be the empty situation. Let N =

Ø. Let U be the constituents function, where constituents(t) = Ut. Let  (x1, …, xn) be

the free parameters in A and f  = {x1/a1,…, xn/an}. Define (a1, …, an) ∈ α(t, A, 1)

iff  t |= A[f ], and (a1, …, an) ∈ α(t, A, -1) iff t |= A[f ]. Let ‘()’ denote the empty

tuple (the type of 0 arity). If A has no free parameters, then () ∈ α(t, A, 1) iff t |= A,

and () ∈ α(t, A, -1) iff t |= A.

The given definition for α applies to all infons A, not only basic infons. For this defi-

nition to be consistent with the strong Kripke structure, [A(x1, …, xn)]t
g = k iff

(g(x1), …, g( xn)) ∈ α(t, A, k). 

Conjecture: For all infons A, situations t, and anchors g, [A(x1, …, xn)]t
g = k iff

(g(x1), …, g( xn)) ∈ α(t, A, k).

The proof of this conjecture may be done in a manner similar to that used above for

the strong propositional Kripke structure.
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17) The NH axiom system is proposed as the supports-preserv-

ing axiom system for the full supports relation.

The following conjecture guarantees that results derived in the formal axiom system

NH are semantically valid with respect to situation theory infon logic.

Conjecture:  |-NH A iff Ø ||-ST {A}

The proof is in two parts: a proof of |-NH A implies Ø ||-ST {A}, and a proof of |-NH A

if Ø ||-ST {A}.  The difficulty lies in ST being a strong Kripke structure, not simply a

Kripke structure, and the ordering relation R of ST is not isomorphic to a tree order-

ing relation. This latter point is unfortunate since the strongest results Gabbay proves

are for “tree” Kripke structures.

Semi-Proof of  |-NH A implies Ø ||-ST {A}:

Let ‘ϕ||-nhψ’ be the SCR  defined by ‘∧ϕ |-nh ∨ψ’ (∧Ø = (p ⇒ p), ∨Ø = (p ∧ –p)).

||-nh agrees with |-nh, by Proposition 11.a on p. 125 of [Gabbay 1981]. 

||-nh is identical with the Scott consequence system arising from the interpretation in

the strong propositional Kripke structures, by Theorem 12 on p. 125 of

[Gabbay 1981]. Also, ∧ and ∨ are classical in ||-. In particular, |-nh A iff A is valid in

every such structure. 

Thus, |-nh A iff A is valid in the strong propositional Kripke structure for situation

theory infon logic presented above. 

Since A is valid with respect to structure for situation theory infon logic iff A is sup-

ported by the supports relation as defined in conditions 0 through 11, |-nh A iff A is

supported by the supports relation as defined in conditions 0 through 11.

Let f  be any fixed proposition in nh and let ~A in nh be ‘A ⇒ (f  ∧ –f )’, ~A in h is ‘A

=> f  ’ (f  is the defined ‘false’ symbol in h). From exercise 15 of p. 126 in

[Gabbay 1981], for any wff B in h, nh |- B iff h |- B. Thus, nh is a conservative exten-

sion of h.
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Conjecture: NH is a conservative extension of H. This is based on the observation

that nh is conservative extension of h.

Conjecture: The situation theory infon logic strong Kripke structure validates A iff

|-NH A.

Theorem 6: If s |= A, and A |-NH B, then s |= B. (I.e., |-NH is sound with respect to

the |= relation).

Proof:

To prove this theorem, it is sufficient to show that for all s,  s |= A, for all A that are

axioms in NH0, and to show that the provability and consequence rules (NH1 and

NH2) preserve the support relation.

It has already been shown that for all s,  s |= A, for all A in nh0. Thus, to complete

the demonstration for NH0 it is only necessary to show that for all s,  s |= A, for A in

{ A(x) ⇒ ∃y A(y), ∀y A(y) ⇒ A(x), –∃xA(x) ⇔ ∀x –A(x), –∀xA(x) ⇔ ∃x –A(x)}.

Since nh1 has been shown to be support preserving, to complete the proof for NH1 it

is only necessary to show that {(A(x) ⇒ B / ∃xA(x) ⇒ B), (B ⇒ A(x) / B ⇒ ∀xA(x))}

(x not free in B) are support preserving.

Since nh2 has been shown to be support preserving and NH2 = nh2, NH2 is support

preserving.

Proof for axioms in NH0 - nh0:

Theorem 7: For all s and all  non-parametric anchors gs of x to the constituents of s,

s |= (A(x) ⇒ ∃y A(y))[gs].
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Theorem 8: For all s and non-parametric gs, s |= (∀y A(y) ⇒ A(x))[gs].

Theorem 9: For all s and all non-parametric anchors gs of parameters of A to the

constituents of s, s |= (–∃xA(x) ⇔ ∀x –A(x)).

Theorem 10: For all s and all non-parametric anchors gs of parameters of A to the

constituents of s, s |= (–∀xA(x) ⇔ ∃x –A(x))[gs].

Proof for NH1 - nh1:

Let A be an axioms or a theorem derived from the axioms. Let B be any infon where

x is not free in B.  

Theorem 11: For all s and all non-parametric anchors gs of parameters of A to the

constituents of s, s |= (A(x) ⇒ B )[gs] implies for all s and all non-parametric anchors

gs of parameters of A to the constituents of s, s |= (∃xA(x) ⇒ B)[gs].

Theorem 12: For all s and all non-parametric anchors gs of parameters of A to the

constituents of s, s |= (B ⇒ A(x))[gs] implies for all s and all non-parametric anchors

gs of parameters of A to the constituents of s, s |= (B ⇒ ∀xA(x))[gs].

This concludes the development of the set of support conditions and the infon axiom

system NH.
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Other Formalizations of the Infon Logic

The infon logic is formalized above as the Hilbert axiom system NH (Heyting’s pre-

dicate calculus with strong negation). This axiomatic approach is convenient in the

context of the overall approach taken to developing NH. However, other formaliza-

tions are more convenient under other circumstances. Two closely related such for-

malizations are natural deduction systems and Gentzen sequent calculus systems.

Michael Dummett presents natural deduction and Gentzen sequent calculus formal-

izations of intuitionistic logic[35] (axiomatized as H in the preceding discussion),

called N and L respectively. The strong negation extension of the natural deduction

formalization, NN, is used in the development of a theorem prover for infon logic,

FELIX, presented in a later section of the thesis.

Natural Deduction system for infon logic:

A natural deduction system can be constructed from Dummett’s natural deduction

system[36] for H. This system is called NN. There are no axioms in a natural deduc-

tion system. It consists entirely of inference rules. An inference rule is of the form
Γ : A
_____
Γ : B

where ‘Γ : A’ is the premise and ‘Γ : B’ is the conclusion of the inference. ‘Γ : A’ is

read as “the set of wffs Γ derives A”.  The inference rule is read as “if Γ derives A,

then Γ derives B.” In some of the inference rules it is convenient to write “the union

of the set of wffs Γ and the set of wffs Γ” as ‘Γ, ∆’.

There are two kinds of inference rules, operator introduction rules and operator elim-

ination rules. For most operators there is a pair of sets of rules - the introduction rule

set and the elimination rule set. For most of the pairs of rule sets, each set consists of

only one rule. There are several sets of rules for strong negation, one set for each

combination of strong negation (‘–’) and another operator. Also, rules are provided

defining the weak negation operator, ‘¬ ’.

Basic Sequent

[35] [Dummett 1977]

[36]pp. 123-124 of [Dummett 1977].
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Γ, A : A [A : A always holds.]

Thinning Rule
Γ : B
______
Γ, A : B

Introduction Rules Elimination Rules
Operator

Γ : A ∆ : B Γ : A ∧ B Γ : A ∧ B
_________________ _________ _________

∧ Γ, ∆ : A ∧ B Γ : A Γ : B

Γ : A Γ : B Γ: A ∨ B ∆, A : C Θ, B : C
_______ ________ ____________________________

∨ Γ : A ∨ B Γ : A ∨ B Γ, ∆, Θ : C

Γ, A : B Γ : A ∆ : A ⇒ B
________ _____________________

⇒ Γ : A ⇒ B Γ, ∆ : B

Γ, A : B ∆, A : ¬ B Γ : A ∆ : ¬ A
____________________ ______________________

¬ Γ, ∆ : ¬ A Γ, ∆ : B

Γ : – A
____________

– Γ: ¬ A

Γ : A Γ : – – A
______ ________

– – Γ : – – A Γ : A

Γ : A Γ : – ¬ A
______ ________

– ¬ Γ : – ¬ A Γ : A

Γ : A ∧ – B Γ : –(A ⇒ B)
__________ ___________

– ⇒ Γ: –(A ⇒ B) Γ : A ∧ – B

Γ : – A ∨ – B Γ : –(A ∧ B)
____________ _____________

– ∧ Γ: –(A ∧ B) Γ : – A ∨ – B

Γ : – A ∧ – B Γ : –(A ∨ B)
____________ _____________

– ∨ Γ: –(A ∨ B) Γ : – A ∧ – B
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Γ : A(t) Γ : ∃xA(x) ∆, A(y) : C
__________ _________________________

∃ Γ : ∃xA(x) Γ, ∆ : C

Γ : A(y) Γ : ∀xA(x)
__________ ___________

∀ Γ : ∀xA(x) Γ : A(t)

Γ : ∀x –A(x) Γ : –∃xA(x)
___________ __________

–∃ Γ : –∃xA(x) Γ : ∀x –A(x)

Γ : ∃x –A(x) Γ : –∀xA(x)
___________ __________

–∀ Γ : –∀xA(x) Γ : ∃x –A(x)

For the quantification rules, the following additional constraints must hold:

1) y is a variable and t is any term of NH, where x is not free in t or y.

2) A(y) and A(t) result from A(x) by replacing every free occurrence of x by y

and t respectively.

3) In the ∀ introduction rule, y does not occur free in Γ : ∀xA(x).

4) In the ∃ elimination rule, y does not occur free in ∃xA(x) or Γ, ∆ : C.

In the above table, there is a gap where one expects the ‘–’  introduction rule. This is

expressive of a difference between strong negation, ‘–’,  and weak negation, ‘¬’.

The rule for weak negation introduction says roughly that if Γ and A derive B and ∆
and A derive the weak negation of B, then the weak negation of A is derivable from Γ

and ∆. With strong negation, ‘–’, it is possible that Γ and ∆ support (derive) neither

B nor – B.  Thus, there isn’t a corresponding rule for strong negation introduction.

Weak negation is defined in infon logic as ¬ A =df (A⇒ ⊥). The special infon ⊥

(read “bottom”) is unsupported by all situations, which is equivalent to B ∧ – B, for

all B. The dual of this infon (‘T’ read “top”), is supported by all situations (including

the origin situation O in the Kripke interpretations).

The weak negation introduction rule allows the use of a form of reductio ad absur-

dam reasoning: “if from A together with other hypotheses Γ we can derive an incon-
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sistent pair of formulae B1 and B2, then we are entitled to assert ¬ A on the basis of

Γ.” [37]

Dummett points out that the system he gives is redundant. The thinning rule can be

achieved from application of the ‘∧’ introduction rule followed by an application of

the ‘∧’ elimination rule. Conversely, in the presence of the thinning rule, those rules

with more than one premise can be weakened by writing ‘Γ’ in place of ‘∆’ and ‘Θ’.

Also, the thinning rule allows the basic sequent to be defined in the more restricted

form of ‘A : A’. Given the more general form of the basic sequent, the thinning rule

can eliminated from the system and still use the restricted (‘Γ’ only) form of the

rules.

[37]p. 125 in [Dummett 1977].
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Gentzen Sequent Calculus system for NH.

Dummett provides a sequent calculus system L for intuitionistic logic (equivalent to

the logic axiomatized by H)[38]. The system presented here, NL, is L extended with

strong negation. For the sequent calculus system, a sequent is ‘Γ : A’ or ‘Γ :’, where

‘Γ’ is a set of formulæ and A is a single formula. The latter form of a sequent indi-

cates that the antecedent (‘Γ’) is inconsistent. The kinds of rules in a sequent calcu-

lus system involve introduction on the left versus introduction on  the right of the ‘:’

symbol, instead of introduction versus elimination as was the case in the natural de-

duction system.

Right Introduction Left Introduction
Operator

Γ : Γ : C
______ _____

Thin Γ : A Γ, A : C

Γ : A ∆ : B Γ, A, B : C
_________________ _________

∧ Γ, ∆ : A ∧ B Γ, A ∧ B : C

Γ : A Γ : B Γ, A : C Γ, B : C
_______ ________ ______________________

∨ Γ : A ∨ B Γ : A ∨ B Γ, ∆, A ∨ B : C

Γ, A : B Γ, B : C ∆ : A
________ _____________________

⇒ Γ : A ⇒ B Γ, ∆, A ⇒ B : C

Γ,  A : Γ : A 
______ ______

– Γ : – A Γ, – A :

[38]p. 135-137 in [Dummett 1977]. Dummett also presents a version of the sequent calculus formal-
ization where the right  hand side is a set of formulae instead of a single formula. Many of the in-
ference rules translate simply by adding a ‘set’ variable to the RHS, but some rules (conditional
and universal) must still be restricted to having a single formula on the RHS.
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Γ : A Γ , A : B
______ ________

– – Γ : – – A Γ, – – A: B

Γ : A ∧ – B Γ, A ∧ – B: C
__________ ___________

– ⇒ Γ: –(A ⇒ B) Γ, –(A ⇒ B) : C

Γ : – A ∨ – B Γ, – A ∨ – B : C
____________ _____________

– ∧ Γ: –(A ∧ B) Γ, –(A ∧ B) : C

Γ : – A ∧ – B Γ, – A ∧ – B : C
____________ _____________

– ∨ Γ: –(A ∨ B) Γ, –(A ∨ B) : C

Γ : A(t) Γ, A(y) : C
__________ ____________

∃ Γ : ∃xA(x) Γ, ∃xA(x) : C

Γ : A(y) Γ, A(t) : C
__________ ___________

∀ Γ : ∀xA(x) Γ, ∀xA(x) : C

Γ : ∀x –A(x) Γ, ∀x –A(x) : C
___________ __________

–∃ Γ : –∃xA(x) Γ, –∃xA(x) : C

Γ : ∃x –A(x) Γ, ∃x –A(x) : C
___________ __________

–∀ Γ : –∀xA(x) Γ, –∀xA(x) : C

In all cases, ‘C’ is either a formula or the empty set. For the quantification rules, the

following additional constraints must hold (these are the same as for the natural de-

duction system given above):

1) y is a variable and t is any term of NH, where x is not free in t or y.

2) A(y) and A(t) result from A(x) by replacing every free occurrence of x by y

and t respectively.

3) In the ∀ right-introduction rule, y does not occur free in Γ : ∀xA(x).

4) In the ∃ left-introduction rule, y does not occur free in ∃xA(x) or Γ, ∃xA(x) :

C.

page 64



Consider the sequent Γ, A(x):A(y), where x and y are free variables and A(x) is iden-

tical to A(y) except that all free occurrences of x in A(x) have been replaced by y in

A(y). This sequent is not necessarily true (i.e., it is not a basic sequent). Since x and

y are distinct free variables, then they can be “bound” to distinct terms, say s and t

where neither s nor t occurs in A. A(s) and A(t) are clearly not syntactically identical

in that they differ in the constants s and t. 
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Some consequences of the infon axiom system

An infon is considered to be factual if it is supported by some situation. Let F be

some infon. Let f be (F ∧ F). Since all situations are consistent

(see Support condition 1, page 36), f can never be factual, regardless of the choice of

infon F. Consider the compound infon (A ⇒ f ). By the definition of the support of

confirmation of a conditional, (A ⇒ f ) is supported by a situation s if and only if

there is no situation t of which s is a part such that t |= A and t |≠ f . Since  t |≠ f holds

for all t, this condition can be simplified to: there is no situation t of which s is a part

such that t |= A. Suppose there exists a situation r  such that r  |= A. Since the “set” of

situations is closed with respect to the union of situations, there exists a situation t

which contains both r and s. By the persistence of infons,  r  |= A implies t |= A. Thus,

there exists a situation t of which s is a part such that t |= A. This implies that s |≠ (A

⇒ f ). Thus, if A is supported by any situation, no situation can support (A ⇒ f ). By

contraposition, if any situation supports (A ⇒ f ), then no situation supports A. It is

also easy to show that if no situation supports A, then any situation supports  (A ⇒

f ). Thus, A is not factual if and only if (A ⇒ f ) is supported by all situations. The

denial of the claim that an infon A is not factual, –(A ⇒ f ), is equivalent to confir-

mation of the claim that A is factual. It can also be shown that if s |= A then s |= –(A

⇒ f ). This latter claim is what one might expect, that if a situation supports an infon,

it also supports the claim that that infon is factual.

Gabbay notes that, in nh, A ⇔ B does not imply –A ⇔ –B. It is also the case that (A

⇒ B) does not imply (–B ⇒ –A). Thus, one cannot use the contrapositive rule when

reasoning in infon logic.

For classical logic it is sufficient to define a single connective via an appropriate

axiom system, and all of the standard connectives can be defined in terms of that sin-

gle connective. More commonly, axiom systems are used in classical logic which de-

fine only two connectives and all other connective are defined in terms of those two.

The question naturally arises then of what the minimum set of connectives is for the
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infon logic. There is no axiom system which is logically equivalent to the infon

axiom system which uses fewer connectives than that given in the propositional frag-

ment of the infon axiom system (noting that ‘⇔’ is a defined symbol in the infon

axiom system).

This can be improved on for the h axiom system by introducing quantification over

propositions, making the logic second order. Gabbay does this to create a second

order propositional logic, 2h. He extends the propositional fragment of HPC, h, with

quantification of propositions to create C2h. He also extends the propositional Krip-

ke structure to define an interpretation for C2h. 

The axiom system for C2h is that of h extended as follows[39]:

C2h0 = h0 ∪ 

{( ∀x)A(x) ⇒ A(y),

A(y) ⇒ ∃x A(x),

∀ x (B ∨ A(x)) ⇒ (B ∨ ∀xA(x)) [x not free in B],

∃x (x ⇔ A) [A any formula, x not free in A]}

C2h1 = h1 ∪ 

{( A(x) ⇒ B / ∃x A(x) ⇒ B),

(B ⇒ A(x) / Β ⇒ ∀xA(x))}, x not free in B.

C2h2 = h2.

x and y are propositional variables in the above axioms and rules.

In this logic, ‘⇒’ and ‘∀’ are the only connectives one needs to define the connec-

tives of h [40]:

A ∧ B =df ∀ x ((A ⇒ (B ⇒ x)) ⇒ x)

A ∨ B =df ∀ x ((A ⇒ x) ∧ (B ⇒ x) ⇒ x)

∃x A(x) =df ∀y (∀x(A(x) ⇒ y) ⇒ y)

f  =df (∀x) x

[39]p. 159 in [Gabbay 1981].

[40]p. 169 in [Gabbay 1981].
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It appears that the above equivalences are not applicable to infon logic. In the case of

conjunction, for instance, there is a semantic mismatch between the support of a con-

junction and the support of a conditional. The support of a conjunction by some situ-

ation s is completely determined by that situation, “locally” as it were. The determi-

nation of support of a conditional by some situation s is dependent on the situations

of which s is a part, a more “global” concern. Thus, if one has an infon A which is

not supported by s but is supported by t (t ≥S s), and B which is supported by s, then

‘A ∧ B’ is not supported by s but ‘∀ x ((A ⇒ (B ⇒ x)) ⇒ x)’ is supported by s (this

latter claim is a little awkward to demonstrate, but follows from the support condi-

tion definitions).[41]

[41]This idea of quantifying over propositions is more interesting in the intuitionistic logics than in
classical logic. In classical logic a proposition is either true or false (in a given interpretation).
Thus, ‘∀ x A(x)’, for x a propositional variable, is classically equivalent in truth value to ‘A(true)
∧ A(false)’. Similarly, ‘∃ x A(x)’ is classically equivalent to ‘A(true) ∨ A(false)’. In the infon
logic, the dual notions of interest are “supported” versus “unsupported” (instead of “true” and
“false”). There is a similar analysis as that for classical logics, but it is more complex due to the
more complex definition of the semantic interpretation.
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Langholm’s Partial Model Theory 

Tore Langholm published a work on the theory of partial models for logic that was

inspired by situation theory titled Partiality, Truth and Persistence

[Langholm 1988]. Various of the results of Langholm are comparable with those de-

veloped for the NH axiom system and the support conditions.[42] In the following, the

logic semantics developed by Langholm is referred to as PM (for “Partial Model”).

The major point about PM in the context of this thesis is that PM does not have a

persistent definition of the conditional (NH, of course, does).

Truth conditions for a partial propositional logic

The basic definition is for the strong Kleene truth relation between wffs and models:

v |= S+ iff S ∈ v+

v |= S- iff S ∈ v-

v |= T+

v |≠ T-

v |= –ϕ+ iff v |= ϕ-

v |= (ϕ ∨ ψ)+ iff v |=ϕ+ or v |= ψ+

v |= (ϕ ∨ ψ)- iff v |=ϕ- and v |= ψ-

 

The model v is defined by a triplet, v = (ρv, v+, v-), where ρv is a set of atomic sen-

tences (without polarity), ρv ⊇ v+ ∪ v-  and v+ ∩ v- = Ø. If ρv = v+ ∪ v-, then v is a

complete model. He defines “v informationally extends u”, written u « v, if ρu = ρv,

v+ ⊇ u+ and v- ⊇ u-. The model v can be considered to represent a situation s, where

v+ ∪ v- is all of the basic infons which s supports. The similarity type ρv is just all of

the basic infons (without polarity) which any situation supports. Thus, all situations

have the same similarity type. The “part of” relation between situations is modeled

by the “informationally extends” relation.

[42]Langholm makes no reference to the intuitionistic tradition in logic, notably Brouwer or Heyting,
or the work of Gabbay. He includes a work by Melvin Fitting on intuitionism in his bibliography,
but I was unable to locate any actual reference in [Langholm 1988] to Fitting’s work.
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Langholm introduces exclusion negation, written ‘~’, with the definition:

v |= ~ϕ+ iff v |≠ ϕ+

v |= ~ϕ- iff v |= ϕ+

This operator is also known as external negation.

The defined operators are:
⊥ =df –T

ϕ ∧ ψ =df –(–ϕ ∨ –ψ)

ϕ ⊃ ψ =df  (~ϕ ∨ ψ)

ϕ ≡ ψ =df  (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ)

ϕ ↔ ψ =df  (ϕ ≡ ψ) ∧ (–ϕ ≡ –ψ)

‘ϕ ≡ ψ’ holds when ϕ and ψ are true in exactly the same models. This is read as “j

and y are positively equivalent”. Similarly, ‘–ϕ ≡ –ψ’ holds when ϕ and ψ are false

in exactly the same models. This is read as “ϕ and ψ are negatively equivalent”. A

second kind of disjunction, weak disjunction,  is defined in terms of the primitive ne-

gation and (strong) disjunction:

(ϕ ∇ ψ) =df ((ϕ ∨ ψ) ∧ (ϕ ∨ –ϕ) ∧ (ψ ∨ –ψ))

Comparison of PM and NH

There is a great similarity between Langholm’s strong Kleene structure and the

strong propositional Kripke interpretation. They are not the same, though. The strong

negation, conjunction and (strong) disjunction are the same for NH and Langholm’s

“partial model” logic (PM). There is no counterpart in NH for the exclusion negation

of PM. Beyond this, there is nothing in NH which treats the positive and negative

polarities of an infon asymmetrically. Exclusion negation does treat them asymmetri-

cally. Thus, to define exclusion negation for NH requires modifying the strong prop-

ositional Kripke interpretation (extending it). However, exclusion negation is not

persistent. This can be shown as follows: Let ϕ ∈ ρu,  ϕ ∉ u+, and ϕ ∉ u-. This im-

plies that u |≠ ϕ+, and thus u |= ~ϕ+. Let v+ = u+ ∪ {ϕ},  v- = u-, and ρu = ρv . This

implies that u << v. However, it also implies that v |= ϕ+. Thus, v |≠ ~ϕ+. Therefore,

page 70



‘~’ is not persistent.

The definitions of ‘⊃’ in PM and ‘⇒’ in NH are not directly comparable. They both

support the deduction theorem, but their semantics are quite different. Most impor-

tantly, ‘⊃’ is not persistent. This can be shown in a manner analogous to the non-per-

sistence of ‘~’. Similarly, ‘≡’ is not directly comparable with its NH analog  ‘⇔’,

and ‘≡’ and ‘↔’ are not persistent.[43]

Langholm does introduce another truth value relation which involves quantification

over models in a fashion reminiscent of the Kripke interpretation. This is the super-

valuation truth relation, written ‘|=SV’ [44]. It is defined by: v |=SV ϕ iff ( v’ |= ϕ for all

completions v’ of v).[45] Langholm shows that :  v |=SV ϕ iff v |= ϕ, in the proposi-

tional case. He mentions that this breaks down in the predicate logic case.

Langholm doesn’t retain persistence for the fundamental notion of the conditional,

but it’s not clear what he gets for yielding up this property.  This difference is suffi-

ciently crucial as to make further comparisons between PM and NH unrewarding.

[43]These non-persistence results and much more are discussed starting on p. 26 in [Langholm 1988].

[44]Langholm writes it with a small box subscript.

[45]p. 36 in [Langholm 1988].
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Appendix 1: Infon Logic Theorem Proofs

This appendix contains the proof of the theorems of Chapter 3, the presentation of
infon logic.

Theorem 1: All conditional-free infons are persistent.

Choose situations s, t such that s ≤S t.
The theorem requires that for all conditional-free infons σ, if s |= σ then t |= σ.

Proof:
The proof is by induction on the structure of infons.

Basis: σ is a basic infon. σ is a basic infon (positive or negative) implies t |= σ. [By
definition of supports.]
QED, basis case.

Induction Hypothesis: If  A, A, B, and B are persistent infons, then A ∧ B,  –( A ∧ B), 
A  ∨ B, and –(A  ∨ B) are persistent.

1) s ≤S t. [By the antecedent of the theorem.]
2) s |= A ∧ B iff  s |= A and  s |= B. [By definition of confirmation of conjunc-

tion.]
3) s |= A implies t |= A. [antecedent of induction hypothesis.]
4) s |= B implies t |= B. [antecedent of induction hypothesis.]
5) s |= A ∧ B implies  t |= A and  t |= B. [By steps 2,3,4 and transitivity of im-

plies.]
6) t |= A ∧ B iff  t |= A and  t |= B. [By definition of confirmation of conjunc-

tion.]
7) s |= A ∧ B implies  t |= A ∧ B . [By steps 5 and 6 and transitivity of implies.]
8) A ∧ B is persistent. [By steps 1 and 7 and definition of persistence.]
9) s |= –(A ∧ B) iff  s |= A or  s |= B. [By definition of denial of conjunction.]
10) s |= A implies t |= A. [antecedent of induction hypothesis.]
11) s |= B implies t |= B. [antecedent of induction hypothesis.]
12) s |=  –(A ∧ B) implies  t |= A or  t |= B. [By steps 9,10,11 and transitivity of

implies.]
13) t |= –(A ∧ B) iff  t |= A or  t |= B. [By definition of denial of conjunction.]
14) s |= –(A ∧ B) implies  t |= –(A ∧ B) . [By steps 12 and 13 and transitivity of

implies.]
15) –(A ∧ B) is persistent. [By steps 1 and 14 and definition of persistence.]
16) s |= A ∨ B iff  s |= A or  s |= B. [By definition of confirmation of disjunction.]
17) s |= A ∨ B implies  t |= A or  t |= B. [By steps 2,3,16 and transitivity of im-

plies.]
18) t |= A ∨ B iff  t |= A or  t |= B. [By definition of confirmation of disjunction.]
19) s |= A ∨ B implies  t |= A ∨ B . [By steps 17 and 18 and transitivity of im-

plies.]
20) A ∨ B is persistent. [By steps 1 and 19 and definition of persistence.]
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21) s |= –(A ∨ B) iff  s |= A and  s |= B. [By definition of denial of disjunction.]
22) s |=  –(A ∨ B) implies  t |= A and  t |= B. [By steps 9,10,21 and transitivity of

implies.]
23) t |= –(A ∨ B) iff  t |= A and  t |= B. [By definition of denial of disjunction.]
24) s |= –(A ∨ B) implies  t |= –(A ∨ B) . [By steps 22 and 23 and transitivity of

implies.]
25) –(A ∨ B) is persistent. [By steps 1 and 24 and definition of persistence.]
26) A ∧ B,  –( A ∧ B),  A  ∨ B, and –(A  ∨ B) are persistent. [By steps 8, 15, 20,

and 25.]

QED, the induction hypothesis.

From the basis case and the induction hypothesis, it follows that all conditional-
free infons are persistent.

QED, Theorem 1.

Theorem 2: For all wffs A and situations t, if (α(t, A) = 1 iff [A]t = 1) and (α(t, A) =

-1 iff [A]t = -1), then (α(t, A) = [A]t).

Proof:
1) α(t, A) = 0 iff α(t, A) ≠ 1 and α(t, A) ≠ -1. [By definition, α has a range of

{-1, 0, 1}, and α is total for all wffs A.]
2) [A]t = 0 iff [A]t ≠ 1 and [A]t ≠ -1. [By definition, [] has a range of {-1, 0, 1},

and a is total for all wffs A.]
3) α(t, A) ≠ 1 iff [A]t ≠ 1. [By hypothesis of theorem and classical logic nega-

tional equivalence, (A iff B) iff (~A iff ~B).]
4) α(t, A) ≠ -1 iff [A]t ≠ -1. [By hypothesis of theorem and classical logic nega-

tional equivalence, (A iff B) iff (~A iff ~B).]
5) α(t, A) = 0 iff [A]t ≠ 1 and [A]t ≠ -1. [By steps 1, 3, and 4, and (indirectly)

transitivity of conditional.]
6) α(t, A) = 0 iff [A]t = 0. [By steps 2 and 5, and transitivity of equivalence.]

7) α(t, A) = [A]t . [By step 6, the theorem hypothesis, the totality of both α and
[] over the same domain (the set of all wffs), and the definitions of both α
and [] to have {-1, 0, 1} as their ranges.]

QED, Theorem 2.

Theorem 3: For all conditional-free A, [A]t  = α(t, A).

Proof:
The proof of this is inductive on the connective structure of A, as follows:
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Basis: A is atomic (no connectives). This implies that A is a basic infon.[A]t  = α(t,
A) holds by definition.

Induction: Hypothesis: If [A]t  = α(t, A) and [B]t  = α(t, B), then [A ∧ B]t  = α(t, A ∧
B) and  [A ∨ B]t  = α(t, A ∨ B) and [–A]t = α(t, –A)

1) [A]t  = α(t, A) and [B]t  = α(t, B). [Hypothesis, antecedent.]

2) [A ∧ B]t = 1 iff [A]t = 1 and [B]t = 1. [By definition point 2 and definition of
‘min’.]

3) α(t, A ∧ B) = 1 iff t |= A ∧ B . [By definition of  α]
4) t |= A ∧ B iff t |= A and t |= B.  [By Support condition 6, page 41, ‘Confirma-

tion of Conjunction’.]
5) α(t, A ∧ B) = 1 iff t |= A and t |= B. [By steps 3 and 4, and transitivity of

‘iff’.]
6) α(t, A) = 1 iff  t |= A . [By definition of α.]
7) α(t, B) = 1 iff  t |= B. [By definition of α.]
8) α(t, A ∧ B) = 1 iff α(t, A) = 1  and α(t, B) = 1 . [By  steps 5, 6, and 7, and by

two applications of the theorem “((P iff (Q and R)) and (Q iff S)) implies (P
iff (S and R))” (which follows from the transitivity of “implies”).]

9) α(t, A ∧ B) = 1 iff [A]t = 1 and [B]t = 1. [By substituting equalities of step 1
into step 8.]

10) α(t, A ∧ B) = 1 iff [A ∧ B]t = 1. [By steps 2 and 9 and transitivity of ‘iff’.]

11) [A ∧ B]t = -1 iff [A]t = -1 or [B]t = -1. [By definition point 2 and definition of
‘min’.]

12) α(t, A ∧ B) = -1 iff t |= –( A ∧ B) . [By definition of  α]
13) t |= –( A ∧ B) iff t |= A or t |= B.  [By Support condition 7, page 42, ‘Denial

of Conjunction’.]
14) α(t, A ∧ B) = -1 iff t |= A or t |= B. [By steps 12 and 13, and transitivity of

‘iff’.]
15) α(t, A) = -1 iff  t |= A . [By definition of α.]
16) α(t, B) = -1 iff  t |= B. [By definition of α.]
17) α(t, A ∧ B) = -1 iff α(t, A) = -1  or α(t, B) = -1 . [By  steps 14, 15, and 16,

and by two applications of the classical theorem “((P iff (Q or R)) and (Q iff
S)) implies (P iff (S or R))” (which follows from the transitivity of “im-
plies”).]

18) α(t, A ∧ B) = -1 iff [A]t = -1 or [B]t = -1. [By substituting equalities of step 1
into step 30.]

19) α(t, A ∧ B) = -1 iff [A ∧ B]t = -1. [By steps 11 and 18 and transitivity of
‘iff’.]

20) α(t, A ∧ B) = [A ∧ B]t . [By steps 10 and 19, and Theorem 2, page 43.]

21) [A ∨ B]t = 1 iff [A]t = 1 or [B]t = 1. [By definition point 2 and definition of
‘min’.]

22) α(t, A ∨ B) = 1 iff t |= A ∨ B . [By definition of  α]
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23) t |= A ∨ B iff t |= A or t |= B.  [By Support condition 6, page 41, ‘Confirma-
tion of Disjunction’.]

24) α(t, A ∨ B) = 1 iff t |= A or t |= B. [By steps 22 and 23, and transitivity of
‘iff’.]

25) α(t, A ∨ B) = 1 iff α(t, A) = 1  or α(t, B) = 1 . [By  steps 24, 6, and 7, and by
two applications of the classical theorem “((P iff (Q and R)) and (Q iff S))
implies (P iff (S and R))” (which follows from the transitivity of “implies”).]

26) α(t, A ∨ B) = 1 iff [A]t = 1 or [B]t = 1. [By substituting equalities of step 1
into step 25.]

27) α(t, A ∨ B) = 1 iff [A ∨ B]t = 1. [By steps 21 and 25 and transitivity of ‘iff’.]

28) [A ∨ B]t = -1 iff [A]t = -1 and [B]t = -1. [By definition point 2 and definition
of ‘max’.]

29) α(t, A ∨ B) = -1 iff t |= –( A ∨ B) . [By definition of  α]
30) t |= –( A ∨ B) iff t |= A and t |= B.  [By Support condition 9, page 42, ‘Denial

of Disjunction’.]
31) α(t, A ∨ B) = -1 iff t |= A and t |= B. [By steps 29 and 30, and transitivity of

‘iff’.]
32) α(t, A ∨ B) = -1 iff α(t, A) = -1  or α(t, B) = -1 . [By  steps 31, 15, and 16,

and by two applications of the classical theorem “((P iff (Q and R)) and (Q
iff S)) implies (P iff (S and R))” (which follows from the transitivity of “im-
plies”).]

33) α(t, A ∨ B) = -1 iff [A]t = -1 and [B]t = -1. [By substituting equalities of step
1 into step 32.]

34) α(t, A ∨ B) = -1 iff [A ∨ B]t = -1. [By steps 28 and 33 and transitivity of
‘iff’.]

35) α(t, A ∨ B) = [A ∨ B]t . [By steps 27 and 34, and Theorem 2, page 43.]

36) [– A]t = -[A]t. [By definition.]

37) -[A]t = -1 iff [A]t = 1. [By  step 36 and arithmetic,X = Y iff A*X = A*Y.]

38) [A]t = 1 iff t |= A. [By step 1, definition of α, and transitivity of iff.]

39) [– A]t = 1 iff [A]t = -1. [By  step 36 and arithmetic,X = Y iff A*X = A*Y.]

40) [A]t = - 1 iff t |= –A. [By step 1, definition of α, and transitivity of iff.]
41) α(t, –A) = 1 iff t |= –A. [By definition of α.]
42) α(t, –A) = -1 iff t |= A. [By definition of α.]
43) α(t, –A) = 1 iff [– A]t = 1. [By steps 39, 40, and 41, and transitivity of iff.]

44) α(t, –A) = -1 iff [– A]t = -1. [By steps 36, 37, 38, and 42, and transitivity of
iff.]

45) α(t, –A) = [– A]t. [By 43 and 44 and Theorem 2, page 43.]

46) If [A]t  = α(t, A) and [B]t  = α(t, B), then [A ∧ B]t  = α(t, A ∧ B) and  [A ∨ B]t
= α(t, A ∨ B) and [–A]t = α(t, –A). [By 20, 35, and 45.]

QED, the induction hypothesis.
Thus, reasoning by induction from the basis statement and the induction hypothesis,
[A]t  = α(t, A) for all conditional free A.
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QED, Theorem 3.

Theorem 4: Propositional infons are persistent.

Proof: The proof of this is built on the proof that conditional-free infons are persis-
tent. This proof is also done via structural induction.

Basis: If A is a basic infon, then A is persistent. This holds by Support condition 3.

Induction Hypothesis: If σ and τ are persistent, then σ ⇒ τ and –(σ ⇒ τ) are persis-
tent.

1)  s |= σ ⇒ τ implies for all t such that s ≤S t, t |= σ implies t |= τ. [By the con-
firmation of conditional support condition.]

2) For all s’  and t, if s’ contains s and t contains s’, then t contains s. [By the
transitive property of the ‘part of’ relation.]

3)  s |= σ ⇒ τ implies for all s’  and t, if s’ contains s and s’ ≤S t, t |= σ implies t
|= τ. [By steps 1 and 2.]

4)  For all s’, if s’ contains s, then s |= σ ⇒ τ implies for all t, if s’ ≤S t, t |= σ
implies t |= τ. [By step 3.]

5)  For all s’, if s’ contains s, then s |= σ ⇒ τ implies s’ |= σ ⇒ τ. [By step 4
and Support condition 10.]

6) s |= –(σ ⇒ τ) implies  s |= σ and s |= τ. [By Support condition 11.]
7) For all s’, if s’ contains s, then s’ |= σ and s’ |= τ. [By induction hypothesis

antecedent.]
8) s’ |= σ and s’ |= τ implies s’ |= –(σ ⇒ τ). [By Support condition 11.]
9) For all s’, if s’ contains s, then s |= –(σ ⇒ τ) implies s’ |= –(σ ⇒ τ). [By

steps 6, 7, and 8.]
10) σ ⇒ τ and –(σ ⇒ τ) are persistent. [By steps 5 and 6.]

QED, induction hypothesis.

Since the induction hypothesis for the conditional-free infons is proved in
Theorem 1, page 42, then by induction on the structure of infons via that hy-
pothesis and the one above, all propositional infons are persistent.

QED, persistence of propositional infons, Theorem 4.

Theorem 5: If  α(t, A) = [A]t and  α(t, B) = [B]t, then  α(t, A ⇒ B) = [A ⇒ B]t.

1) α(s, A ⇒ B) = 1 iff  s |= A ⇒ B. [By definition of α.]
2) s |= A ⇒ B  iff for all t such that s ≤S t,  t |= A implies t |= B. [By

Support condition 10, page 48, Confirmation of Conditional.]
3) α(s, A ⇒ B) = 1 iff for all t such that s ≤S t,  t |= A implies t |= B.

4) s ≤S t iff sRt. [By definition of the R relation.]
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5) α(t, A) = 1 iff t |= A. [By definition of α.]
6) α(t, B) = 1 iff t |= B. [By definition of α.]
7) α(t, A) = [A]t. [By induction hypothesis.]

8) α(t, B) = [B]t. [By induction hypothesis.]

9) [A]t = 1 iff t |= A. [By steps 5 and 7 and substitution of equality.]

10) [B]t = 1 iff  t |= B. [By steps 6 and 8 and substitution of equality.]

11) α(s, A ⇒ B) = 1 iff for all t such that s R t, [A]t = 1 implies [B]t = 1. [By
steps 3,  4, 9, and 10]

12) [A ⇒ B]t=1 iff for all t such that s R t, [A]t = 1 implies [B]t = 1. [By defini-
tion.]

13) [A ⇒ B]t=1 iff α(s, A ⇒ B) = 1. [By steps 11 and 12 and transitivity of iff.]
14) α(s, A ⇒ B) = -1 iff  s |= –(A ⇒ B). [By definition.]
15) t |= –(A ⇒ B) iff  t |= A and t |= B. [By definition.]
16) α(t, A) = -1 iff t |= A. [By definition.]
17) α(t, A ⇒ B) = -1 iff [A]t = -1 and [B]t = 1. [By steps 6 and 16 into 15, and 15

into 14.]
18) [A ⇒ B]t= -1 iff [A]t = -1 and [B]t = 1. [By definition.]

19) [A ⇒ B]t= -1 iff α(t, A ⇒ B) = -1. [By steps 17 and 18.]

20) α(t, A ⇒ B) = [A ⇒ B]t. [By steps 13 and 19, and Theorem 2, page 43.]
QED, Theorem 5; the ‘⇒’ connective extension to Theorem 3, page 43.

Theorem 7: For all s and all  non-parametric anchors gs of x to the constituents of s,

s |= (A(x) ⇒ ∃y A(y))[gs].

1) For all s and all non-parametric anchors gs of parameters of A to the constit-

uents of s, s |= (A(x) ⇒ ∃y A(y))[gs] iff for all s and all non-parametric an-

chors gs  of parameters of A to constituents of s, s |= (A[gs ] ⇒ ∃y A(y)[gs ]).
[Property of anchors]

2) s |= (A[gs ] ⇒ ∃y A(y)[gs ]) iff for all t such that s ≤S t, t |= A[gs ] implies t |=

∃y A(y)[gs ]. [Support condition 10, page 48]

3) t |= ∃y A(y)[gs ] iff there exists some non-parametric anchoring f t = {y/a}, a

∈ constituents(t) such that t |= A[gs ][ f t ]. [Support condition 14, page 50]

4) t |= A[gs ][ f t ] implies there exists some non-parametric anchoring f t =
{ x/a}, a ∈ constituents(t) such that t |= A[gs ][ f t ]. [From the tautology ‘P
implies P’.]

5) t |= A[gs ][ f t ] implies t |= ∃y A(y)[gs ]. [By steps 3 and 4 and the transitivity
of conditional.]

6) For all s and all non-parametric anchors gs of parameters of A to the constit-

uents of s, s |= (A(x) ⇒ ∃y A(y))[gs ]. [By steps 1, 2, and 5].
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QED, axiom = (A(x) ⇒ ∃y A(y)).

Theorem 8: For all s and non-parametric gs, s |= (∀y A(y) ⇒ A(x))[gs].

1) For all s and all non-parametric anchors gs of parameters of A to the constit-

uents of s, s |= ∀y A(y) ⇒ A(x) iff for all s and all non-parametric anchors gs
of parameters of A to the constituents of s, s |= ∀y A(y)[gs] ⇒ A[gs ]. [Prop-
erty of anchors.]

2) s |= ∀y A(y)[gs ] ⇒ A[gs ] iff for all t such that s ≤S t, t |= ∀y A(y)[gs ] im-

plies t |=  A[gs]. [Support condition 10, page 48]

3) t |= ∀y A(y)[gs ] iff for all situations r and non-parametric anchorings f t =
{ x/a}, a  ∈ constituents(t), t ≤S r implies r |= A[gs ][ f t ].

4) (For all situations r  and non-parametric anchorings f t = {x/a}, a  ∈ constitu-

ents(t), t ≤S r  implies r  |= A[gs ][ f t ]) implies  t |=  A[gs ][ f t ]. [Since t ≤ t, if

the antecedent is true, then  t |=  A[gs ][ f t ] is true. Thus, the implication
holds.]

5)  t |= ∀y A(y)[gs ] implies t |=  A[gs ][ f t ]. [By steps 3 and 4.]

6) For all s and all non-parametric anchors gs of parameters of A to the constit-

uents of s, s |= (∀y A(y) ⇒ A(x))[gs ]. [By steps 1, 2, and 5.]
QED, axiom = (∀y A(y) ⇒ A(x)).

Theorem 9: For all s and all non-parametric anchors gs of parameters of A to the
constituents of s, s |= (–∃xA(x) ⇔ ∀x –A(x)).

1) s |= (–∃xA(x) ⇒ ∀x –A(x))[gs] iff for all t such that s ≤S t, t |= –∃xA(x)[gs]

implies t |= ∀x –A(x)[gs]. [Support condition 10, page 48 and property of an-
chors]

2) t |= –∃xA(x)[gs] iff for all situations r  and non-parametric anchorings f t =
{ x/a}, a ∈ constituents(r), t part of r  implies r |= –A[gs][ f t ]. [
Support condition 15, page 50]

3) t |= ∀x –A(x)[gs] iff for all situations r and non-parametric anchorings f t =
{ x/a}, a  ∈ constituents(r), t part of r implies r |=–A[gs][ f t ]. [
Support condition 12, page 50]

4) t |= –∃xA(x)[gs] iff t |= ∀x –A(x)[gs]. [By steps 2 and 3.]

5) s |= (–∃xA(x) ⇒ ∀x –A(x))[gs]. [By steps 1 and 4.]

6) s |= (∀x –A(x) ⇒ –∃xA(x))[gs]  iff for all t such that s ≤S t, t |= ∀x –A(x)[gs]

implies t |= –∃xA(x)[gs] . [Support condition 10, page 48]

7) s |= (∀x –A(x) ⇒ –∃xA(x))[gs] . [By steps 6 and 4.]

8) For all s and all non-parametric anchors gs of parameters of A to the constit-
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uents of s, s  |= (–∃xA(x) ⇔ ∀x –A(x))[gs]. [By steps 5 and 7.]
QED, axiom =  –∃xA(x) ⇔ ∀x –A(x).

Theorem 10: For all s and all non-parametric anchors gs of parameters of A to the

constituents of s, s |= (–∀xA(x) ⇔ ∃x –A(x))[gs].

1) s |= (–∀xA(x) ⇒ ∃x –A(x))[gs] iff for all t such that s ≤S t, t |= –∀xA(x)[gs]

implies t |=∃x –A(x)[gs] . [Support condition 10, page 48, and property of an-
chors.]

2) t |= –∀xA(x)[gs] iff there exists a non-parametric anchoring f t = { x/a}, a ∈
constituents(t),  such that t |= –A[gs][ f t ]. [Support condition 13, page 50]

3) t |=∃x –A(x)[gs] iff there exists some non-parametric anchoring f t = {x/a}, a

∈ constituents(t) such that t |= –A[gs][ f t ].
4) t |= –∀xA(x)[gs] iff t |=∃x –A(x)[gs]. [By steps 2 and 3.]

5) s |= (–∀xA(x) ⇒ ∃x –A(x))[gs]. [By steps 1 and 4.]

6) s |= (∃x –A(x) ⇒ –∀xA(x))[gs] iff for all t such that s ≤S t, t |= ∃x –A(x)[gs]

implies t |=–∀xA(x)[gs] . [Support condition 10, page 48]

7) s |= (∃x –A(x) ⇒ –∀xA(x))[gs]. [By steps 4 and 6.]

8) For all s and all non-parametric anchors gs of parameters of A to the constit-

uents of s, s |= (–∀xA(x) ⇔ ∃x –A(x))[gs]. [By steps 5 and 7.]
QED, axiom = –∀xA(x) ⇔ ∃x –A(x).

Theorem 11: For all s and all non-parametric anchors gs of parameters of A to the

constituents of s, s |= (A(x) ⇒ B )[gs] implies for all s and all non-parametric anchors

gs of parameters of A to the constituents of s, s |= (∃xA(x) ⇒ B)[gs].

0)  Assume: (A(x) ⇒ B ) is a theorem. [By hypothesis.]
1) s |= (A(x) ⇒ B )[gs] iff  s |= (A[gs ] ⇒ B[gs] ). [Property of anchor.]

2) s |= (A[gs] ⇒ B[gs] ) iff for all g’s such that g’s(y) = gs(y) for y ≠ x, s |=

(A[g’s] ⇒ B[gs] ).

3) s |= (A[g’s] ⇒ B[gs] ) iff for all t such that s ≤S t, t |= A[g’s ] implies t |=

B[gs]. [Support condition 10, page 48]

4) For all s and gs, there exists g’s such that  t |= A[g’s ] implies  t |= B[gs]. [By
steps 0, 1, 2, and 3.]

5) Suppose: there exists s1, t1, gs1
,  gt1

, and g’t1
, s1 ≤S t1, gs1

= gt1
, t1 |≠ B[gs1

]

and t1 |= A[g’t1
].
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6) ~(t1 |= A[g’t1
] implies  t1 |= B[gs1

]). [By 5 and negation of implication.]

7) ~(t1 |= A[g’t1
] implies  t1 |= B[gt1

]). [By 5 and 6 and substitution of equal

terms (gs1 = gt1).]
8) Contradiction of step 4: ~(For all t such that s ≤S t,  t |= A[g’s] implies  t |=

B[gs]). [By 7, letting s = t1, since s ≤S s.]

9) ~(there exists s1, t1, gs1
,  gt1

, and g’t1
, s1 ≤S t1, gs1

= gt1
, t1 |≠ B[gs1

] and t1 |=

A[g’t1
]). [Contradiction of step 5, by step 8’s contradiction of 4.]

10) For all s1, t1, gs1
,  gt1

, and g’t1
, ~(s1 ≤S t1 and gs1

= gt1
 and t1 |≠ B[gs1

] and t1

|= A[g’t1
]). [By step 9 and classical property of negation of universal quanti-

fication.]
11) For all s1, t1, gs1

,  gt1
, and g’t1

,  (s1 ≤S t1 and gs1
= gt1

 and t1 |= A[g’t1
]) im-

plies t1 |= B[gs1
]). [By step 10 and classical equivalence of ‘implies’ and ‘or’

(P -> Q iff (~P or Q)) and associativity of ‘and’.]
12) For all s1, t1, gs1

, and gt1
,  (s1 ≤S t1 and gs1

= gt1
 and there exists g’t1

 such

that t1 |= A[g’t1
]) implies t1 |≠ B[gs1

]). [By step 11 and classical equivalence

of quantification of implication (for all x (P(x) -> Q) iff ((exists x P(x)) ->
Q), x not free in Q).]

13) For all s and gs, s |= (∃xA(x) ⇒ B)[gs] iff for all t such that s ≤S t, t |=

∃xA(x)[gs] implies t |= B[gs]. [Support condition 10, page 48, and property of
anchors.]

14) t |= ∃xA(x)[gs] iff there exists  g’t such that g’s(y) = gs(y) for y ≠ x, such that t

|= A[g’t]. [By Support condition 14, page 50.]

15) For all s and gs, s |= (∃xA(x) ⇒ B)[gs]. [By steps 12, 13 and 14, letting s1 =

s, t1 = t, gs1
 = gs, and g’t1

 = g’t.]

16) (∃xA(x) ⇒ B) is a theorem. [By step 15 and semantic definition of theorem.]
17) If (A(x) ⇒ B ) is a theorem, then (∃xA(x) ⇒ B) is a theorem. [By steps 0 and

16.] 
QED, provability rule = (A(x) ⇒ B ) / (∃xA(x) ⇒ B).

Theorem 12: For all s and all non-parametric anchors gs of parameters of A to the

constituents of s, s |= (B ⇒ A(x))[gs] implies for all s and all non-parametric anchors

gs of parameters of A to the constituents of s, s |= (B ⇒ ∀xA(x))[gs].

1) For all gs in s, s |= (B ⇒ A(x))[gs] iff s |= B[gs] ⇒ A[gs]. [By anchor proper-
ty.]

2) For all g’s in s where  g’s(y) = gs(y) for y ≠x, s |= B[gs] ⇒ A[gs] iff  s |= B[gs]
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⇒ A[ g’s]. [By given constraint that x is not free in B.]

3) s |= B[gs] ⇒ A[ g’s] iff for all t such that s ≤S t, t |= B[gs] implies t |=  A[ g’s].
[By Support condition 10, page 48.]

4) For all r such that t ≤S r, t |= B[gs] implies r |= B[gs]. [By persistence.]

5) gs = gr an anchor in t and r . [Since s ≤S t and s ≤S r  , then the constituents of
s are constituents of t and r . Thus an anchor in s is an anchor in t and r .]

6) For all s and gs in s, s |= (B ⇒ A(x))[gs] implies for all t and r  such that s ≤S t

≤S r and for all g’r in r  where  g’r(y) = gs(y) for y ≠x, t |= B[gs] implies r  |=

A[ g’r]. [By steps 1, 2,4, and 5.]

7) s |= (B ⇒ ∀xA(x))[gs] iff s |= B[gs] ⇒∀xA(x)[gs]. [Property of anchors.]

8) s |= B[gs] ⇒ ∀xA(x)[gs] iff for all t such that s ≤S t, t |= B[gs] implies t |=

∀xA(x)[gs]. [Support condition 10, page 48]

9) t |= ∀xA(x)[gs] iff for all situations r  and non-parametric anchorings g’r,
where g’r(y) = gs(y), for y ≠ x, g’r (x)  ∈ constituents(r), t ≤S r  implies r  |=

A[g’r]. [Support condition 12, page 50]

10)  For all s and gs in s, s |= B[gs] ⇒ A[ gs] implies for all s and gs in s, s |=

B[gs] ⇒ ∀xA(x)[gs]. [By steps 2, 6 and 9.]

11)  For all s and gs in s, s |= (B ⇒ A(x))[ gs] implies for all s and gs in s, s |= (B

⇒ ∀xA(x))[gs]. [By steps 1, 7, and 10.]
QED, provability rule = ( B ⇒ A(x))/(B ⇒ ∀xA(x)).
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