
Chapter 5: Perception and Belief

This chapter proves the first part of the third hypothesis and provides arguments in

support of the fourth hypothesis of this thesis:

Third Hypothesis: This new version of situation theory and the associated theorem
prover is appropriate as a knowledge representation and reasoning system for theo-
ries of perception and belief.

Fourth Hypothesis: Theories of perception and belief as defined by their embed-
dings in the new version of situation theory provide a better account of human rea-
soning than classical logic-based computational approaches to perception and be-
lief.

Situation theoretic belief and perception theories are developed in this chapter, prov-

ing the first part of the third hypothesis. Automated reasoning in these theories (the

second part of the third hypothesis) is addressed in the next chapter. The examination

of the application of these theories to example problems provides the arguments in

support of the fourth hypothesis.

Many problems in reasoning require both theories of perception and of belief; one

wants to reason about what someone believes based on what that person is presumed

to have perceived. The two example problems discussed in the section of this chapter

dealing with belief both involve assumptions about what has been perceived and

what someone believes as a result of this perception. In the following presentation,

perception is discussed first and a situation theoretic approach to it is developed and

contrasted with other major approaches. Following this is a more extensive treatment

of belief, in which a situation theoretic belief theory is developed and two example

problems are investigated.

A Logic of Perception

Perception and reports of perception pose several problems for a formal account of

their “logic”. Barwise presents a proposal for several “principles” for a logic of per-

ception and shows how these follow as theorems of situation theory, but present dif-
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ficulties for more traditional logical accounts.1 The logic of naked infinitive percep-

tion statements (generally referred to here as simply “the logic of perception”) is ex-

plored here as an “application” of the formalism developed in the previous chapters. 

This discussion is limited to analyzing the meaning of a particular limited class of

perception statements, those involving naked infinitives (NI statements). In NI per-

ception sentences, “see” is not followed immediately by the word ‘that’, and the verb

of the “perceived” embedded sentence is in its naked infinitive form. In the follow-

ing discussion, only NI perception sentences are used as the “perceived” sentence.

The principles which Barwise presents and for which he argues are in

Exhibit 5. 1 on page 138.

Barwise presents three non-situation theoretic “seemingly plausible” semantic ac-

counts of NI perception statements, a situation theoretic account, and four linguistic

puzzles by which he demonstrates the inadequacy of the non-situation theoretic ac-

counts. The non-situation theoretic accounts are “naive realist logic of perception”,

“propositional theories of perception”, and “naive adverbial theories of perception

and ad hoc semantics”.

1. pp. 12-15 in [Barwise 1981].  All of [Barwise 1981] is more-or-less devoted to “the logic
of NI [naked infinitive] perception statements”.
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Let ϕ be some NI sentence, ~ϕ is the verb-phrase negation of ϕ, ϕ(t) is an NI sentence ϕ with a
constituent (verb or noun) ‘t’, ϕ(a) and ϕ(a/b) are the same except all occurrences of ‘a’ in ϕ(a)
are replaced by ‘b’ in ϕ(a/b):

Perception Principle 1:  Veridicality. If a sees ϕ, then ϕ.
Perception Principle 2:  Substitutivity. If a sees ϕ(t1) and t1 = t2 then a sees ϕ(t1/t2).

Perception Principle 3:  Existential Scope. From “a sees some x such that ϕ(x)” one can de-
rive “there is an x such that a sees ϕ(x).”

Perception Principle 4: Negation. If a sees ~ ϕ, then ~(a sees ϕ).
Perception Principle 5: Disjunction. If a sees (ϕ or ψ) then a sees ϕ or a sees ψ.
Perception Principle 6: Conjunction. If a sees (ϕ and ψ) then a sees ϕ and a sees ψ.
Perception Principle 7: Logical Equivalence Substitutivity. If ϕ and ψ are logically equiva-

lent, then if a sees ϕ  then a sees ψ.

Exhibit 5. 1: Principles of Perception.



Naive realism theory of perception

In the naive2 realist approach, the idea is that perception is “a direct confrontation

between the perceiver a and the perceived object b; say ‘a sees b’.” 3 In this ap-

proach, there is no direct way of representing the perception of an event - only that

some object has the property of participating in a kind of event. The example is:

Whitehead saw Russell wink

which the naive-realist must represent in a manner similar to:

(wSr) ∧ T(r)

where T(x) means “x has the property of winking” and xSy means “x saw y”. This

formula is not a satisfying expression of the meaning of the sentence, since it is also

the translation of:

Whitehead saw Russell and Russell winked

where no notion that Whitehead saw Russell’s wink is expressed. The situation theo-

retic account avoids this problem by having a way to speak of events directly (the

situation in which the event occurred).

Propositional theory of perception

The propositional theories of perception are based on a different theory about the act

of perception. The idea here is that one never sees an object directly, but rather sees

that the object has some property: “... we never simply see a tomato, say, but rather

we see that something is a tomato, or that something is red and roundish. ...seeing is

a way of knowing or believing.”4 Thus, the objects of seeing are propositions. Bar-

wise claims that this is the direction taken by Hintikka, Thomason and Niiniluoto,

leading to a possible-worlds theory of perception. However, this approach doesn’t fit

with the principles of perception.

The example which Barwise gives shows that a “modal” argument produces an obvi-

2. Barwise uses the term “naive” to contrast with his own approach. He characterizes his approach
as realist, but not (as) naive.

3. p. 21 in [Barwise 1981].

4. p. 22 in [Barwise 1981].
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ously incorrect conclusion. In his example, Barwise identifies Perception Principle 7,

logical equivalence, as providing “the false step” in the modal proof (specifically, the

assumption that “p or not p” is always true and then extending a formula into a con-

junction with another formula of this form and claiming that the extended formula is

logically equivalent to the initial formula). A modal logician might argue that the

problem is in the Perception Principle 5, disjunction, but this would be an attempt to

alter natural language semantics to fit a mathematical system (modal logic). The situ-

ation theoretic account avoids this problem by having a more limited notion of logi-

cal equivalence. For the example, the relevant limitation is that “p or not p” is not al-

ways “true” (supported by a given situation) in situation theory.

Adverbial theory of perception

The adverbial theory of perception takes the position that the object of perception

should be treated as an adverb modifying how the agent is seeing. Thus, John sees

Mary run is interpreted as meaning John sees in a “Mary run” way. This might be

represented formally as

SMary run(John)

where SMary run is a predicate symbol. Instead of having one “sees” predicate there is

now an infinite number of Sϕ predicates, one for each sentence ϕ. This has the oppo-

site problem with logical equivalence to that of the previous approach. If ϕ and ψ are

logically equivalent but syntactically distinct, then Sϕ and Sψ are distinct predicates.

So, no logical equivalence substitutions are allowed in this approach. Certainly this

approach won’t make inappropriate inferences based on logical equivalence, but it

won’t make the appropriate inferences either. For example, in viewing two blocks s

and t if a sees s is on t, it should be possible to infer that a sees t is under s. The ad-

verbial approach doesn’t support this. The situation theoretic approach doesn’t have

this problem since it does allow for logical equivalence substitutions. The adverbial

approach doesn’t justify any of the principles A through F presented above.

Situation theoretic theory of perception
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The situation theoretic approach is to interpret “a sees ϕ” as an assertion that:

a sees some situation s where s supports ϕ.

More formally, the sentence “a sees ϕ” is interpreted as:

∀ f  (∃ d |= discourse(“ a sees ϕ”)[ f ])
→ ∃ s,t (t |= sees(L, a, s) ∧ s |= content(ϕ, loc)

∧ L temporally_equal loc)[f ],

where f  is an anchor for the parameters of the infons in the antecedent and conse-

quent, L is a parameter for the location of the ‘sees’ infon. L (the location of the de-

scribed situation) and any other parameters in the consequent must all occur in the

discourse infon. This formulation makes explicit the three situations of the interpre-

tation of this sentence; the discourse situation d, the described situation t, and the

“seen” situation s. This interpretation cannot be stated using the involvement relation

and situation types, due to the explicitly referenced “seen” situation s.

A Murder: A Puzzle in the Logic of Perception

Barwise discusses four problems relating to perception and how these problems can

be formulated in the various approaches mentioned above. One of these problems is

examined here. The puzzle involves a murder:

Bob has killed Fred with a knife. Mary testifies: “Bob and I entered the room at the
same time, by different doors. Fred, facing my door, saw me enter. I saw Bob enter,
but Fred did not see Bob enter.”

This can be summarized by:

m saw B(b)
f saw F(m)
~(f saw B(b))

where B(b) is “Bob entering through the door in back of Fred”, F(m) is “Mary enter-

ing through the door in front of Fred”, ‘m’ is Mary and ‘f’ is Fred.
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Barwise posits a modal logician K who undertakes to show that Mary’s testimony is

inconsistent and therefore should be ignored. K accepts the principles A through F,

and the principle of logical equivalence substitutivity. K’s reasoning is as follows:

1) m saw B(b) [given]
2) f saw F(m) [given]
3) B(b) [step 1 and Perception Principle 1, page 138]
4) ~(f saw ~B(b)) [step 3 and the contrapositive of 

Perception Principle 1, page 138]
5) F(m) ⇔ ((F(m) ∧ B(b)) ∨ (F(m) ∧ ~B(b)))

[axioms of FOL]
6) f saw ((F(m) ∧ B(b)) ∨ (F(m) ∧ ~B(b)))

[step 2 and 5 and Perception Principle 7, page 138]
7) (f saw (F(m) ∧ B(b))) ∨ (f saw (F(m) ∧ ~B(b)))

[step 6 and Perception Principle 5, page 138]
8) (f saw (F(m) ∧ ~B(b))) ⇒ (F(m)∧ ~B(b))

[Perception Principle 1, page 138]
9) ~(F(m)∧ ~B(b)) [step 3 and axioms of FOL]
10) ~(f saw (F(m)∧ ~B(b))) [step 9 and

contrapositive of Perception Principle 1, page 138]
11) (f saw (F(m) ∧ B(b))) [step 10 and 7 and axioms of FOL]
12) f saw B(b) [step 11, Perception Principle 6, page 138,

and and-elimination inference rule of FOL]

This contradicts Mary’s testimony that “~(f saw B(b))”, so her testimony is inconsis-

tent. Barwise identifies step 6, the use of the logical equivalence, as the false step in

this line of reasoning.5

The situation theoretic approach translates the problem as:

sd |= see(m, sm) ∧ sm |= B(b)

sd |= see(f, sf) ∧ sf |= F(m)

~(sd |= see(f, sf ) ∧ sf |= B(b))

where sd is the overall situation being described, sm is the situation seen by Mary,

and sf  is the situation seen by Fred. The location argument has been eliminated to

simplify the presentation.

5. p. 24 in [Barwise 1981].
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Many of the steps of K’s proof hold for the ST version, except for step 5 introducing

the logical equivalence. In ST, F(m) is not logically equivalent to ((F(m) ∧ B(b)) ∨
(F(m) ∧ ~B(b))), since B(b) ∨ ~B(b) is not supported by all situations. Thus, a situa-

tion may support F(m) but not support ((F(m) ∧ B(b)) ∨ (F(m) ∧ ~B(b))) if that situ-

ation does not determine B(b). By this analysis, Mary’s testimony is perfectly consis-

tent - sm |= B(b), sf  |= F(m), and sf |≠ B(b).

The “believes” relation

An agent’s beliefs are represented by parametrized ST propositions. In

[Barwise&Perry 1983] “represented beliefs” were represented via a schema.6 This is

translatable into modern ST terms as a (parametrized) situation type defined by a

(parametrized) infon, which is a possibly compound (specifically, a disjunctive

infon). That is, a belief has the form of “ agent A believes that there exists situation

s0 such that situation s0 supports infon P”. This limitation to existential support prop-

ositions (a situation type) is overly strict — some beliefs are about the infons sup-

ported by particular situations. The model of beliefs used here is that the thing be-

lieved is a proposition rather than a situation type. Thus, the believes relation takes 3

arguments, the agent, the location (time) of the belief, and the proposition which de-

fines the contents of the belief: 〈〈believes, Agent, Location, Belief 〉〉. This is a modal

infon - an infon which has an argument which takes propositions (which generally

are support relations between situations and infons) as its value.

As a notational convenience, located belief infons are written “A @ L bel B”. This is

read as “agent A at location L believes B”. Beliefs can be nested. An example of this

is agent0 believing that it believes P: s1 |= agent0 @ l1 bel (s1 |= (agent0 @ l1 bel P)).

To simplify the following discussion, the location argument is generally suppressed.

Support Postulate 5. 1 Confirmation of belief : s |= 〈〈believes, A, L, B 〉〉 iff s is a

situation wherein agent A believes at location L that there exists some situation t such

that t |= B. To restate this: s |= A @ L bel B iff situation s encompasses both location

6. pp. 241-253 in [Barwise&Perry 1983].
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L and agent A, and agent A at L believes B.

Support Postulate 5. 2 Denial of belief : s |= 〈〈believes, A, L, B ; -〉〉 iff s is a sit-

uation wherein agent A at location L does not believe that there exists some situation

t such that t |= B. To restate this: s |= –(A @ L bel B) iff situation s encompasses both

location L and agent A, and agent A at L does not believe B.

Belief principles

There are several basic principles about beliefs. In general, these principles should be

assumed to be fallible. They are not necessary constraints. They are more properly

considered nomic constraints, akin to laws of (intelligent) nature. However, a simpli-

fication adopted here is to assume that the logic of  “belief” is defined with all of

these principles as axioms. These principles7 are given in Exhibit 5. 2, page 146.

The principles have been translated into situation theoretic terms, thus the supports

relation appears in their statement. The “thing” being believed is represented by a

classical first order logic formula. To help distinguish between classical formulae

and infon formulae, the different conditional operators have been represented using

different symbols; ‘→’ represents the classical conditional and ‘⇒’ represents the

infon conditional.

These principles are derived from the classic S5 modal logic axioms. The situation

theoretic versions of these principles has a strong difference from the classical modal

logic axioms in that the situation theoretic versions of these axioms are logically in-

dependent, whereas the classical versions are not independent. (The situation theoret-

ic distribution of belief principle is not independent, but is derived from the closure

and knowledge principles.) Classically, modal axiom T implies modal axiom D.

However, the situation theoretic knowledge belief principle does not imply the situa-

tion theoretic belief consistency principle. The knowledge principle allows one to

infer that if situation T supports that A is believed by S, then  T does not support that

7. p. 36-38 in [Konolige 1986].

page 144



S believes the negation (dual) of A. The given consistency principle allows a stronger

statement to be made, that T supports that if A is believed by S, then that situation

supports that the negation of A is not believed by S. Thus, knowledge and consisten-

cy are independent principles in this situational belief theory, but they are not inde-

pendent in classical modal logic.

There are at least three different ways to interpret the introspection axioms in situa-

tion theory, the weak, middle, and strong formulations. The middle formulation is

given in the table. The strong formulation is similar, but does not use the existential

quantification: 

T |= (S bel A) ⇒ (S bel (T |= S bel A))

T |= –(S bel A) ⇒ (S bel (T |= –(S bel A)))

The above axioms for introspection are easier to reason with than the ones in

Exhibit 5. 2, but they are less plausible. They claim that if S believes A in situation

T, then S believes ‘S believes A in situation T’ in situation T. From the persistence

of infons, this introduces all situations of which T is a part as objects about which S

has beliefs. This profusion of situations seems unwarranted.

The weak formulation is weaker than that given for introspection in Exhibit 5. 2. In

this formulation the quantification is moved into the nested belief:

T |= (S  bel A) ⇒ (S bel ∃ U (U |= S bel A))

T |= –(S bel A) ⇒ (S bel ∃ U (U |= –(S bel A)))

The logical closure principle is interesting in that it relates logical consequence (“de-

rives”) between classical propositions to the infon conditional. This is an extension

of the deduction theorem for infon logic. The rest of the principles are candidates for

axiom schema additions to infon logic. If all of the principles are accepted, then the

belief operator has the formal properties of an S5 modal logic-like extension of infon

logic. These principles are properly considered schemas since they have variables

which range over classical propositions, and infon logic variables may only range

over terms of infon logic.
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A complete theory of belief would include a nonmonotonic theory of belief, where

the principles are used as defeasible inference rules. This is not attempted here.

Applying the Theory of Belief 

There are two examples which are used to explore the application of the theory of

belief given above. The first example is a story about a poker game, where two peo-

ple who see one or both of the hands come to different conclusions. The challenge is

to account for the conclusions at which they arrive. The second example is the two-

person version of the “wise men” puzzle. In this puzzle it is common knowledge be-

tween two men that at least one of them has a white dot on their forehead and that

each can only see the other man’s forehead (not his own). One of them says he

doesn’t know if he has a white dot. After hearing this the other one figures out that

he, himself, must have a white dot. The challenge here is to provide a line of reason-

ing for the second wise man. These example problems have been adopted in this

work as a benchmark of a minimal ability to deal with multiple agents, perception

and belief.
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Principle Description Traditional
Modal
Axiom

(A → B) implies T |=(S  bel A ⇒ S  bel B) Logical closure K
(T |= (S bel A)) → A Knowledge T
T |= ((S bel A → B)⇒ (S  bel A) ⇒ S  bel B) Distribution of belief (from K and T)
T |= ((S bel A) ⇒ – (S bel –A)) Consistency D
T |= (S bel A) ⇒ ∃ U (S bel (U |= S bel A)) Positive Introspection 4
T |= –(S bel A) ⇒ ∃ U (S bel (U |= –(S bel A))) Negative Introspection 5

T and U are situations. S is an agent. A and B are classical formulae.

Exhibit 5. 2: Belief Principles



The Poker Game

This example is from Allan Gibbard8, and is discussed at length by Barwise9 and

Stalnaker10:

Sly Pete and Mr. Stone are playing poker on a Mississippi riverboat. It is now up to

Pete to call or fold. My henchman Zack sees Stone’s hand, which is quite good, and

signals its contents to Pete. My henchman Jack sees both hands, and sees that Pete’s

hand is rather low, so that Stone’s the winning hand. At this point the room is

cleared. A few minutes later Zack slips me a note which says “if Pete called, he

won,” and Jack slips me a note which says “if Pete called, he lost...” I conclude that

Pete folded.

This example is introduced by Gibbard to demonstrate that conditional statements

(e.g. “if Pete called, he won”) do not have any “propositional content”. Stalnaker and

Barwise continue the discussion of propositional content. Stalnaker modifies Gib-

bard’s position by saying that “open conditionals” (a kind of conditional which Jack

and Zack’s statements exemplify) do have a propositional content, but it is “highly

context dependent”. The context to which Stalnaker here refers is that of the speaker

and listener. The propositional content which Barwise attributes to nearly any kind

of sentence is “context dependent” - as interpreted in this thesis it is a claim about an

infon being supported by a situation. This approach can be used to represent the con-

ditionals of the example.

The formal analysis pursued here of this example explores some of the ways in situa-

tions, perceptions, and beliefs are present in the example, and how these things inter-

act in the reasoning about Jack’s and Zack’s conclusions. Thus only a limited set of

relevant facts are formalized. Also, space and time details are suppressed.

8. Originally from p. 231 of [Gibbard 1981] and discussed on pp. 231-234. This description is as
given on p. 112 of [Barwise 1986]. Barwise states that he is using the version as given on pp.
108-109 of [Stalnaker 1984].

9. pp. 112-113 and pp. 131-132 in [Barwise 1986].

10. pp. 108-110 in [Stalnaker 1984].
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Defining Terms and Relations

Let t be a situation which contains Zack and Jack, s the situation of the poker game,

which includes Sly Pete and Mr. Stone, ‘pete’ be Sly Pete, ‘stone’ be Mr. Stone, and

‘bel(A, P)’ be the belief infon that person A believes proposition P. Let ‘calls(A)’

mean “A called”. Let ‘won(A)’ mean “A won”, and ‘loses(A)’ mean that “A lost”.

 Zack’s belief that “if Pete called, he won” is represented as:

t |= bel(zack, s |= calls(pete) ⇒ wins(pete)).

Jack’s belief that “if Pete called, he lost” is represented as:

t |= bel(jack, s |= calls(pete) ⇒ loses(pete)).

Let ‘hand(A, H)’ mean “A’s hand of playing cards is H”, ‘players(A, B)’ mean “A

and B are the players in a two-handed game of poker”, and ‘player(A)’ mean “A is a

player in a game of poker”. Let ‘knows_poker(A)’ mean “A knows what is common

knowledge among poker players (e.g., rules and habits of play)”.

Let ‘sit(S)’ mean “S is a situation”. Let s1 be the part of the poker game situation

which Zack sees, which includes Mr. Stone’s hand but not Sly Pete’s hand. Let s2 be

the part of the poker game situation which Jack sees, which includes both Mr.

Stone’s hand and Sly Pete’s hand but not the event of Zack telling Sly Pete what Mr.

Stone’s hand is. Situation s1 is  strictly a part of s2 , and s2 is part of s.

Formalizing the Story

The story is given again below with the formalization of each part of the story placed

immediately after that part, parts of the story which have no associated formalization

are given in parentheses:
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“Sly Pete and Mr. Stone are playing poker on a Mississippi riverboat.”

t |= bel(zack, s |= players(pete, stone))

t |= bel(jack, s |= players(pete, stone))

(“It is now up to Pete to call or fold.”)

“My henchman Zack sees Stone’s hand...”

t |= bel(zack, part_of(s1, s))

t |= sees(zack, s1)

s1 |= hand(stone, sh)

(“...which is quite good,...”)

“...and signals its contents to Pete.”

t |= bel(zack, s |= bel(pete, s |= hand(stone, sh)))

“My henchman Jack sees both hands,...”

t |= bel(jack, part_of(s2, s))

t |= sees(jack, s2)

s2 |= hand(stone, sh) ∧ hand(pete, ph)

“...and sees that Pete’s hand is rather low, so that Stone’s the winning hand.”

better(sh, ph)

[Domain Rule 3, see below]

(“At this point the room is cleared. A few minutes later...”)

“Zack slips me a note which says ‘if Pete called, he won,’...”

t |= bel(zack, s |= calls(pete) ⇒ wins(pete)).

“...and Jack slips me a note which says ‘if Pete called, he lost...’.”

t |= bel(jack, s |= calls(pete) ⇒ loses(pete)).
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(“I conclude that Pete folded.”)

These given formulae are presented in Exhibit 5. 4 on page 153.

Formalizing Knowledge About Poker

There are some domain rules about poker which are used to arrive at the conclusions

of Zack’s and Jack’s beliefs. Because these rules involve several quantifiers and

nesting of the supports relation and the belief relation, they are hard to read when

presented directly. Their presentation is made modular by using named, schematic

formulae. The names of these schematic formulae are in bold face. The rules and

their defined subformulas are:

The major schema for defining these rules is ‘everybody_who_knows_poker_be-

lieves(X)’. This schema states that for all situations s if s supports that a knows

poker, then  a believes X in s:

everybody_who_knows_poker_believes(X) =df

∀ s  (sit(s) → s |= ∀ a (knows_poker(a) ⇒ bel(a, X)))

The first rule simply states that everyone knows that if the set of all players in a
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t |= knows_poker(zack)
t |= bel(zack, part_of(s1, s))

t |= sees(zack, s1)

t |= bel(zack, s |= bel(pete, s |= hand(stone, sh)))
t |= bel(zack, s |= players(pete, stone))

t |= knows_poker(jack)
t |= bel(jack, part_of(s2, s))

t |= sees(jack, s2)

t |= bel(jack, s |= players(pete, stone))

s1 |= hand(stone, sh)

s2 |= hand(stone, sh) Ÿ hand(pete, ph)

better(sh, ph)
Exhibit 5. 3: Poker Game Formalization. Given Facts.



poker game is {A, B}, then A is a player in the game and B is a player in the game.

This rule could be more clearly stated if there was a representation for sets:

Rule 1: everybody_who_knows_poker_believes(

each_person_in_game_is_a_player)

each_person_in_game_is_a_player =df

∀ t (sit(t) → t |= ∀ p1, p2 (players(p1, p2) ⇒ player(p1) ∧ player(p2))).

The second rule states that everyone knows that every player knows her own hand

(the poker game is presumed to be draw poker - the example from Gibbard doesn’t

say and some other kinds of poker (such as stud poker) wouldn’t have this property):

Rule 2:  everybody_who_knows_poker_believes(
every_player_knows_her_hand)

every_player_knows_her_hand  =df
∀ t (sit(t) → t |= ∀ p (player(p) ⇒ ∃ x bel(p, t |= hand(p, x)))).

The third rule states that everyone knows that if a person knows both of the hands in

the game and that the hand for a particular player P is better, then that person knows

that if P calls then P wins and if the other player Q calls then Q loses:

Rule 3: everybody_who_knows_poker_believes(
knowing_better_hand_implies_knowing_results)

knowing_better_hand_implies_knowing_results =df
∀ t, u (sit(t) ∧ sit(u) →

∀ p, px, py (knows_hand_is_better(t, u, p, px, py)→
knows_call_results(t, u, p, px, py))))))

knows_hand_is_better(T, U, P, PX, PY) =df

(U |= players(PX, PY) ∨ players(PY, PX))
∧ ∃ x, y (better(x, y) ∧ t |= knows_both_hands(U, P, PX, PY, x, y))

knows_call_results(T, U, P, PX, PY) =df

page 151



T |= knows_wins(U, P, PX) ∧ knows_loses(U, P, PY)

knows_wins(T, P, Q) =df bel(P, T |= (calls(Q) ⇒ wins(Q))).

knows_loses(T, P, Q) =df bel(P, T |= (calls(Q) ⇒ loses(Q))).

The fourth rule is a weaker version of the third rule. It states that everyone knows

that if a person knows both of the hands for the game, then either she knows that if

she calls then she wins or she knows that if she calls then she loses. The essential dif-

ference between the third and fourth rules is that to use the third rule “everyone”

must know how the hands for the player compare, while to use the fourth rule one

only needs to know that some person knows both hands without one needing to

know what those hands are:

Rule 4: everybody_who_knows_poker_believes(
knowing_both_hands_implies_knowing_result).

knowing_both_hands_implies_knowing_result   =df
∀ t (sit(t) → t |= ∀ p1,  p2 (players(p1, p2) ∨ players(p2, p1) ⇒

(∃ x, y knows_both_hands(t, p1, p1, p2, x, y) ⇒
knows_wins(t, p1, p1) ∨ knows_loses(t,  p1, p1)))).

knows_both_hands(T, P, Q1, Q2, X, Y) =df bel(P, T |= hand(Q1, X) ∧ hand(Q2, Y)).

The fifth rule states that everyone knows that if a person calls, then it is not the case

that she believes that if she calls then she loses:

Rule 5: everybody_who_knows_poker_believes(
no_caller_believes_she_will_lose).

no_caller_believes_she_will_lose =df
∀ t  (sit(t) → t |= ∀ x (calls(x) ⇒ – knows_loses(t, x, x))).

The summary of  rules 1 through 3 is presented in Exhibit 5. 4 on page 153, and rules

4 and 5 are presented in Exhibit 5. 5 on page 154.
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Proving the Henchmen’s Conclusions

Using this formalization, Zack’s and Jack’s conclusions can be derived using the for-

malization given above of the Poker Game, and various principles of perception, be-

lief, and support.  These additional principles are:

seeing is believing If someone sees a situation (or “scene”), then they

believe the things which that situation supports.

page 153

everybody_who_knows_poker_believes(X) =df  
∀ s  (sit(s) → s |= ∀ a (knows_poker(a) ⇒ bel(a, X)))

Rule 1: everybody_who_knows_poker_believes(each_person_in_game_is_a_player)
each_person_in_game_is_a_player =df

∀ t (sit(t) → t |= ∀  p1, p2 (players(p1, p2) ⇒ player(p1) ∧ player(p2))).

Rule 2:  everybody_who_knows_poker_believes(every_player_knows_her_hand)
every_player_knows_her_hand  =df  

∀ t (sit(t) → t |= ∀  p (player(p) ⇒ ∃ x bel(p, t |= hand(p, x)))).

Rule 3: everybody_who_knows_poker_believes(
knowing_better_hand_implies_knowing_results)

knowing_better_hand_implies_knowing_results =df

∀ t, u (sit(t) ∧ sit(u) →
∀ p, px, py (knows_hand_is_better(t, u, p, px, py)

→ knows_call_results(t, u, p, px, py))))))

knows_hand_is_better(T , U, P, PX, PY) =df

(U |= players(PX, PY) ∨ players(PY, PX))
∧ ∃ x, y (better(x, y) ∧ t |= knows_both_hands(U, P, PX, PY, x, y))

knows_call_results(T, U, P, PX, PY) =df  

T |= knows_wins(U, P, PX) ∧ knows_loses(U, P, PY)

knows_wins(T, P, Q) =df bel(P, T |= (calls(Q) ⇒ wins(Q))).

knows_loses(T, P, Q) =df bel(P, T |= (calls(Q) ⇒ loses(Q))).

Exhibit 5. 4: Poker Game Formalization. 
Domain Rules 1, 2, and 3.



persistence If an infon is true in situation s and s is part of t,

then that infon is true in t.

belief veridicality If someone believes P, then P is true (only belief-as-

knowledge is dealt with in this example).

logical closure of belief If proposition P derives Q in classical logic, then if

someone believes P they must also believe Q.

logical closure of support If infon P derives Q in infon logic, then if s supports

P it must also support Q.

Jack’s conclusion is much simpler to derive than Zack’s, so it is presented first:

1. s |= players(pete, stone)
2. t |= knows_poker(jack)
3. t |= bel(jack, part_of(s2, s))

4. t |= sees(jack, s2)

5. s2 |= hand(stone, sh) ∧ hand(pete, ph)
6. better(sh, ph)
7. t |= bel(jack, s2 |= hand(stone, sh) ∧ hand(pete, ph)) [seeing_is_believing

and steps 4 and 5]
8. t |= bel(jack,  s |= hand(stone, sh) ∧ hand(pete, ph)) [persistence and steps

3 and 7]
9. t |= bel(jack, s |= calls(pete) ⇒ loses(pete)) [Rule 3 and steps 1, 2,
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Rule 4: everybody_who_knows_poker_believes(
knowing_both_hands_implies_knowing_result).

knowing_both_hands_implies_knowing_result   =df

∀ t (sit(t) → t |= ∀  p1,  p2 (players(p1, p2) ∨ players(p2, p1) ⇒
(∃ x, y knows_both_hands(t, p1, p1, p2, x, y)

⇒ knows_wins(t, p1, p1) ∨ knows_loses(t,  p1, p1)))).

knows_both_hands(T, P, Q1, Q2, X, Y) =df bel(P, T |= hand(Q1, X) ∧ hand(Q2, Y)).

Rule 5: everybody_who_knows_poker_believes(no_caller_believes_she_will_lose).

no_caller_believes_she_will_lose =df 

∀ t  (sit(t) → t |= ∀ x (calls(x) ⇒ – knows_loses(t, x, x))).

Exhibit 5. 5: Poker Game Formalization. 
Domain Rules 4 and 5.



6, and 8]
QED.

Zack’s conclusion is derived as sketched below:

Suppose: t |= bel(zack, s |= calls(pete))

1. t |= knows_poker(zack)
2. t |= bel(zack, part_of(s1, s))

3. t |= sees(zack, s1)
4. t |= bel(zack, s |= bel(pete, s |= hand(stone, sh)))
5. s1 |= hand(stone, sh) ∧ players(pete, stone)

6. t |= bel(zack, s1 |= hand(stone, sh) ∧ players(pete, stone))
[seeing_is_believing
and steps 4 and 5]

7. t |= bel(zack,  
s |= hand(stone, sh) ∧ players(pete, stone)) [persistence and steps

3 and 6]
8. t |= bel(zack, s |= ∃ x bel(pete, s |= hand(pete,x))) [Rule 2]
9. t |= bel(zack,  s |= – bel(pete, s |= calls(pete) ⇒ loses(pete))) [Rule 5 and

supposition]
10. t |= bel(zack, s |= bel(pete, s |= calls(pete) ⇒ loses(pete)) 

∨ bel(pete, s |= calls(pete) ⇒ wins(pete))) [Rule 4 and steps 7 and
8]

11. t |= bel(zack, s |= bel(pete, s |= calls(pete) ⇒ wins(pete))) [steps 9 and 10]
12. t |= bel(zack,  s |= calls(pete) ⇒ wins(pete)) [belief veridicality and

step 11]
13. t |= bel(zack,  s |= wins(pete)) [supposition and step

12]

Since supposing t |= bel(zack,  s |= calls(pete)) derives t |= bel(zack,  s |= wins(pete))

and the deduction theorem applies across belief and the support relation, then t |=

bel(zack,  s |= calls(pete) fi wins(pete)).

QED.

FELIX generates more detailed proofs similar to those above. These proofs generat-

ed by FELIX are discussed in the next chapter, after the extension of FELIX to han-

dle perception, belief and the support relation via multiple-intensional context rea-

soning is presented.
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The Two Wise Men

There are several versions of the “wise men” problem. The two man version is the

simplest, although still quite challenging. Two problems are considered here. The

first problem involves one wise man reasoning about another wise man’s beliefs.

This is the most common form of this problem. The second version involves a wise

man reasoning about his own beliefs. This latter version is interesting because it

uses more of the belief principles than the first one does. Konolige presents an ex-

tended analysis of the two-man form of this problem, focusing on a formal proof

using his belief logic.11 Frisch and Scherl give the following typical version of the

two man problem12:

...there are two wise men named A and B. (1) A knows that if A does not have a
white spot, B will know that A does not have a white spot. (2) A knows that B
knows that either A or B has a white spot. B says that he does not know whether he
has a white spot, and (3) A thereby knows that B does not know whether he has a
white spot. The problem is to prove that (4) A knows that he has a white spot.

They present the formalization of this problem using two modal operators for belief,

[]A and []B, one operator for each wise man. They formalize the numbered state-

ments in the above quotation as follows13:

Given: (1) []A(¬ White(A) → []B(¬ White(A)))

(2) []A([]B(White(A) ∨ White(B))

(3) []A(¬ []B(White(B)))

Prove: (4) []A(White(A))

Formula 4 is the theorem to prove given formulae 1, 2, and 3.

Konolige’s formalization is similar to that of Frisch and Scherl, with minor naming

changes. Konolige uses ‘[S]P’ to indicate “S believes P”. An interesting feature of

11. pp.57-61 in [Konolige 1986].

12. [Frisch&Scherl 1991], p. 198. This in turn is from [Genesereth&Nilsson 1987], p. 215-216. 

13. p.198 in [Frisch&Scherl 1991].
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Konolige’s proof technique is that he uses “views” to reason about the beliefs of the

agents in a fashion similar to the use of “intensional contexts” in FELIX. Konolige’s

formalization is as follows:14

Given: (1k) W(A) ∧ W(B)
(2k) [S](W(A) ∨ W(B))
(3k) [S][S’](W(A) ∨ W(B))
(4k) W(S) → [S’]W(S)
(5k) ¬W(S) → [S’]¬W(S)15

(6k) [S](W(S) → [S’]W(S))
(7k) [S](¬W(S) → [S’]¬W(S))16

(8k) [B]¬ [A]W(A)

Prove: (9k) [B]W(B)

The two wise men, A and B, are in the reverse of the roles given them by Frisch and

Scherl. ‘S’ can be either wise man.

Konolige only uses formulae 1k, 3k, 4k, 7k,  and 8k in his proof. Formula 1 of Frisch

and Scherl’s version corresponds to 7k of Konolige’s version, formula 2 corresponds

to 3k, and formula 3 corresponds to 8k. There is no corresponding formula in Frisch

and Scherl to formula 4k of Konolige. This formula appears to be superfluous in the

proof which Konolige constructs. He uses it to establish that B know’s A’s spot to be

white, but this is not actually used in the steps which lead to the proof (by contradic-

tion). Thus, these two formalisms fundamentally agree on the basic formulae needed

to establish the theorem.

To translate Frisch and Scherl’s formulation into the belief logic presented in this

thesis, the situation of the wise men must be identified. Call it s. The above formulae

can be translated as follows:

Given: (1s) s |= bel(a, s |= (–white(a) fi bel(b, s |= –white(a))))
(2s) s |= bel(a, s |= bel(b,  s |= white(a) ∨ white(b)))
(3s) s |= bel(a, s |= – bel(b,  s |= white(b)))

Prove: (4s) s |= bel(a, s |= white(a))

14. pp. 58-59 in [Konolige 1986].

15. The second ‘¬ ‘ is missing in [Konolige 1986].

16. The second ‘¬ ‘ is missing in [Konolige 1986].

page 157



The situated version of this formulation is not a theorem. That is, the formula to be

proved, 4s, does not follow from the given formulae, 1s, 2s, and 3s. According to

this analysis, the missing piece of information is that A believes that the puzzle situa-

tion determines whether or not A has a white dot on his forehead. This can be stated

as:

Additional Given:
(5s)  s |= bel(a, s |= white(a) ∨ – white(a))

The summary of the formalization of the two wise man problem is given in

Exhibit 5. 6 on page 158.

The proof of this theorem relies on a reductio ad absurdam argument: if A were to

believe that the situation doesn’t support A having a white dot, it would lead to a

contradiction in A’s beliefs. That contradiction being that the situation supports that

B doesn’t believe he has a white dot, and that the situation does not support that B

doesn’t believe he has a white dot. Since supposing that the situation doesn’t support

his having a white dot leads A to contradictory beliefs, he can believe the negation of

the supposition - that the situation does support his having a white dot.

The reductio ad absurdam argument takes place in the intensional context of A’s be-

liefs. This is because the formula which is to be proved via this argument is a belief

of A, and its negation which is being “supposed” is a belief of A. Reductio ad absur-

dam reasoning is valid in the intensional context of A’s beliefs since a belief inten-

sional context uses classical logic.17

17. Reductio ad absurdam reasoning is not valid in infon logic.
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Prove:
s |= bel(a, s |= white(a))

Given:
s |= bel(a, s |= (–white(a) fi bel(b, s |= –white(a))))
s |= bel(a, s |= bel(b,  s |= white(a) ∨ white(b)))
s |= bel(a, s |= – bel(b,  s |= white(b)))
s |= bel(a, s |= white(a) ∨ – white(a))

Exhibit 5. 6: Two Wise Men Problem: Theorem Statement



This proof of the two wise men puzzle requires only one principle of belief, that be-

liefs are closed under classical logic. Since this problem uses so few of the principles

of belief it is not very satisfying as a demonstration of reasoning with these princi-

ples. There is a closely related puzzle which involves most of the principles of belief,

however: Given a similar setup to the previous “two wise men” puzzle, prove that

the situation supports that B believes that A has a white dot. This is presented in

Exhibit 5. 7 on page 159. The setup for this problem is that we are given that the sit-

uation supports that B believes that the situation supports that either A or B has a

white dot, that the situation supports that B believes that the situation supports that A

has a white dot or that B believes that the situation supports that A does not have a

white dot, and that the situation supports that B does not believe that the situation

supports that B has a white dot. To prove this theorem one uses reductio ad absur-

dam reasoning in conjunction with four of the belief principles: closure under classi-

cal logic, veridicality, positive introspection, and negative introspection. It is the use

of the introspection principles which gives the problem its name.
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Prove:
s |= bel(b, s |= white(a))

Given:
 s |= bel(b,  s |= white(a) ∨ white(b))
 s |= bel(b, s |= white(a)) ∨ bel(b, s |= – white(a))
s |= – bel(b,  s |= white(b))

Exhibit 5. 7: Two Wise Men Introspection Problem: Theorem Statement
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