Chapter 3: Situation Theory

Background

Jon Barwise and John Pdthynitially presented situation theory (ST) in 1983Sit-
uations and AttitudegS&A). Since then, Barwise and Perry have changed their
thinking on several important issues presented in S&A. Also, there are now many
other people working on their own versions of ST differing in significant ways from
the material in S&A. S&A remains the most extensive presentation of ST and situa-
tion semantics (SS), and much of the material is still conceptually relevant even
though formally obsolete.

There are several major publications about situation theory:

1979:

1981:

1983:

1987:

1988:

1988:

1990:

1991

Perry published “The Problem of the Essential Indexical”, developing
ideas that play a key role in the development of situation semantics.
[Perry 1979]

Dretske publishe&nowledge and the Flow of Informatioa major in-
fluence on Barwise and Perf{aretske 1981]

Barwise and Perry publisheSituations and Attitudeghe first major
publication in situation theory and semant[@arwise&Perry 1983]
Barwise and Etchemendy publish&de Liar: An Essay on Truth and
Circularity. [Barwise&Etchemendy 1987]

Peter Aczel publishetlon-Well-Founded Setthe source of Barwise’s
revised metatheoryAczel 1988]

Barwise published’he Situation in Logica collection of many of his
papers spanning from 1981 to 19fBarwise 1988]

Robin Cooper, Kuniaki Mukai, and John Perry then edBédation
Theory and its Applicationsa collection of papers which represent
work that evolved out of the First Conference on Situation Theory and
Its Applications, March, 1989Cooper, et. al. 1990]
Keith Devlin publishedogic and Information[Devlin 1991]

[1] [Barwise&Perry 1983]
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The particular formulation for situation theory that is used in this work is based on
material inLogic and InformatioriDevlin 1991] Situation Theory and Its Applica-

tions [Cooper, et. al. 1990]The Situation in Logi¢Barwise 1988] and Situations

and AttitudedBarwise&Perry 1983] Some material frorfBarwise&Perry 1983]s
updated to use the more modern formalisms founflCooper, et. al. 1990]The

most concise and readily understood presentation of issues underlying situation theo-
ry can be found in Barwise’s “Situations, Facts, and True Proposifioria” this

paper, Barwise presents several points about what situation theory should be. The
new expression of situation theory presented below addresses several of these points.

[2] p. 221 - 254 ifBarwise 1988]
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Informal Overview

Situation theory is addressed to problems of information and meaning - how can
people mean, how can they possess and communicate information, what is meaning,
what is information. It also addresses mental states such as knowledge and belief,
and mental processes of inference and perception.

Situation theory is based on the idea that all of the issues of information and meaning
must be understood in the light of the “reasoning agent” kmingtedin the world,

and that the most basic concept in the analysis is the “situation” - some part of the
world (generally, goart of the world “accessible” to the agent). By definition, one
can determine the “state of affairs” with respect to a situation; either a state of affairs
holds in some situation or it does not. If a state of affairs holds with respect to some
part of the world, a situation, then that situation is saglifpportthat state of affairs.

A state of affairs isctual if it is supported by at least one situation. #&stual state

of affairs can be calledfact The neutral technical term in situation theory for states
of affairs isinfon This term is adopted to refer to the idea that infons are the basic
units of information.

The major result of this chapter is the development of a comprehensive definition of
the supports relation, and an axiom system for infons which characterizes the sup-
ports relation. This chapter proves the first hypothesis set forth in chapter 1:

First HypothesisA version of situation theory can be defined which has a charac-
terizing logic (an “infon” logic) similar in form and expressivity to classical first
order logic.

The definition of thesupportsrelation is central to the definition of situation theory.
The supportsrelationpresented here respects four postulates:

1. Coherence postulateNo real situatiors supports a state of affairs
and its negation.

2. Compatibility postulateFor any two (real) situatiorsg ands,, there

is a (real) situatios such thas, ands, are portions o.
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3. Persistence postulatéf s, is a portion ofs then any state of affairs

[infon] that holds ins; also holds irs.

4. Duality postulate For every state of affairs [infon], there is a state
of affairs [infon] that is its dual, or negation.

Barwise identifies the first three as “cherished principles” of situation t2dtg.

was willing to forego the third postulate, persistence, in order to introduce the “the-
sis” that every infon (state of affairs) has a dual (negation). He felt it necessary to vi-
olate “persistence” to introduce the dual of an existentially quantified infon (i.e. a
universally quantified infon). This thesis takes a different approach to infon logic
and situation theory which preserves all four postulates. Particularly noteworthy in
this regard is that the persistence property holdalfanfons, including existentially

and universally quantified infons. Alseyeryinfon has a dual. It is unique to the sit-
uation theory developed in this thesis that all of these postulates hold.

Formal Presentation

The version of situation theory developed here is a full analog of classical first order
predicate logic, with semantics fat [J, 0 , —, [J, andJ (conjunction, disjunction,
conditional, negation, existential, and universal operators, respectively). This is not
all of situation theory. Elements of situation theory not addressed by this thesis in-
clude: abstract relations, partial infons, parameters as primitive objects, restriction
(of parameters), and higher order infon logic. These elements of situation theory are
all areas for further development of the research on which this thesis reports.

There are two major elements of situation theory, a definition of when a situation
“supports” an infon and an axiom system for infons. The axiom system for infons is
determined by the supports relation: If a situation supports an infon, and one can de-
rive via the axiom system a second infon from the first infon, then the situation must
also support the second infon. Thus, the axiom system must be defined in such a way
that it preserves the “supports” relation. This is the “soundness” requirement for the
axiom system. The other major requirement for the axiom system is that any infon

[3] p. 235 in[Barwise 1988]
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that is supported by all situations be derivable as a theorem of the axiom system.
This is the “completeness” requirement for the axiom system. This chapter proves
that the axiom system is sound. The non-quantificational infon logic axiom system is

shown to be complete with respect to the non-quantificational conditions feughe

ports relation. It is conjectured that the quantificational axiom system is also com-

plete.

The “axioms” in the infon axiom system are compound infons that are supported by
all situations. They are tautologies with respect to the supports relation.

The following discussion develops definitions for the supports relation and an axiom
system, and argues that the defined supports relation is consistent with the ideas of
situation theory and that the axiom system is support-preserving. This is a complex
presentation and is done in several parts. Several concepts are defined in addition to
the supports relation, the language of infon logic, and the axiom system for infon
logic. These additional concepts include:

axiom system (also known as “Hilbert system”),

Scott consequence relation (“SCR”),

Tarski consequence relation (“TCR”),

propositional Kripke structure,

strong propositional Kripke structure,

Kripke structure,

and strong Kripke structure.

Also, several axiom systems are presented:

H — Heyting’'s Predicate Calculus,

h - the propositional fragment of H,

h™ - the negation-free propositional fragment of H,
H*™* — the conditional-only fragment of H,

nh — the strong negation propositional fragment of H, and
NH — the strong negation version of H.
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All of the axiom systems identified above, except NH, are presented by Ghbbay
NH is developed in this thesis.

The steps of the presentation of the development of the supports relation and the
infon logic are summarized below:

1)

2)
3)

4)

5)

6)

7

8)

9)

10)

11)

12)

13)

14)
15)

The supports relation and the infon logic axiom system definitions are pre-
viewed. The subsequent discussion develops these definitions and argues
that the defined infon axiom systarharacterizeghe defined supports rela-
tion.

The language of infon logic is defined.

The conditions on the supports relation are given that relgepmsitional
connective-freénfons.

The strong propositional Kripke structurr semantic interpretation is in-
troduced.

The supportsrelation definition is extended with conditions defining the
support of confirmation and denial of conjunction and disjunction.

The conditional-freesupports relation is shown to define a conditional-free
strong propositional Kripke structure.

The ScottandTarskiconsequence relatiorase defined.

The supports relation conditions for implication are developed with regard to
a “minimal” concept of implication with respect to the Scott consequence re-
lation.

Strong negatioraxioms are introduced into the H system to give the NH sys-
tem.

The propositional supports relation is shown to define a strong propositional
Kripke structure.

The propositional fragment with strong negation of Heyting’s predicate cal-
culus is shown to be the “supports-preserving” axiom system for the proposi-
tional supports relation.

The quantificationalconditions for the supports relation are given.

Heyting’s Predicate Calculysxiom system H, is presented.

The quantified Kripke structures introduced.

The strong Kripke structurés defined.

[4] [Gabbay 1981]
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16) The full supports relation is shown to define a strong Kripke structure.
17) The NH axiom system is proposed as the supports-preserving axiom system
for the full supports relation.
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1) The supports relation and infon logic axiom system are pre-

viewed

The entire supports relation and the infon logic axiom system are given below. These
are developed and explained in detail in the following discussion. The supports rela-
tion is presented iExhibit 3. 1 on page 27To briefly present the notation and defi-
nitions used irexhibit 3. T sandt are used to stand for situations, anandt stand

for infons. The dual of an infoa is writtend. As is discussed below, it is part of the
design of the infon logic that the negation of an infon is logically equivalent to the

dual of that infon. The symbol ‘|=" is read “supports”. The sym&dlis read “is

part of” and relates two situations. parameteris an infon logic variable. It can

have at most one value “mapped” to it. &mchoringis a function from parameters

to infon logic terms which specifies a set of such bindingsioA-parametrican-
choring is one for which the range of the anchoring function does not contain any pa-
rameters. This is the only kind of anchoring considered in this thesis. A more extend-
ed version of the situation theory presented here would incorporate parameters as
“first class” terms in the logic, allowing one to quantify over them and establish rela-
tions between them, etc. Here they only serve their classically limited purposes. The
constituentsof a situation are all of those “things” which appear as arguments for
any of the infons which that situation supports.

The infon axiom system NH is presentedEixhibit 3. 2 on page 28 he variables,

B, andC stand for any infon logic formula. These infon formula schemeaxaoens

in the sense that for any instance of one of these formula schemes, that instance is
supported by all situations. Ainstanceof an infon formula scheme is created by
mapping the formula variables of the scheme to well-formed infon logic formulae,
one formula per distinctly named variable of the scheme. The schematic formulae
A(x) andA(y) stand for any well-formed infon logic formula which haery as a

free parameter, respectively. A parametdres if it is not in the scope of an existen-

tial or universal operator which binds it.
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Support postulate: 1 Confirmation of Basic Infong~or all situations and basic infong,
s |=o iff the basic inforo is a state-of-affairs which obtains in the situagoBquiv-
alently,s |=o iff the situationscarries the informatioa. (see page 36)

Support postulate:2 Denial of Basic InfonisFor all situationss and basic infone, s |=0
iff the basic inforo is a state-of-affairs such that the duabadbtains in the situatio
S. (see page 36)

Support condition.1 _ Consistency of Basic InfonBor all situations and basic infons, s
[# o or s |#0. This can also be stated as: itist the case that |= ¢ ands |= 0.
(see page 36)

Support condition .2 Partiality of Basic Infons For all situations such thasis not the
entire world, there exists a basic inforsuch thas £ o ands [£ 0. (see page 36)
Support condition .3 Persistence of Basic InfonBor all situations, s’ , and basic infon

o, (if ssg s’ ands|=o, thens’ |=0). (see page 37)

Support condition 6 Confirmation of Conjunctians |= o O 1 iff s|= 0 ands |=T.
(see page 41)

Support condition .7 Denial of Conjunctions |= — 01) iff s|=0 or s|=T. (see page 42)

Support condition .8 Confirmation of Disjunctions |=oc O 1 iff s|=0 or s |=T1.
(see page 42)

Support condition 9 Denial of Disjunctions |= — [ 1) iff s|=0 ands |=T. (see page 42

Support condition 10 Confirmation of Conditionals [=o U T iff for all t such thas <gt, t

|= o impliest |=1. (see page 48)

Support condition 11 Denial of Conditionals |= —(c O 1) iff s |=0 ands |=T.
(see page 48)

Support condition 12  Confirmation of Universal Quantificatiors |= Oxao iff for all situa-
tionstand non-parametrianchoringsf . = {x/a}, a [J constituentq), s <gtimpliest

|=off  ]. (see page 50)

Support condition 13 Denial of Universal Quantificatians |= -£1xa iff there exists a non
parametricanchoring f = {x/a}, a O constituentés), such thats |= -o[f ].
(see page 50)

Support condition 14  Confirmation of Existential Quantificatiors |= (ko iff there exists
some non-parametranchoringf = {x/a}, a 00 constituents) such thats |=off ].
(see page 50)

Support condition 15  Denial of Existential Quantificatiors |= 4xo iff for all situationst
and non-parametrianchorings = {x/a}, all constituentf), s <gt impliest |= -off

]. (see page 50)

Exhibit 3. 1: Definition of the Supports Relation.
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NH, = {
AO (BOA),
(ADO (BO )0 (AT B)O (AOC)),
AOBO A
AOBUO B,
AO (BO AOB),
AO (AOB),
BO (AOB),
(ADC)O (BO C)Oo aOBO C)),
AX) O Oy AY),
Oy AY) O A%,
-A-= A
-AO B) = AO-B,
-(AOB) = -A0-B,
-(AOB) = -A0-B,
AO-A0O B,
—KAX) = Ox-A(X),
—[OxA(X) = Ix—AX)}

For x not free inB:

NH, ={
(A, A0 B/B),
(A(X) O B/IXAX) O B),
(B O A(X) /B0 OxAX))}

NH, ={{A AO B}{B}H}

A < Bis defined to be a notation fok(l B) OB O A).

Exhibit 3. 2: Hilbert Axiom System for Infon Logic.

2) The language of infon logic is defined.

The primitive terms in ST argtuations relations andobjects The full ST also in-
cludesparametersas primitive objects. There are several special primitive relations,
supports involves, precludesmaterial implication and a number of location rela-
tions recedes, temporally overlaps, spatially overlaps, temporally contains, spa-
tially contains, temporally overlappingly precejle§he composite terms of ST are
infons, object types situation typesandpropositions A situationis a part of the

real world. Arelationis a property of an n-tuple én1) of termsObjectsare “indi-
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viduated” parts of the worl@. A departure of ST from traditional logic is that rela-
tions are primitive, they armtensional concepts, not defined by their extension.
Thus, there can be two different relations that have different intensions and the same
extension. This is not possible in the traditional logical formulation, if two relations
have the same extension then they must be the same relation.

There are two kinds of formulae in ST, propositions @ufions A proposition is ei-

ther true or false and corresponds roughly with traditional logic meta-logic state-
ments. The logic of propositions is that of first order predicate calculus. An infon is
neither true nor false in isolation, but is supported or unsupported (true or false) with
respect to a situation. Anfon is basicor compoundAn infonis composed of -

lation, a set of (role-named) arguments, argbkarity. If the relation of the infon is

any relation except the infon logic connectives, (, —, [J,, [0, and ), then the
| |

infon is abasic infon As an example, to make the basic infon that block A is on
block B, which might be writterOn(A, B)' in a first order theory, one might write
‘[IOn, [locationL, topA, bottomB]; +[I1 The “+” in the example basic infon is the
polarity of the infon. Polarities are either positive or negative (+ or -). An infon with
positive polarity is used to claim that the relation holds with respect to the argument
values, the negative polarity is used to claim that the relationrdudm®mId with re-

spect to the argument values. The role-names (“top” and “bottom” in the example)
allow one to specify gartial infon one that does not have argument values for all of
the roles defined for the infon’s relation. Thus, an infon that simply said that A was
on something could be written d80Dn, [locationL, top:A]; +[I There is not a con-
sensus in the situation theory literature on the meaning of partial infons, and there is
some disagreement as to whether the concept is needed. They do not appear to be
necessary for the investigations of this thesis in belief and perception. Thus, this
issue of partial infons is not explored in this thesis. That is, all of the infons are com-
plete. Thus, basic infons are written using positional arguments instead of named ar-
guments. So, the example basic infon becoiifi®s, L, A, B; +1]

[5] Individuation is only discussed in three places in the ST literature, and then briefly.One reference
is in an appendix of “Situations, Facts, and True Propositions” on pp. 251-Fawfse 1988]
Another is in “Notes on Branch Points in Situation Theory” on pp. 260-2fBaofvise 1988]

Finally, there is a discussion[iDevlin 1991]
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Most relations have an explicibcation argument, which specifies the time and
space about which the infon “speaks”. By convention, this argument will be the first
argument. For some relations the “time” aspect of the location is all that is relevant,
and for others the “space” aspect is all that is relevant. Because of this some presen-
tations of ST handle time and space as independent quantities and independent argu-
ments. It is convenient in this thesis to leave them combined.

Compound Infons

Basic infons can be used to mai@mpound infonsThe “logic” of these compound

infons is callednfon logic Infon logic has several connectives and quantifigys:

0, = 0, 4, and | (conjunction, disjunction, negation, universal quantification, ex-

istential quantification, and conditional, respectively). The “I” subscript of the sym-
bol identifies the symbol as being used in infons. The meanings of these connectives
must be analyzed in terms of the ‘supports’ relation - analyzing under what circum-
stances a situation supports a compound infon using these symbols. This analysis
yields some different results from the meaning associated with these symbols in clas-
sical logic, closer to the meanings used in intuitionistic logic.

Thedual of an infon is another infon with the same relation and arguments, but the
other polarity. An infon is equivalent to the dual of its délal.

A compound infon is an infon that has one of the infon logic connectives as its rela-
tion, and has arguments appropriate to that connective.

An inductive definition of well-formed infons is:

Basis: If A is a basic infon, then it is a well-formed infon.

Let A and B be well-formed infong, be a parameter, andbe either polarity (‘+' or
=),

1) 0=, A;i [Mis a well-formed infon

2) D]]]]I, A, B;i s a well-formed infon

[6] Different developments of ST are possible where an infon and the dual of its dual are not (neces-
sarily) equivalent. This is explained in some detajBarwise&Etchemendy 1990]
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3) [, A, B;i [Mis a well-formed infon
4) [ v A B;ilis a well-formed infon
5) [m, x, A;illlis a well-formed infon

6) [, , x, A;illlis a well-formed infon.

The notation defined for infon logic is translated into infons as follows:
1) “Ais B, A;HII

2) ‘A DI B’isD]]]]I,A, B; + I

3) ‘A BisOn, A, B;+

4) ‘ADIB’iSD]]DI,A,B;+D]]

5) ‘OxA’is O, X, A+

6) ‘UxA’is [, x, A+

In the discussion that follows, the “I” subscript is left off of the infon connectives to
increase readability. It should be clear from context if a particular formula is meant
to be read as an infon, in which case the connectives in the formula should be read as
infon connectives. A well-formed formula in the infon logic is one which represents

a well-formed infon, as presented above. This is given the common abbreviation of
“wff” in the following discussion. The semantics of these compound infons is de-
fined in the various Support Conditions, as summarizé&tkmbit 3. 1 on page 27

Situations
A situationis any space and time region of reality (the universe). Space and time are

pre-theoretic concepts in this thesis - the common notions of these concepts are in-
tended.

There is one relation defined on situations, “part of”, writeesig t' and read Sis

[7] -A is logically equivalent to the dual ofA, A This is expressed by
Support condition 4 on page 4hdSupport condition 5 on page 41
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part oft”. A situations may be part of another situatishin that the region identi-

fied bys may be contained in another (“larger”) regggnSome implications of this

idea of “part of” are found in the following discussion of gegsistenceondition of

the “supports” relation. A situation can be “modeled” I3etof infons - all of those
infons that the situation supports in some scheme of individuation. Such a set of in-
fons is called ambstract situation

There is a temptation to represent the abstract situation via a conjunction in infon
logic of the basic infons in this model set. There are two aspects of this set of infons
that make this impossible, however. One is that a wif of infon logic must be finite,
and the set of infons is infinite. The set of infons may have a finite set of axiom in-
fons from which the entire set can be derived (via infon logic). This finite axiomatic
infon set can be converted to a wff that is the conjunction of its contents, yielding a
wff that implies the modeling set of infons. There need not be such a finite axiomati-
zation of the model set, however - any situation, by virtue of being part of the real
world, supports infinitely many independent facts about what exists at the infinitely
many distinct locations in the space-time region of the situation if one’s scheme of
individuation allows for real/continuous locations (versus discrete locations).

A second problem with using a conjunction of basic infons to represent a situation
stems from circular references. Since a situation can support infons that refer to the
containing situation, the set of infons of a situation can be a circular set. Such a set is
an example of a non-wellfounded set. This circularity cannot be expressed in a con-
junction of basic infons, one needs an “infon parameter” that is equivalent to the en-
tire conjunction and can be used as a term in the basic infons of the conjunction.
Given this, one can define a recursive infon - but there is no mechanism in infon
logic with which to reason about such an infBAs an example, supposés a situ-

ation where Pat is looking in a mirror. Pat seéBat sees Pat looking in the mirror).

s supports the infoflsees, Pats; +[1 In the situation theory of this thesis, this is a
well-formed, simply handled infon sineas a reference to a situation. If instead one
represents situations as conjunctions of basic infons,stieean infon formula vari-

able which requires some kind of higher-order logic to handle.

[8] A recursive wff is different from the reflective wffs of Z modal logic. There, all of the “recur-
sive” references must be in modal expressions.
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Other Elements of Infon Logic

The idea of the partial infon is approximated by existential infons. The example par-
tial infon can be represented &&] x, [(ION, A, x; +[I] HI(As an infon formula: X

On(A, x)’). This is subtly different from the partial infon in that the partial infon can
be supported by a situation that “says nothing” about the unspecified argument roles,
but an existential infon is not supported by such a situation. An existential infon
which has a basic infon as its infon formula argument requiresdhsthingoe said
aboutall of the arguments to that basic infon. This gives different approaches to the
knowledge representation problem of indeterminacy vs. semantic primitives identi-
fied by Barr&Feigenbaum and the incompleteness item of the Brachman&Levesque
basic epistemology category.

Having thesituationas part of the theory is an important departure from traditional
logics. The analogous concept for a combination in ST of a situation and an anchor
in traditional logic is the “model” or “interpretation”, which is a meta-logical con-
ceptl® In the initial presentation of ST, situations (and anchors) nereart of the

logic, insteadabstractsituations were present in the logic. These abstract situations
are finite, partial, characterizations of real situations via “sentences” of that theory.

The constituentsof a situation are all of the objects that are values of arguments for
any of the infons supported by that situation. One of the important points of ST is
that this collection of constituents can be self-referential - the situation may itself be
referred to as the value of an argument of an infon. Thus, the situation may be one of
its own constituents. This is one reason for taking situations as primitives in ST. The
extension of a situation is the collection of all of the infons that the situation sup-
ports. An infon’s argument can be a reference to the entire situation which supports
that infon. The set of constituents of such a situation contains the situation. This cir-
cularity can be described by a kind of set called@awellfoundedet'.

[9] The Z modal logic of Frank Brown is also an exception in this area in that the “world” (as in a
“possible world” semantics of a traditional modal logic) has an explicit representation in the
logic, instead of being meta-logical.

[10] This set theory is presented[Aczel 1988]
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A situation type written g | S] whereSis an infon, defines a collection of all situa-
tionss such thas |=S

An object typeor abstract relation written x | P&)] where P is an infon free in argu-
ment-value-uses of parameterdefines a collection of all objects in a situaten
wheres |= P. This can be viewed as a lambda-like expression where:

s |=00x | PK)], a;+iff s |= P(a),
where PX) is some infon free ix , ‘a’ is some constant, and P(a) is P with all free
occurrences af replaced by ‘all*l An example of a use of this notation is given by
Barwise gives an example where the infi@dmires, a, b;Hlis used to form two de-
rivative properties, ‘admiring b’ and ‘being admired by a’ :

(admires b) =x | M&dmiresx , b; HIJ

(admired by a) =¥ | Madmires, ax; +I*2
Barwise makes the point that this gives rise to three distinct (syntactically) infons
which are strongly equivalent - if any one of them is supported by a situation, then
all three of them are supported by that situation. These three infons can be written as:

(M&dmires, a, b;H]

[(M{admires b), a;H]

[(M{admired by a), b;H]
Abstract relations are not dealt with formally in the following material.

The parameteras an explicit element of the full ST language is another important
deviation from traditional logics, where parameters (or variables) are part of the me-
ta-language. This allows one to reason about parameters, and their presence or ab-
sence, within ST. This is part of making ST a fully reflective logic. The parameter
can berestrictedto a particular domain by applying a restricting infon to it that also
contains that parameter. Only values of the parameter that makes the restricting
infon hold are in the (restricted) domain of the parameter.

Since parameters are part of the language of ST, the associating of parameters with

[11] This notation and interpretation is presented on p. 23Barfvise 1988]
[12]p. 233 in[Barwise 1988]
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values must also be represented. This associating “function” is calbetchor (it
anchors the parameters). An anchor is a function that takes an infon as an argument
and returns that infon with the appropriate parameter substitutions.

The involvesrelation, written § | S] O . [t | T], is a proposition that asserts that

inv
whenever there exists a situation of typ¢$ ], then there also exists a situation of

type t | T]. There is a strong relationship between ithelvesrelation U, " and
the infon conditionalld ": For all bindings of the parameters3andT, [s|S] [ ,

[t|T]is true iff S 0, T is factual (i.e. is supported fspmesituation). Thepre-

cludesrelation, written$ | S] O [t | T], is a proposition that asserts that whenever
there exists a situation of type|[S], then there does not exist a situation of tytpe [
T ]. This is the opposite of thavolvesrelation. This is related to the infon condi-
tional by: For all bindings of the parametersSiandT, [s|S] O [t | T]is true iff S

0, Tis not factual (i.e. is not supported dayy situation).

There is a conditional form of the involves and precludes relations, ST | R and

SOT | R respectively, where the relation does not hold unless the condition situation
type (R) holds. Different situation types in the same constraint may share parameters.
Thus, a binding of some shared parameter in R specializes S and T. This introduces
the idea of parametrized infons and situation types.

Having presented these various aspects of infon logic, the propositional elements are
focussed on in the following material, then quantification is added. The infon logic
axiom system does not deal withivolves precludes parameters and situation

types Parameters are only dealt with in the traditional metalogical fashion. This the-
sis does not address parameter restriction.

3) The conditions on the supports relation are given that relate

to propositional connective-free infons.
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The supportsrelation, written |=, is between situations and infanp: g, which is
read ‘s supporto”, s a situation and an infon. The negation of the relation, written
[#, is an abbreviation of “it is not the case th§¢ o™ s |# o is read $does not sup-
port a”. The supports relation for situatiossandbasic(and non-parametric) infons
o is characterized by the following “intuitions” and “conditions”:

Support postulate 1.~ Confirmation of basic infong-or alls ando, s|=0
iff the basic infono is a state-of-affairs that obtains in the situatsn
Equivalently,s |= o iff the situations carries the information.!*?!

Support postulate 2 Denial of basic infonsFor alls ando, s|=0 iff the
basic infono is a state-of-affairs such that the duatasbtains in the situ-
ations.' (As mentioned above, the dual @fis the same infon as but
with the opposite polarity.)

Support condition 1. Consistency of basic infonfor alls and basic in-
fonsa, s £ o or s |# 6.1 This condition on the supports relation requires
that situations areonsistent a situation can’t confirm and deny the same
piece of information. This condition derives from situations being part of
thereal world, and in non-quantum analyses of the real world a state of af-
fairs can’t be both “the case” and “not the case” in a single situation. This
Is another statement of tidherence postulate

Support condition 2. Partiality of situationsFor alls such thas is not the
entire world, there exists a basic inforsuch thas |[# o ands |# G.['8 This
condition on the supports relation is a direct consequence péttial na-
ture of situations. Since a situatiorpert of the real world, there are facts
about the real world about which the situation has nothing to say - that the
situation neither confirms nor denies.

[13] This notion of “carrying information” is presented[Barwise&Perry 1983]

[14] A discussion of the support of the dual of an infon can be found on p. ?B4refise 1988]
Here Barwise argues for every infon having a dual, as is done in the situation theory of this the-
sis.

[15] The consistency of situations is discussed on p. 2fBarfvise 1988]

[16] The partiality of situations is discussed in many places, since this is a statement of one of the fun-
damental tenets of situation theory. For instance, a discussion can be found on p. 234 of
[Barwise 1988]
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Support condition 3. Persistence of basic infonsor all s, s’ , and basic
infonso, (if s<g s”ands|=g, thens’ |= 0).['1 This condition requires that

if a situation carries a piece of information, then any “larger” situation of
which it is part also carries that piece of information. One can say that an
infon persistsfrom a situatiors that supports it into any situation of which
sis a part. This is a restatement of Bersistence postulate

If the situation under consideration is the entire universew@nd) w, then
Support postulate, Support postulate,ZandSupport condition Jre all true of that
situation. The negation @upport condition 2totality instead of partiality, applies
to w. Support condition 3persistence, simply doesn’'t apply sincés defined to not
be part of any situation but itself.

Define atruth valuation functiort over infons byt (o) = 1 ifw[=0, and O ifw |=G.
Sincew is total (negation oBupport conditionRand consistent,, is a total func-

tion over basic infons. Thug, is amodelin classical propositional logical terms if

the basic non-parametric infons are considered as atomic propositions.
Support postulate, 1ISupport postulate, 2and Support condition L and negation of
Support condition 2re whatshouldhold of a truth valuation (with some appropriate
rephrasing). This is not to say that there is an equivalence between all of classical
propositional logic and situation theory. At this point in the discussion, no connec-
tives have been defined for basic infons so no conclusions can be drawn about the
similarity to classical connectives. But, there is this simple similarity for the frag-
ment of classical propositional logic that has only atomic propositions and negation
and the fragment of situation theory that has only non-parametric basic infons, duals,
and the one situation, the whole universe.

The truth valuation function defined over an arbitrary situasidhat is notw has
properties that are similar to those of a modeliricwitionistic proposition logic. In
this case, Support postulate, 1 Support postulate,2 Support condition,1 and
Support condition Zinstead of “noSupport condition 2 all hold, appropriately re-

[17]A discussion of persistence can be found in pp. 235-2F&ainvise 1988]
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phrased. The status of the persistence condBopport condition 3 with respect to
intuitionism is not clear in this simple interpretation. To make a comparison some
idea of there being a containment-based pre-ordering of models for intuitionistic
logic is needed. This can be found in the Kripke interpretation discussed below.

4) The strong propositional Kripke structure for semantic inter-

pretation is introduced.

The following discussion formalizes the relationship between the interpretation of
the non-parametric basic infon fragment of situation theory and interpretations of in-
tuitionistic and classical propositional logics. There are several general formal mech-
anisms for discussing the interpretation of logic. Three of these mechanisms and
their relationships to various logics, particularly the intuitionistic and classical prop-
ositional and predicate logics, are presented in detfdabbay 1981]Gabbay pre-

sents the Kripke, Beth and Topological interpretations. He shows substantial equiva-
lences between these different interpretations. This allows one to use any one of
them, without loss of generality. Gabbay focuses on the Kripke interpretation.

A propositionalKripke structure has the form (S, R, O, B¥, where (S, R, O) is a
pre-ordered set with a first element O and D is a function such that fot Eagh

and atomia, D(t, ) O {0, 1}. (R is the relation that pre-orders the elements of S. By
the definition of a pre-ordering relation, R is a transitive and reflexive relation.) (S,
R, O, D) has the persistence propertyR$and D¢, q) = 1 then D§ q) = 1.

Thetruth value of a well-formed-formula (wff) A at a poift 5, written [A], is de-
fined by induction as follows:
1) [Al; = D(t, A), for A atomic; f ], = 0.

2) [ADB], = 1iff [A] =1andB], = 1.
3) [AOB], = 1iff [A] =L or ], = 1.

4) [AD B] =1iffforalls, if t Rsand [A] = 1, then B]_ = 1.

[18] Definition 8 on p. 64 ofGabbay 1981]
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A structure is said twalidateA iff [A] 5 = 1. In this casé is also said tdoldin the
structure. (S, R, O) validatdsiff for any D, (S, R, O, D) validateA.

Although the above approach to a Kripke structure is the more generally useful inter-
pretation in a variety of logics, non-classical as well as classical, it is not the appro-
priate interpretation for situation theory. As is shown below, this is because of the
peculiar nature of negation (the dual operator) and the partial nature of situations in
situation theory. This difficulty is found when defining a truth valuation function, D,
that honors the conditions of situation theory.

There are three approaches to the definition of the truth valuation function. One is to
define D(t,q) = 1 iff t |= g, D(t,q) = 0, otherwise. The other two definted)E 1 iff

(t |=qg and polarity ofg is positive), they differ on the way to definet[af) = 0O; ei-

ther D, q) = 0 iff (t |=q and polarity ofg is negative), or D(q) = 0 iff D(t, ) # 1.

The first approach incorrectly allows a situation to support both an aridnits

duatl it allows D(t,q) = D(tg) = 1. The second approach gives a version of D that is
partial, the latter one that is total, but doesn’t distinguish between the support of the
negative of an infon and the non-support of that infon (or its negative).The definition
of a Kripke structure indicates that D must be total, so the first approach doesn’t
work. The third approach doesn’t distinguish between significantly different circum-
stances, so it is not satisfactory either. Thus, none of these approaches is acceptable
as models of situation theory.

There is an appropriate interpretation, however. It is known asttbeg Kripke
propositional structurelts definition is given below.

A strong propositionaKripke structurehas the form (S, R, @)*°!, where (S, R, O)

is a partially ordered set with a first element O and a function such that for each

t 0 S and atomig, a(t, g) O {-1, 0, 1}. (R is the relation that partially orders the ele-
ments of S. By the definition of a partially ordering relation, R is a transitive and re-
flexive relation.) IftRs anda(t, q) # 0 thena(t, ) = a(s q).

[19] Definition 8 on p. 125 ofGabbay 1981]
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Thetruth value of a well-formed-formula (wff) A at a point S, written [A}, is de-
fined by induction as follows:

1) [Al; =a(t, A), for A atomic.

2) [ADB], = min(§],, [B]).

3) [ATB], = max(p,, [B]).

4) [AD B] =1iffforalls, if t Rsand [A] = 1, then B] = 1.
5) [AD B, =-1iff [A],=1then B], = -1.

6) [-A], = 1iff [A],=-1.

A structure is said twalidateA iff [A] 5 = 1. In this casé\ is also said tdold in the

structure. (S, R, O) validatdsiff for any a, (S, R, On) validatesA.

The definitions of the connectivés [, and] are discussed in the next section. At
this point, only the connective-free aspect of the Kripke structure is being examined.
Non-parametric basic infons in situation theory can be described in terms of a propo-
sitional Kripke structure as follows: The atomic propositions of the structure are the
non-parametric basic infons (of either polarity). Thé?®e§ is the set of all situa-
tions. The relation R is the “part of” relation between situations. Define O to be the
minimal situation with respect to R that supports no infons. For technical reasons in
dealing with quantification, it is convenient to define this minimal situation O to
have one propertyless constituBHtThe truth valuation function is defined by:

a(t,q) =1ifft|=q,

a(t,q) =-1ifft|=q,

a(t, =0ifft g gandt £ Q.
a is a function since only one of the three conditions can hold for a given pair of t
andq. The persistence conditi@®upport condition 3, page 3@ the supports rela-
tion gives the property that df(t, g) # 0 andt Rs thena(t, ) = a(s, g), as required
by the definition of a strong propositional Kripke structure. This function is total,

[20]1t may be a problem to consider Set unless one is using something like Aczel's ZFC-/AFA.
[21] Since O is, by definition, part of every situation, then the constituent of O can be a constituent of
every situation.
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and since no infon and its dual is supported by the same situatipg), = a(t, q) iff
a(t,q) =a(t,q) =0.

Given the above definition of a situation theoretic Kripke structure, no non-paramet-
ric basic infon is validated. That is, there is no basic infon that is supported by all sit-
uations, including the minimal situation.

5) The supports relation definition is extended with conditions
defining the support of confirmation and denial of conjunction

and disjunction.

The above discussion of a situation theory propositional Kripke structure can be ex-
tended to include non-parametric compound infons constructed using the connec-
tives[], [, andl . First, the conditions on the supports relation must be extended to
include these compound infons. The notation here has a special interpretation. As
noted above in the discussion of compound infons, the compound anfor fs ac-

tually a short-hand notation forsecond-ordemfon: I, o, t; +[I Similarly, ‘c [

T is actually a short-hand notation forsacond-ordeinfon: (T, o, T; +[I] These

are second order infons since they take other infons as arguments. The notation for
the duals of these infons is 6-(11)’ and ‘—(0 OT1)’, respectively. A presentation of

the following interpretations of these connectives can be found on pp. 234-235 of
[Barwise 1988]

Support condition 4. Confirmation of NegationFor all non-parametric in-
fonsao, s|=-o iff s|=0. This is a simple claim that to say a situation con-
firms the second-order & infon is the same as claiming that situation
supports the dual af.

Support condition 5. Denial of NegationFor all non-parametric infons, s
|= — —o iff s|=0. For a situatiorsto deny the second-ordeio™-infon is
the same as claiming thesupportso.

Support condition 6. Confirmation of ConjunctianFor all non-parametric
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infonso andt, s|=o Ot iff s|=0 ands|=T1. This follows naturally from

the idea of situations as part of the real world; the conjunction of two
states-of-affairs is supported by some part of the real world if each of the
states-of-affairs is individually supported.

Support condition 7. Denial of ConjunctionFor all non-parametric infors
andt, s|=—( Ov) iff s|=0 ors|=T. This follows naturally from the idea
of situations as part of the real world; the conjunction of two states-of-af-
fairs is negated by some part of the real world if at least one of the states-
of-affairs is individually negated (i.e. has its dual supported).

Support condition 8. Confirmation of DisjunctionFor all non-parametric
infonso andt, s|=oc Ot iff s|=0 ors|=T1. This also follows naturally
from the idea of situations as part of the real world; the disjunction of two
states-of-affairs is supported by some part of the real world if either or
both of the states-of-affairs is individually supported.

Support condition 9. Denial of Disjunction For all non-parametric infons
andt, s|=—(@ 1) iff s|=0 ands |=T. The disjunction of two states-of-
affairs is denied by some part of the real world if both of the states-of-af-
fairs is individually denied.

These additional definitions of the supports relation honor the original definitions as
well. Particularly, it is true for compound infons as well as for basic infons that the
support of an infon ‘persists’ from a situation to any containing situation. This is
stated in the following theorem:

Theorem 1 All conditional-free infons are persistéff.

6) The conditional-free supports relation is shown to define a
conditional-free strong propositional Kripke structure.

Thea function of the Kripke structure is validly extended with these additional defi-
nitions for ‘supports’ by making range over the set afl infons, instead of just the
basic infons (corresponding to the atomic wffs). For this Kripke structure to be con-

[22] The IL (Infon Logic) theorems are proved in Appendix 1.
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sistent with the ‘supports’ conditionsi][ = a(t, A) must hold for all conditional-
freeA. To aid in proving this theorem, it is useful to note thata(f,(A) = 1 iff [A],
=1) and @(t, A) = -1 iff [A], = -1), thend(t, A) = [A]).

Theorem 2 For all wifsA and situations, if (a(t, A) = 1 iff [A], = 1) and @(t,
A) = -1iff [A], = -1), thend(, A) = [Al)).

The main theorem, that the conditional-free propositional supports relation defines a
strong Kripke structure, follows:

Theorem 3 For all conditional-free propositiona| [A]t =a(t, A).

7) The Scott and Tarski consequence relations are defined.

To motivate the interpretation of the “conditional” connectie’,' some back-
ground is required? First, the idea of consequence is defined. If one is given a set
of infons that are supported by some situatiaimen there is some set of infons that

can be inferred — that are also clearly supported. This is very generally to describe a
kind of reasoning that people do constantly. This relationship between infons (or, tra-
ditionally, propositions) is called “consequence”. The inferred infons are a conse-
quence of the given infons. Dana Scott and Tarski have defined the properties that
any formalism for a “consequence operator” should have. These follow from the in-
formal understanding of consequence. They produced somewhat different formaliza-
tions, but there is a well understood relationship between these formalizations. Scott

consequence operators are written ‘ ||-’, and Tarski consequence operators are writ-
ten ‘|-’. Scott consequence operators are a more general notion. They are defined as
follows:

[23][Barwise 1988]p. 184, introduces the conditional connective by simply giving an axiom for it -
that it is reflexive and transitive, a pre-order. This axiom also statesititats poneniolds for
infon conditional. It is interesting to note thmbdus tolendoesnot hold for the conditional con-
nective defined here. Barwise provides too little information to determimedtis tolen$olds
for his notion of implication. This thesis argues for why the definitions in this thesis are the cor-
rect ones. Barwise does not define when an implication holds, which is a major undertaking of
this subsection.
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Letd andy be finite, possibly empty, sets of well-formed formulae of the language
of the operator, L. ||- is &cott consequence relatiofi the following conditions
hold?41:

a)o ||-¢, forp = &.

b)if¢ ||-@ thend O ¢’ ||- Y O Y for any ¢’ andy’.

c)if ¢ O{A} [|- ¢ andd |- O{A} then ¢ [|-. [Cut Rule]

Additional definitions:

For A and© sets of wifsA ||- O iff for someA [0 ¢ andO© Oy, ¢ |[-W.

A Scott consequence relatiorcisnsistentff ~(3@ ||- 9).

Notational abbreviations:

¢, A ||-W is the same as { A} ||- W.

0,9 [|-P,Wisthesameag O ¢ ||-p O Y.

bAL A, LA [-Wis the same a L{A L A, L AL,

|- is a Tarski consequence relatidffi the following conditions hold®:
a)A |-A.

b) if  |[-Athend, ¢’ |- A

c) if ¢, C |-A andd |-C thend |-A. [Cut Rule]

The right-hand side argument of |- is always a single wff.

The minimal meaning fof]’ can be expressed by thdeduction theorem
o O{A}|I-{B}iff ¢ |-{AT B}

Let || be the minimal SCR for which the deduction theorem holds.

The Scott consequence relation (SCR) that is to be defined for situation theory infons
must satisfy the deduction theorem, this is the minimal meaning accepted in this the-
sis for the [1’ connective in infons — thell’ connective must satisfgt leastthis
constraint.

[24]p. 6 of[Gabbay 1981]
[25]p. 7 of[Gabbay 1981]
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An axiom (or Hilbert) system for some language L is defined by a triple Kt
H2)[26], where H is a set of axiom schemas, I3 a set of provability rules, and, i

a set of consequence rules. An axiom schema {risssome wff in L, with proposi-
tional variables as one or more terms. A provability rule is of the form ‘Al,...,
An/B’, where this rule is used in constructing a proof from the axiom schemgs in H

A consequence rule is of the form {Al,..., An}/{B}, where this rule is used in con-
structing a proof of B given some gebf wffs (and the things provable from the ax-
ioms). An axiom system can be used to define a Tarski consequence relation (TCR)

|- as follows:

1) |4 A iff there exists a finite sequence of Vifit,... Bk= A such that each

Bi of the sequence is either a substitution instance of a membgy; of H
for some wifs Al,...,An, appearing earlier thaBi in the sequence,

(AL,...An/Bi) is arule in H.
2) ¢ | Afiff there exists a finite sequence of wid,...,Bn such that both

(a) and (b) below hold:
(a) For each < n, either (i), (ii), or (iii) below hold:
1) Bild¢, or
i) |+, Bi(by 1 above), or
iii) There exists Al,... Ak earlier in the sequence such that
{AL,... A/ Bi} is a substitution instance of a rule in,H
(b) Either (i) or (ii) below hold:
i) A=B,or

i) {B1,...Bn}/ Ais a substitution instance of a rule ig. H

The relation |5 is proved by Gabbay to be a Tarski system for any axiom system H

= (Hy Hy, H,). Further, he proves that for any Tarski system |- there is an axiom

[26]p. 9 of[Gabbay 1981]
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system H such that |- = }-

8) The supports relation conditions for implication are devel-
oped with regard to a “minimal” concept of implication with re-

spect to the Scott consequence relation.

Now to get back to the problem of the * connective. Define an axiom systemi™
as follows:

H™,={A0 (BOA),[AD (BOC)O[(AO B)O (AD C)}.
H** ={(A, AOB/B)}

H™, = {({A, A OB}/{B})}

Gabbay proves the following equivalence; |- Aiff @ || {A} [27], This says that

a wff A is a Tarski consequence of th& Haxiom system if and only A is a tautol-

ogy of the ||5; SCR, which is the smallest SCR for which the deduction theorem

holds. H™ is known as the conditional fragment of Heyting’s propositional calculus.

This discussion leads to the conclusion that infon logic includes the axiom of H
The infon logic axiom system includes the simple axiomsJtoand ‘7 with ‘[0,

which gives the propositional fragment of Heyting’'s Predicate Calculus (HPC) Gab-
bay callsh-.

The axiom system fdr isi?8l:

hg ={

@ ADO@BOA),

(b) (AO (BO C)0O ((AO B)O (AOC)),

(0 AOBOA AOBO B,

(d ADO (BO AOB),

[27]p. 23 in[Gabbay 1981]
[28]p. 63 in[Gabbay 1981]
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(e) AO (AOB),BO (AOB),
 (ADC)O (BO C)O (AOBO C)),
(9) fOA}

h, = {(A, AD B/B)}

h, ={({A, A OB}{B})}

h, andh, are the same as for'H and define modus ponens.

The axiom systenh is h without axiom ‘g’. h™ is the negation-free propositional
fragment of HPC.

9) Strong negation axioms are introduced into the h system to

give the nh system.

The strong negation Heyting propositional axiom system, caledis h™ plus the
following axioms for negation:

0)--A- A

1)-AO B) = AO-B.

2)-AUB) = —A-B.

3)-A0B) = -A-B.

HAO-AO B.

nhis H™ plus axioms fof], Dand —. These axioms are presented by Gatshatat-

ing “Some authors introduced another type of negation into HPC, called strong nega-
tion.” Unfortunately, he does not identify any of these strong-negation-introducing

authors.

The important result here is that the Scott consequence system defined from the
strong propositional Kripke structure has exactly the same theorems as the Tarski

consequence system defined froim Thus,nh is a minimal appropriate axiom sys-

tem for the strong propositional Kripke structure. Since the conditional-free supports
relation conditions can be used to define a (conditional-free) strong propositional

[29]p. 124 offGabbay 1981]
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Kripke structure, and theh conditional axioms are just those desired for infon im-
plication, then extending the supports relation for the conditional connective in such
a way as to allow definition of a full strong propositional Kripke structure provides
the desired idea of implication in infon logic.

The extension to the supports relation implied by the foregoing is:
Support condition 10 Confirmation of ConditionalFor all non-parametric infors

andt, s|=o U tiff for all t such thas<gt, t |[=o impliest |=T.

Support condition 11 Denial of Conditional For all non-parametric infons and
T,s|=—0c 0 1) iff s|=cands|=T.

The persistence of conditional-free infons can be extended to include conditional in-
fons. Thus, all propositional infons can be shown to be persistent.

Theorem 4 Propositional infons are persistent.
To claim that the set of infons a situation supports contains a conditional infon is

also to claim that that set of infons is closed with respect to that conditional infon.
This is based oSupport condition 10

10) The propositional supports relation is shown to define a

strong propositional Kripke structure.

The proof thati(t, P) = [P], for all conditional-free infon® can be extended to in-
clude the I ' connective by proving that(t, AL B) = [A 0 BJ, if a(t, A) =[A],

and a(t, B) = [B],.

Theorem 5If a(t, A) = [A], and a(t, B) = [B],, then a(t, ALl B)=[AD BJ,.

11) The propositional fragment with strong negation of Heyt-
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Ing’s predicate calculus is shown to be the “supports-preserv-

ing” axiom system for the propositional supports relation.

The above discussion establishes that the axiom system for situation theory quantifi-
er-free infon logic is Heyting’s propositional logic with strong negatian), (and

that the definition of the “supports” relation is as givenSapport postulate, 1
Support postulate, 2andSupport condition throughSupport condition 11

12) The quantificational conditions for the supports relation are

given.

The remaining problem for infon logic is to define the meaning of quantification in
infon logic, and to axiomatize this meaning. First, some notation for dealing with pa-
rameters:

f . ={x/a,y/b, ...} is ananchor, a set of assignments of parameters to “values” (which
may themselves be parameters)., ] is the infon produced by “applying” the an-

chorf , to the infona. Applying an anchor consists of substituting all of the left-hand

side parameters of the pairs in the anchor with the associated right-hand side item.

A parametric infonis an infon that has one or more free parameters. A parameter is
free in an infon if it is not used as the first argument to a quantifier (in that infon). A
parametric infon is written as(x)’, whereo is any infon and the parameteis free

ino.

This thesis defines the interpretation of quantifiers in a manner different from the sit-
uation theory literature. On p. 235 [Barwise 1988] confirmation of existential
quantification is done in the same way, but the negation is handled differently. Bar-
wise foregoes the persistence postulate to have a very simple definition of the nega-
tion of existential quantifications |= 4o iff for all non-parametri@anchorings =

{x/a}, a O constituent&s) s |= -o[f ]. But, for an only marginally more complex no-

tion of the denial of existential quantification, the persistence postulate can be saved.

page49



Also, if one accepts this somewhat more complex definition the existential and uni-
versal quantifiers are naturally duals. The approach used here is more general, in that
it can be restricted to have the same meaning as that used by Barwise by the addition
of more conjuncts to the quantified infon.

The quantificational supports conditions are as follows:

Support condition 12 Confirmation of Universal Quantificatiorfor all infonso

parametric only irx, s|= 0xa iff for all situationst and non-parametrianchoringsf

={x/a}, a [ constituentft), s <g t impliest |=off ].

Support condition 13 Denial of Universal Quantificatiar~or all infonso paramet-
ric only in x, s |= -{Ixo iff there exists a non-parametiamchoringf = {x/a}, a [

constituent), such thas |= -off ].

Support condition 14. Confirmation of Existential Quantificatioror all infonso

parametric only inx, s |= ko iff there exists some non-parametanchoringf =

{x/a}, a O constituentés) such thas |=0o]f |.

Support condition 15 Denial of Existential QuantificatianFor all infonso para-

metric only inx, s |=-Xo iff for all situationst and non-parametrianchoringsf =

{x/a}, alconstituent@t), s<q timpliest |= -off ].

By these conditionss |= xo iff s |= X —0, ands |= ko iff s |=0x —0. Thus,
universal and existential quantification are “dual” operators with respect to negation
in situation theory infon logic, as they are in classical logic.

If s|=0xoands<gt, then for allf ,, t|=0o[f ], by Support condition 12 etr be

any situation such thakgr. Sinces<gr (by transitivity), then for aff , r [=off ].

r!
Thus, for allr such that<gr, for allf ,r[=off ]. t|=0Oxoif for all r such that<g
r, forallf ,r|=off ], by Support condition 12Therefore, if s|= Uxo ands<gt,

thent |= Oxo. Thus,[0xo is a persistent infon. A similar argument can be made to
show that the dual dfixo, {0, is persistent.
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If s|=[ko then there existfsS such thats |=of[f S] by Support condition 14if S<g
t, then if s [=0off ], thent |=off ] by persistence of infons (there is a possible re-
cursion here - assume thf ] is not quantified). There exists such that _=f |
sinces s t. Thus, ift |=o[f | thent |=off . If t |=o[f ], then t |= [Xo, by
Support condition 14Therefore, Ifs|=[xo and s<gt, thent |=[xo. Thus,[ko is a

persistent infon. A similar argument can be made oG-

By the preceding arguments, the quantified infons are persistent.
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13) Heyting’s Predicate Calculus, axiom system H, is presented.

The axiom system H, Heyting’s Predicate Calculus (HPC), is an extengion of
Ho=ho U {
(h)y AKX DO Oy Aly),
(k) Oy Ay) O AR}
H,=h O{
(A(x) O B/XAX) O B),
(BO AX)/B0O OxA(X)}
H, =h,.

14) The (quantified) Kripke structure is introduced.

A Kripke structuré® is an extension of the propositional Kripke structure to handle
variables and quantification. Kripke structures have the form (N, S, R, O, D, U),

where SO N, £0R, 00 S, and the following hold:

(a) R is a reflexive and transitive relation on S.
(b) ORxfor allx[I S.

(c) tO N andtRs imply s [J N.

(d) U is a function associating with ea¢li) S a nonempty set land ifsRs’ then
U, DU,

(e) D is a function such that for eanfplace atomid, and each, Utn O D(t, A).
D has the property thatiRs then D§ A) [ D(t, A), for all atomicA. If t O N
then D¢, A) = U,

Letg:V -> U, t 0 S (V the set of variables of H). Define the truth vaIuA,qu]tg,

[30]p. 43 in[Gabbay 1981]
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by induction o as follow$:
(@) [A(xy, ...,xn)]tgz 1iff (9(xy), -, 9(x,)) U D(t, A) if Ais atomic withx,, ..., X

free inA.

(b) [ADIB] 9= 1iff [A],9= 1 and B].%= 1.

(c) [ADB] %= 1iff [A]9= 1 or B]°= 1.

(d) [f1,9= Liff f ON.

(e) [AD Bl = 1ifffor all s, if tRsand [A] 9= 1 then B] 9= 1.

(f) [(XAX)] = 1 iff for someg’ = g, [A(x)]tg'z 1 where g’ = g means that for
ally#x 9(y) =g’ (¥)-

(9) [OxAX)] 2= 1iffforalls, g' (if tRsand g’ = g then [A(x)]sg': 1).

(h) Ais said to hold in the structure undgiff [A]Og =1.

Gabba??! defines a Scott consequence relation defined dassof Kripke struc-
tures. He shows that all of the tautologies of this SCR are exactly the theorems of
Heyting’'s Predicate Calculus (HPC), which is identified with the axiom system H.

15) The strong Kripke structure is defined.

Strong Kripke structuresare a combination of quantified Kripke structures and
strong propositional Kripke structur€d. They have the form (N, S, R, @, U),

where SO N, $OR, OO S, and the following hold:
(a) R is areflexive and transitive relation on S.
(b) ORxfor allx S.

(c) tO N andtRs imply s [0 N.

(d) U is a function associating with ea¢f] S a nonempty set, Land ifsRs’ then

Uy OUg

[31]p. 44 in[Gabbay 1981]
[32] p.46 in[Gabbay 1981]
[33] This structure is original to this thesis.
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(e) a is a function such that for eaakplace atomid, and each, Ut” daf(t, A
K). a has the property that iRs thena(s, A, K) O a(t, A, K), for all atomicA
andk O {1, -1}. If t O N thena(t, A 1) = Y" anda(t, A, -1) = @. (The degen-

erate case fam is whenn = 0. In this casea(t, A K) is either empty or con-
tains the empty set.)

Letg:V -> U, t S (V the set of variables of NH). Define the truth valué\,c[ﬂ]tg,

by induction o as follow$*:

(1) [AKX, - X )1,9= Kff (90, -, 9(x)) D a(t, A K) if A is atomic withx, ...,
X, free inA, kO {-1, 1}.

(2) [AD B],%= min([A] %, [B]D).

(3) [AD B],%= max(A],?, [B]?).

(4) [AD B]9=1ifffor all s, if tRsand [A] 9= 1 then B] %= 1.
[AD B],9=-1iff [A] %=1 and B],%= -1.

(5) A2 = 1iff [A]9 = -1.

(6) [(XA(x)] %= 1 iff for someg’ = g, [A(x)]tg'z 1 where g’ = g means that for
ally#x 9(y) =g’ (¥)-
[(XAX)] 2= -1 iff for alls, g' (if tRsand g’ = g then [A(x)]sg': -1).

(7) [OxAX)] &= 1iff for all's, g’ (if tRsand g’ =,g then [A(x)]sg': 1).
[OxAX)] 2= -1 iff for someg’ = g, [A(x)]tg’: -1.

(8) Ais said to hold in the structure unagiff [A]og =1.

The axiom system for infon logic is NH, which is H with the axiomffdrl A re-
placed by the axioms for strong negation, O through 4 given above, plus axioms for
negation of quantifiers:

(B5) —XAX) = Ox-A(X),

(6) —OXxAX) = IX-A(X).

[34]p. 44 in[Gabbay 1981]
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The theorems of NH are the tautologies of the SCR defined on the class of Kripke
structures which consists of the strong Kripke structure based on situation theory.

The TCR for NH is written * |1\|H

16) The full supports relation is shown to define a strong Krip-

ke structure.

The SCR for the class of Kripke structures which consists of the situation theory

infon logic Kripke structure is written ‘g;".

A strong Kripke structure can be defined for situation theory and the supports condi-
tion as follows: Let R be the ‘part of relation. Let O be the empty situation. Let N =

@. Let U be theonstituentfunction, whereconstituent&) = U,. Let &, ..., X)) be
the free parameters landf = {x1/al,..., xn/an}. Defined,, ..., a)) U a(t, A 1)
iff t|=Af] and @, ...,a)0a( A -1)iff t|= Alf ]. Let ‘()’ denote the empty

tuple (the type of O arity). IA has no free parameters, ther(\(t, A, 1) iff t |= A,
and )0 a(t, A, -1) ifft |=A

The given definition foo applies to all infong, not only basic infons. For this defi-

nition to be consistent with the strong Kripke structuréx], ..., xn)]tg =k iff

(9(x), .-, 9(x)) Ua(t, A K).

Conjecture: For all infong\, situationst, and anchorsg, [A(X, ..., xn)]tg =k iff

(90%). - 9 %) Dai(t, A K).

The proof of this conjecture may be done in a manner similar to that used above for
the strong propositional Kripke structure.
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17) The NH axiom system is proposed as the supports-preserv-

ing axiom system for the full supports relation.

The following conjecture guarantees that results derived in the formal axiom system
NH are semantically valid with respect to situation theory infon logic.

Conjecture: |, Aiff @ [|-g1 {A}
The proof is in two parts: a proof of |; Aimplies @ ||z {A}, and a proof of |5, A

if @ [|l-57 {A}. The difficulty lies in ST being a strong Kripke structure, not simply a

Kripke structure, and the ordering relation R of Sfiasisomorphic to a tree order-
ing relation. This latter point is unfortunate since the strongest results Gabbay proves
are for “tree” Kripke structures.

Semi-Proof of |y, Aimplies @ ||z {A}:
Let ‘¢||- W' be the SCR defined by |- L' (LD = (pU p), [J = (pU —p)).
|-, agrees with |;, by Proposition 11.a on p. 125[@abbay 1981]

|-, is identical with the Scott consequence system arising from the interpretation in
the strong propositional Kripke structures, by Theorem 12 on p. 125 of
[Gabbay 1981]Also, UandU areclassicalin ||-. In particular, |- A iff Ais valid in

every such structure.

Thus, |-, Aiff Ais valid in the strong propositional Kripke structure for situation

theory infon logic presented above.

SinceA is valid with respect to structure for situation theory infon logié\ifé sup-
ported by the supports relation as defined in conditions 0 through 1A iff Ais
supported by the supports relation as defined in conditions 0 through 11.

Letf be any fixed proposition inhand let Ainnhbe A (f OF), ~Ainhis‘A
=>f ' (f is the defined ‘false’ symbol ihm). From exercise 15 of p. 126 in
[Gabbay 1981]for any wiffB in h, nh|- Biff h|-B. Thus,nhis a conservative exten-
sion ofh.
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Conjecture: NH is a conservative extension of H. This is based on the observation
thatnhis conservative extension bf

Conjecture: The situation theory infon logistrong Kripke structurevalidatesA iff

|'NH

Theorem 6 If s|=A, andA |, B, thens |=B. (l.e., [g,, is soundwith respect to

H
the |= relation).

Proof:

To prove this theorem, it is sufficient to show that forsals |= A, for all A that are

axioms in NH, and to show that the provability and consequence ruleg @id

NH,) preserve the support relation.

It has already been shown that forslls |= A, for all A in nhO. Thus, to complete
the demonstration for Nfit is only necessary to show that forglls |= A, forAin

{AX) O Ty Aly), Oy Aly) O A(X), TXAKX) < Ox -AK), LIXAK) < IX-AX)}.

Sincenh, has been shown to be support preserving, to complete the proof fat NH

is only necessary to show tha®{k) 0 B/ [XA(X) O B), (BO A(x)/B O OxA(X))}
(x not free inB) are support preserving.

Sincenh, has been shown to be support preserving ang th,, NH, is support

preserving.

Proof for axioms in Nld - nho:

Theorem 7: For allsand all non-parametric anch@gof x to the constituents f

s|= AKX O Oy Ay)lgd-
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Theorem 8 For allsand non-parametrigs, s|l= 0y Aly) O A(x))[gs].

Theorem 9 For all's and all non-parametric anchayg of parameters oA to the

constituents 0§, s |= (HXA(X) = [x —A(X)).

Theorem 1Q For alls and all non-parametric anchagg of parameters oA to the

constituents 0§, s |= (-£XAXX) = X -A(X))[g]-

Proof for NI—H - nhlz

Let A be an axioms or a theorem derived from the axiomsBlbet any infon where
X is not free inB.

Theorem 11 For all's and all non-parametric anchagg of parameters of to the
constituents o$, s [= (A(x) U B)[g/| implies for allsand all non-parametric anchors

g, of parameters oA to the constituents af s |=(LkA(X) U B)[g -

Theorem 12 For all's and all non-parametric anchags of parameters of to the
constituents o8, s|= B U A(x))[gJ implies for allsand all non-parametric anchors

g, of parameters oA to the constituents &f s [= B 1 UXA(X))[g]-

This concludes the development of the set of support conditions and the infon axiom
system NH.
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Other Formalizations of the Infon Logic

The infon logic is formalized above as the Hilbert axiom system NH (Heyting’s pre-
dicate calculus with strong negation). This axiomatic approach is convenient in the
context of the overall approach taken to developing NH. However, other formaliza-
tions are more convenient under other circumstances. Two closely related such for-
malizations are natural deduction systems and Gentzen sequent calculus systems.
Michael Dummett presents natural deduction and Gentzen sequent calculus formal-
izations of intuitionistic logi€® (axiomatized as H in the preceding discussion),
called N and L respectively. The strong negation extension of the natural deduction
formalization, NN, is used in the development of a theorem prover for infon logic,
FELIX, presented in a later section of the thesis.

Natural Deduction system for infon logic:

A natural deduction system can be constructed from Dummett's natural deduction

systen®® for H. This system is called NN. There are no axioms in a natural deduc-

tion systerP_. It':o\consists entirely of inference rules. An inference rule is of the form
r:B

where I : A’ is the premise and ‘: B’ is the conclusion of the inferencd. : A’ is

read as “the set of wff§ derivesA’. The inference rule is read as fif derivesA,

thenl” derivesB.” In some of the inference rules it is convenient to write “the union

of the set of wff§" and the set of wff6” as T, A\'.

There are two kinds of inference rules, operator introduction rules and operator elim-
ination rules. For most operators there is a pair of sets of rules - the introduction rule
set and the elimination rule set. For most of the pairs of rule sets, each set consists of
only one rule. There are several sets of rules for strong negation, one set for each
combination of strong negation (‘=) and another operator. Also, rules are provided
defining the weak negation operator, ‘= ".

Basic Sequent

[35][Dummett 1977]
[36]pp. 123-124 of Dummett 1977]
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LA:A [A: Aalways holds.]

Thinning Rule
M:B
Introduction Rules Elimination Rules
Operator
A A:B r-AUB r-AUB
U LA:AUB A M:B
r:A M:B M AUB ANA:C 0O,B:C
U M AlB :ALUB A O:C
NA:B M:A A:Al B
O r-A0 B rA:B
LA:B AA:-B r:A A=A
= A=A A:B
r:-A
- --A
M:A M:——A
-— M:—-A M A
A M:—-A
- M:—-A r:A
r:A0-B r:—(AO B)
-0 r—(AO B r:A0-B
r:—AO-B [ —(AOB)
-0 —(ALB) [ —AL-B
r:—AO-B r:—(AOB)
-0 —(ALB) . —AL-B
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A I XA(X) A A(y) :C

0 M XAKX) A:C
I AxY) I OXAX)
a r:OxAX) A
I Ox-A(X) I —XAX)
-0 [ —XAX) I Ox-AX)
I X-AX) I —[OxA(X)
- [ —OxAX) M XA

For the quantification rules, the following additional constraints must hold:
1) y is a variable and t is any term of NH, where x is not free int or y.
2) A(y) and A(t) result from A(x) by replacing every free occurrence of x by y
and t respectively.
3) In theld introduction rule, y does not occur fredin CIXA(X).
4) In theO elimination rule, y does not occur freelivA(x) orl', A : C.

In the above table, there is a gap where one expects the ‘-~ introduction rule. This is
expressive of a difference between strong negation, ‘~’, and weak negation, ‘-’
The rule for weak negation introduction says roughly thEtahdA deriveB andA
andA derive the weak negation Bf then the weak negation Afis derivable front
andA. With strong negation, ‘-, it is possible thHatandA support (derivepeither

B nor —B. Thus, there isn't a corresponding rule for strong negation introduction.

Weak negation is defined in infon logic asA—=. (ALl [). The special infori]

(read“bottom”) is unsupported by all situations, which is equivaler {0 — B, for
all B. The dual of this infon (‘T’ read “top”), is supported by all situations (including
the origin situation O in the Kripke interpretations).

The weak negation introduction rule allows the use of a fornedctio ad absur-
damreasoning: “if fromA together with other hypothesEswve can derive an incon-
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sistent pair of formula®, andB,, then we are entitled to asser-on the basis of
. [37]

Dummett points out that the system he gives is redundant. The thinning rule can be
achieved from application of thél" introduction rule followed by an application of

the ‘T elimination rule. Conversely, in the presence of the thinning rule, those rules
with more than one premise can be weakened by writinig place of A’ and ©'.

Also, the thinning rule allows the basic sequent to be defined in the more restricted
form of ‘A: A’. Given the more general form of the basic sequent, the thinning rule
can eliminated from the system and still use the restriciédbfly) form of the

rules.

[37]p. 125 in[Dummett 1977]
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Gentzen Sequent Calculus system for NH.

Dummett provides a sequent calculus system L for intuitionistic logic (equivalent to
the logic axiomatized by H§l. The system presented here, NL, is L extended with

strong negation. For the sequent calculus system, a sequentAsor ‘T :’, where

‘I is a set of formulee and is a single formula. The latter form of a sequent indi-

cates that the antecederit’f'is inconsistent. The kinds of rules in a sequent calcu-

lus system involve introduction on the left versus introduction on the right of the *’
symbol, instead of introduction versus elimination as was the case in the natural de-

duction system.

Right Introduction

Operator
[
Thin r:A
r:-A A:B
U LA:AUB
r:A B
U r:AUB r:AUB
NLA:B
0 r-A0 B
I, A:
- r:-A

Left Introduction

r:cC

ILA:C

LA B:C

r,ATOB:C

MNA:C LB:C

A AOB: C
N B:C A A

LA AO B:C

M: A

I, —-A:

[38]p. 135-137 ifDummett 1977] Dummett also presents a version of the sequent calculus formal-
ization where the right hand side isetof formulae instead of a single formula. Many of the in-
ference rules translate simply by adding a ‘set’ variable to the RHS, but some rules (conditional
and universal) must still be restricted to having a single formula on the RHS.
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M: A r,A:B

—— r:—-A rL-—-A:B
r:A0-B rAO-B:C

-0 r—(AO B) r,—(AO B):C
r:—AO-B r-AO-B:C

-0 —(AOB) r,—ADB):C
r:—A0-B r-AO-B:C

-0 —(AODB) r,—ADB):C
AR L Axy):C

a M XAKX) [, IXAXX) : C
M Axy) rA®:C

0 r:OxAX) I, OxA(X) : C
I Ox-A(X) I, Ox-Ax):C

- [ XA I, {XAX):C
M X-AX) I, [Xx-Ax):C

- [ —OxAX) I, —OxAX) :C

In all cases,C' is either a formula or the empty set. For the quantification rules, the
following additional constraints must hold (these are the same as for the natural de-
duction system given above):
1) y is a variable and t is any term of NH, where x is not free int or y.
2) A(y) and A(t) result from A(x) by replacing every free occurrence of x by y
and t respectively.
3) In thel right-introduction rule, y does not occur fred inCOxA(X).
4) In the[J left-introduction rule, y does not occur freelA(x) or I', [XA(X) :
C.
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Consider the sequeht A(x):A(y), where x and y are free variables and A(X) is iden-
tical to A(y) except that all free occurrences of x in A(x) have been replaced by y in
A(y). This sequent isot necessarily true (i.e., it is not a basic sequent). Since x and
y are distinct free variables, then they can be “bound” to distinct terms, say s and t
where neither s nor t occurs in A. A(s) and A(t) are clearly not syntactically identical
in that they differ in the constants s and t.
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Some consequences of the infon axiom system

An infon is considered to bRactual if it is supported by some situation. Let F be
some infon. Letf be (F O F). Since all situations are consistent
(see Support condition 1, page J6¢an never be factual, regardless of the choice of
infon F. Consider the compound infol U f ). By the definition of the support of
confirmation of a conditional A0 f ) is supported by a situatianif and only if
there is no situationof whichs is a part such thaj=Aandt [£ f . Sincet [ f holds

for all t, this condition can be simplified to: there is no situatiohwhichsis a part
such that |= A. Suppose there exists a situatiosuch that |=A. Since the “set” of
situations is closed with respect to the union of situations, there exists a situation
which contains both ands. By the persistence of infons,|=A impliest |=A. Thus,
there exists a situatidnof whichs is a part such thatj= A. This implies thas | (A

O f). Thus, ifA is supported bgny situation, no situation can suppoitl{l f). By
contraposition, if any situation suppors({l f ), then no situation suppor#s It is

also easy to show that if no situation suppéstthen any situation support (J

f). Thus,A is not factual if and only ifA 00 f) is supported by all situations. The
denial of the claim that an infof is not factual, -A O f ), is equivalent to confir-
mation of the claim thaA is factual. It can also be shown thas i A thens |= —-A

0 f). This latter claim is what one might expect, that if a situation supports an infon,
it also supports the claim that that infon is factual.

Gabbay notes that, imh, A = B doesnotimply -A = —B. It is also the case thah (
O B) doesnotimply (-B [0 —A). Thus, one cannot use the contrapositive rule when
reasoning in infon logic.

For classical logic it is sufficient to define a single connective via an appropriate
axiom system, and all of the standard connectives can be defined in terms of that sin-
gle connective. More commonly, axiom systems are used in classical logic which de-
fine only two connectives and all other connective are defined in terms of those two.
The question naturally arises then of what the minimum set of connectives is for the
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infon logic. There is no axiom system which is logically equivalent to the infon
axiom system which uses fewer connectives than that given in the propositional frag-
ment of the infon axiom system (noting that’‘is a defined symbol in the infon
axiom system).

This can be improved on for tleaxiom system by introducing quantification over
propositions, making the logic second order. Gabbay does this to create a second
orderpropositionallogic, 2h. He extends the propositional fragment of HRGyith
quantification of propositions to crea®®h He also extends the propositional Krip-

ke structure to define an interpretation €h

The axiom system fa€2his that ofh extended as follows!:

C2hy=h,y
{(D)AX) O Aly),
Aly) O Ix A¥),
Ox(BUOA(X) O (BOOxA(X) [x not free inB],
[X (X = A) [Aany formulax not free inA]}

C2h =h O

{(Ax) O B/ AX) O B),

(BO A(x) /B[O OxAX))}, x not free inB.
C2h, =h,,

x andy arepropositionalvariables in the above axioms and rules.

In this logic, £’ and ‘7" are the only connectives one needs to define the connec-
tives ofh 10l

AOB=40x(AO (BO x) O x)
AUOB=4Ux((AD x0BO XD X
[x AX) =4 Uy (OXAR) O y) O )

f =4 (£%) x

[39]p. 159 in[Gabbay 1981]
[40]p. 169 in[Gabbay 1981]
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It appears that the above equivalences are not applicable to infon logic. In the case of
conjunction, for instance, there is a semantic mismatch between the support of a con-
junction and the support of a conditional. The supportafrgunctionby some situ-
ationsis completely determined by that situation, “locally” as it were. The determi-
nation of support of aonditional by some situatios is dependent on the situations

of whichs is a part, a more “global” concern. Thus, if one has an iAfamich is

not supported bg but is supported by (t 25 s), andB whichis supported by, then

‘A 0B is not supported bg but T x (AO (B[O x)) O x)’ is supported bys (this
latter claim is a little awkward to demonstrate, but follows from the support condi-
tion definitions)*4

[41] This idea of quantifying over propositions is more interesting in the intuitionistic logics than in
classical logic. In classical logic a proposition is either true or false (in a given interpretation).
Thus, O x A(X)", for x a propositional variable, is classically equivalent in truth valug(toue)

O A(false)’. Similarly, TOx A(x)' is classically equivalent taA(true) O A(false)’. In the infon

logic, the dual notions of interest are “supported” versus “unsupported” (instead of “true” and
“false”). There is a similar analysis as that for classical logics, but it is more complex due to the
more complex definition of the semantic interpretation.
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Langholm’s Partial Model Theory

Tore Langholm published a work on the theory of partial models for logic that was
inspired by situation theory titled Partiality, Truth and Persistence
[Langholm 1988] Various of the results of Langholm are comparable with those de-
veloped for the NH axiom system and the support conditiéns. the following, the

logic semantics developed by Langholm is referred to as PM (for “Partial Model”).
The major point about PM in the context of this thesis is that PM does not have a
persistent definition of the conditional (NH, of course, does).

Truth conditions for a partial propositional logic

The basic definition is for thetrong Kleenearuth relation between wffs and models:
vi=SiffSOv*

vI=SiffSOV
v=T

VET
V= iff vz

vi= @ OpFiff v=¢* orv|=¢*
V=@ Oyg) iff v|=p~andv |=y°

The model is defined by a triplety = (p,, v’ V), wherep,, is a set of atomic sen-
tences (without polarityyp, Dv* OV andv' nv =@. Ifp,=v" 0V, thenvis a
complete model. He defines informationally extends’”, written u «v, if p, = p,,
vi O u' andv O u. The modek can be considered to represent a situatjavhere

v© O v is all of the basic infons whichsupports. The similarity typ®, is just all of

the basic infons (without polarity) whidmy situation supports. Thus, all situations
have the same similarity type. The “part of’ relation between situations is modeled
by the “informationally extends” relation.

[42] Langholm makes no reference to the intuitionistic tradition in logic, notably Brouwer or Heyting,
or the work of Gabbay. He includes a work by Melvin Fitting on intuitionism in his bibliography,
but | was unable to locate any actual referen¢beangholm 1988}o Fitting’s work.
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Langholm introducesxclusion negationwritten ‘~’, with the definition:
vi=~9Tiff vig ot
vI=~¢Tiff vi=¢"

This operator is also known asternal negation

The defined operators are:
1l =4t T

¢ Dl]J :df _(_(I) D—l]J)

dbOY=4 (~o0Y)

o=y=y GOWIWOI)

b W=y @=9) 00 =-Y)
‘¢ = Y’ holds whend andy are true in exactly the same models. This is read as “j
and y arepositively equivalerit Similarly, ‘—¢ = -’ holds when¢ andy are false
in exactly the same models. This is read @asahdy are negatively equivalehtA
second kind of disjunctionyeak disjunction is defined in terms of the primitive ne-
gation and (strong) disjunction:

(@ 0OW) =4 (¢ Tw) O(¢ O-¢) T(wO-y))

Comparison of PM and NH

There is a great similarity between Langholm’s strong Kleene structure and the
strong propositional Kripke interpretation. They are not the same, though. The strong
negation, conjunction and (strong) disjunction are the same for NH and Langholm’s
“partial model” logic (PM). There is no counterpart in NH for the exclusion negation
of PM. Beyond this, there is nothing in NH which treats the positive and negative
polarities of an infon asymmetrically. Exclusion negation does treat them asymmetri-
cally. Thus, to define exclusion negation for NH requires modifying the strong prop-
ositional Kripke interpretation (extending it). However, exclusion negatiamois

persistent. This can be shown as follows: ¢éf p, ¢ [ u®, and$ O u’. This im-
plies thatu [# ¢, and thuss |= ~4*. Letv" =u* O {¢}, w =u-, andp,=p,. This

implies thatu << v. However, it also implies that|=¢*. Thus,v [z ~¢*. Therefore,
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‘~" is not persistent.

The definitions of [’ in PM and [1 ' in NH are not directly comparable. They both
support the deduction theorem, but their semantics are quite different. Most impor-
tantly, ‘TJ" is not persistent. This can be shown in a manner analogous to the non-per-

sistence of ‘~’. Similarly,=’ is not directly comparable with its NH analog-",
and £ and ‘~ ’ are not persistert?!

Langholm does introduce another truth value relation which involves quantification
over models in a fashion reminiscent of the Kripke interpretation. This sufber-

valuationtruth relation, written |5,/ [441 It is defined byv |=gy ¢ iff (V' |= ¢ for all

completionsv’ of v).*®! Langholm shows that v |=gy ¢ iff v [=¢, in the proposi-

tional case. He mentions that this breaks down in the predicate logic case.

Langholm doesn'’t retain persistence for the fundamental notion of the conditional,
but it's not clear what he gets for yielding up this property. This difference is suffi-
ciently crucial as to make further comparisons between PM and NH unrewarding.

[43] These non-persistence results and much more are discussed starting orlpar&ghisim 1988]
[44]Langholm writes it with a small box subscript.
[45]p. 36 in[Langholm 1988]
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Appendix 1: Infon Logic Theorem Proofs

This appendix contains the proof of the theorems of Chapter 3, the presentation of
infon logic.

Theorem 1 All conditional-free infons are persistent.

Choose situations, tsuch thas <g .
The theorem requires that for all conditional-free infong s|= o thent |=0.

Proof:
The proof is by induction on the structure of infons.

Basis:o is a basic infong is a basic infon (positive or negative) implids o. [By
definition of supports.]
QED, basis case.

Induction Hypothesis: IfA, A B, andB are persistent infons, thén1 B, —(A O B),
A OB, and —-A [IB) are persistent.

1) ssgt [By the antecedent of the theorem.]

2) s|=A0OBIff s|=A and s|=B. [By definition of confirmation of conjunc-
tion.]

3) s|=Aimpliest |=A. [antecedent of induction hypothesis.]

4) s|=Bimpliest |=B. [antecedent of induction hypothesis.]

5 s|=A0Bimplies t|=Aandt |=B. [By steps 2,3,4 and transitivity of im-
plies.]

6) t|=AUOBIff t|=A andt |=B. [By definition of confirmation of conjunc-
tion.]

7) s|=AUOBimpliest|=A0OB. [By steps 5 and 6 and transitivity of implies.]

8) ALBis persistent. [By steps 1 and 7 and definition of persistence.]

9) s|=-@0B)iff s|=Aor s|=B.[By definition of denial of conjunction.]

10) s|=Aiimpliest |=A’ [antecedent of induction hypothesis.]

11) s|=Bimpliest |=B. [antecedent of induction hypothesis.]

12) s|= —@AOB) implies t|=Aor t |=B. [By steps 9,10,11 and transitivity of
implies.]

13) t|=—(A0B)iff t|=Aor t|=B.[By definition of denial of conjunction.]

14) s|=—-A 0OB) implies t |=—(A0B) . [By steps 12 and 13 and transitivity of
implies.]

15) —(AUOB) is persistent. [By steps 1 and 14 and definition of persistence.]

16) s|=A0Biff s|=Aor s|=B. [By definition of confirmation of disjunction.]

17) s|=A 0B impliest |=A or t |=B. [By steps 2,3,16 and transitivity of im-
plies.]

18) t|=A0OBIff t|=A or t|=B. [By definition of confirmation of disjunction.]

19) s|=A0B implies t|=AB. [By steps 17 and 18 and transitivity of im-
plies.]

20) A0OBis persistent. [By steps 1 and 19 and definition of persistence.]
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21) s|=-@0B)iff s|=Aand s|=B. [By definition of denial of disjunction.]

22) s|= —@A0B) implies t|=Aandt |=B. [By steps 9,10,21 and transitivity of
implies.]

23) t|=—(A0B)iff t|=Aandt|=B. [By definition of denial of disjunction.]

24) s|=-@A 0OB) implies t|=—-(A0B) . [By steps 22 and 23 and transitivity of
implies.]

25) —(A0B) is persistent. [By steps 1 and 24 and definition of persistence.]

26) AOB, —(A0OB), A B, and —-A [1B) are persistent. [By steps 8, 15, 20,
and 25.]

QED, the induction hypothesis.

From the basis case and the induction hypothesis, it follows that all conditional-
free infons are persistent.

QED, Theorem 1

Theorem 2 For all wffsA and situations if (a(t, A) = 1 iff [A], = 1) and @(t, A) =
-1iff [A], = -1), then @(t, A) = [A]).

Proof:

1) a(, A =0iffa(t, A) #1 anda(t, A) # -1. [By definition, a has a range of
{-1, 0, 1}, anda is total for all wffsA.]

2) [Al,=0iff [A],# 1 and P, # -1. [By definition, [] has a range of {-1, O, 1},
and a is total for all wffé\.]

3) a(t, A #1iff [A], # 1. [By hypothesis of theorem and classical logic nega-
tional equivalence, (A iff B) iff (~A iff ~B).]

4) a(t, A)# -1iff [A], # -1. [By hypothesis of theorem and classical logic nega-
tional equivalence, (A iff B) iff (~A iff ~B).]

5) a(t A) =0iff [A], #1 and A, # -1. [By steps 1, 3, and 4, and (indirectly)
transitivity of conditional.]

6) af(t, A)=0iff [A],= 0. [By steps 2 and 5, and transitivity of equivalence.]

7) a(t, A) = [Al, . [By step 6, the theorem hypothesis, the totality of lno#nd
[] over the same domain (the set of all wffs), and the definitions of dooth
and [] to have {-1, 0, 1} as their ranges.]

QED, Theorem 2

Theorem 3 For all conditional-fred, [A]t =af(t, A).

Proof:
The proof of this is inductive on the connective structumk, @s follows:
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Basis:A is atomic (no connectives). This implies tiais a basic infon4], =a(t,
A) holds by definition.

Induction: Hypothesis: IfA], =a(t, A) and B], =af(t, B), then AUB], =a(t, AU
B) and ALB], =a(t, AUB)and [-A],=a(t,—A)

1)
2)

3)
4)

5)

9)

10)
11)

12)
13)

14)
15)

16)
17)

18)
19)

20)
21)

22)

[Al, =a(t, A) and B], =a(t, B). [Hypothesis, antecedent.]

[AUB], = 1iff [A], = 1 and B]; = 1. [By definition point 2 and definition of
‘min’.]

a(t, AOB) =1ifft|=A OB. [By definition of a]

t|=AOBIff t|=Aandt|=B. [By Support condition 6, page A4Tonfirma-
tion of Conjunction’.]

a(t, AOB) = 1iff t |=Aandt |=B. [By steps 3 and 4, and transitivity of
iff.]

a(t, A) = 1iff t|=A. [By definition ofa.]

a(t, B) = 1iff t |=B. [By definition ofa.]

a(t, AOB) =1iffa(t, A) =1 andu(t,B) = 1. [By steps 5, 6, and 7, and by
two applications of the theorem “((P iff (Q and R)) and (Q iff S)) implies (P
iff (S and R))” (which follows from the transitivity of “implies”).]

a(t, AOB) =1iff [A], = 1 and B], = 1. [By substituting equalities of step 1
into step 8.]

a(t, AUB) = 1iff[ALB], = 1. [By steps 2 and 9 and transitivity of ‘iff".]
[AUB], = -1iff [A], = -1 or B], = -1. [By definition point 2 and definition of
‘min’.]

a(t, AOB) =-1iff t |= —(A OB) . [By definition of a]

t|=—(AOB)iff t |=Aort|=B. [By Support condition 7, page 4Denial
of Conjunction’.]

a(t, AOB) =-1iff t|=Aort|=B. [By steps 12 and 13, and transitivity of
iff".]

a(t, A) = -1 iff t |=A. [By definition ofa.]

a(t, B) = -1 iff t |=B. [By definition ofa.]

a(t, AOB) =-1iff a(t, A) =-1 ora(t, B) =-1. [By steps 14, 15, and 16,
and by two applications of the classical theorem “((P iff (Q or R)) and (Q iff
S)) implies (P iff (S or R))” (which follows from the transitivity of “im-
plies”).]

a(t, ADB) = -1iff [A], = -1 or B], = -1. [By substituting equalities of step 1
into step 30.]

a(t, AOB) = -1iff [A OB], = -1. [By steps 11 and 18 and transitivity of
iff".]

a(t, AOB) = [AUB], . [By steps 10 and 19, afitheorem 2, page 43

[ADB], = 1iff [A], =1 or B], = 1. [By definition point 2 and definition of
‘min’.]

a(t, AOB) = 1ifft|=A OB. [By definition of a]
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23) t|=A0OBIfft |=A ort|=B. [By Support condition 6, page 4LConfirma-
tion of Disjunction’.]

24) ao(t, AOB)=1ifft|=A ort|=B. [By steps 22 and 23, and transitivity of
iff".]

25) a(t,AOB)=1iffa(t, A) =1 ora(t,B)=1.[By steps 24, 6, and 7, and by
two applications of the classical theorem “((P iff (Q and R)) and (Q iff S))
implies (P iff (S and R))” (which follows from the transitivity of “implies”).]

26) a(t, ADB) = 1iff [A], =1 or B], = 1. [By substituting equalities of step 1
into step 25.]

27) a(t, AOB) =1iff [ADB], = 1. [By steps 21 and 25 and transitivity of ‘iff'".]

28) [AOB],=-1iff [A], = -1 and B], = -1. [By definition point 2 and definition
of ‘max’.]

29) a(t, AOB)=-1ifft|=—(A OB). [By definition of a]

30) t|=—(AOB)ifft |=A"andt |=B. [By Support condition 9, page 4Denial
of Disjunction’.]

31) a(t, AOB) =-1ifft |[=Aandt |=B. [By steps 29 and 30, and transitivity of
iff.]

32) a(t, AOB)=-1iffa(t,A) =-1 ora(t, B) =-1.[By steps 31, 15, and 16,
and by two applications of the classical theorem “((P iff (Q and R)) and (Q
iff S)) implies (P iff (S and R))” (which follows from the transitivity of “im-
plies”).]

33) a(t, AUB) =-1iff [A], = -1 and B], = -1. [By substituting equalities of step
1 into step 32.]

34) a(t, ADB) =-1iff [AUB], = -1. [By steps 28 and 33 and transitivity of
iff".]

35) a(t, AUB)=[ALB], . [By steps 27 and 34, afftheorem 2, page 43

36) [-Al, = -[Al,. [By definition.]

37) -[Al,=-1iff[A],=1.[By step 36 and arithmetic,X = Y iff A*X = A*Y ]

38) [A]t =1ifft |=A [By step 1, definition ofi, and transitivity of iff.]

39) [- Al =1iff[A],=-1.[By step 36 and arithmetic,X = Y iff A*X = A*Y ]

40) [A], =-1ifft|=-A [By step 1, definition ofi, and transitivity of iff.]

41) a(t, -A) =1 iff t |= -A. [By definition ofa.]

42) af(t, -A) = -1 iff t |=A. [By definition ofa.]

43) a(t, -A) = 1iff [- A],= 1. [By steps 39, 40, and 41, and transitivity of iff.]

44) a(t, -A) = -1 iff [- A, = -1. [By steps 36, 37, 38, and 42, and transitivity of
iff.]

45) a(t, A = [-Al,. [By 43 and 44 an@heorem 2, page 43

46) If[Al, =a(t,A) and Bl =af(t, B), then ADB], =a(t,ALB) and AUB];
=a(t, A0B) and [-A], = a(t, —A). [By 20, 35, and 45 ]

QED, the induction hypothesis.
Thus, reasoning by induction from the basis statement and the induction hypothesis,
[Al, =a(t, A) for all conditional freeA.
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QED, Theorem 3

Theorem 4 Propositional infons are persistent.

Proof: The proof of this is built on the proof that conditional-free infons are persis-
tent. This proof is also done via structural induction.

Basis: IfA is a basic infon, theA is persistent. This holds I8upport condition 3

Induction Hypothesis: I6 andT are persistent, them[] 1 and —¢ [J 1) are persis-

tent.
1)
2)
3)

4)

s|=o O timplies for allt such thas<gt, t |= o impliest |=T. [By the con-
firmation of conditional support condition.]

For alls’ andt, if s’ containss andt containss’, thent containss. [By the
transitive property of the ‘part of’ relation.]

s|=o 0 timplies for alls” andt, if s’ containssands’ < t, t |=0 impliest
|=T. [By steps 1 and 2.]

For alls’, if s” containss, thens |=o U T implies for allt, if s’ <¢t, t|=0
impliest |=T1. [By step 3.]

For alls’, if s’ containss, thens |=c O 1 impliess’ |=oc O 1. [By step 4
andSupport condition 10

s|=—o O 1) implies s|=0 ands |=T. [By Support condition 11

For alls’, if s’ containss thens’ |= o0 ands’ |=T. [By induction hypothesis
antecedent.]

s’ |=o ands’ |=T impliess’ |= —@© O T1). [By Support condition 11

For all s’, if s’ containss, thens |= —(c O 1) impliess’ |= —¢ O 1). [By
steps 6, 7, and 8.]

10) o tand - O 1) are persistent. [By steps 5 and 6.]

QED, induction hypothesis.

Since the induction hypothesis for the conditional-free infons is proved in

Theorem 1, page 42hen by induction on the structure of infons via that hy-
pothesis and the one above, all propositional infons are persistent.

QED, persistence of propositional infoiifieorem 4

Theorem 5 If a(t, A) = [A], and a(t, B) = [B], thena(t, AL B)=[AD BJ.

1)
2)

3)
4)

a(s Al B)=1iff s|I=A0 B. [By definition ofa.]
s|=A D0 B iff for all t such thats <gt, t|=A impliest |=B. [By

Support condition 10, page ABonfirmation of Conditiona]
a(s A0 B) =1iff for allt such thas<gt, t [=Aimpliest |=B.

s<g tiff sRt. [By definition of the R relation.]
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5)
6)
7)
8)
9)
10)
11)

12)

13)

14)
15)
16)
17)

18)
19)
20)

a(t, A) = 1ifft |[=A. [By definition ofa.]

a(t, B) = 1iff t |=B. [By definition ofa.]

a(t, A) = [Al;. [By induction hypothesis.]

a(t, B) = [B];. [By induction hypothesis.]

[Al, = 1ifft [=A. [By steps 5 and 7 and substitution of equality.]

[B], = 1iff t[=B. [By steps 6 and 8 and substitution of equality.]

a(s AU B) =1 iff for all t such thas Rt, [A], = 1 implies B], = 1. [By
steps 3, 4,9, and 10]

[AD B]=1 iff for all t such thas R t, [A], = 1 implies B], = 1. [By defini-
tion.]

[AD B]=1iff a(s, ALl B)=1.[By steps 11 and 12 and transitivity of iff.]
a(s Al B)=-1iff s|=—(AO B). [By definition.]

t|=—(A 0 B)iff t|=Aandt|=B. [By definition.]

a(t, A) = -1 iff t |=A [By definition.]

a(t, Al B) =-1iff [A], =-1 and B], = 1. [By steps 6 and 16 into 15, and 15
into 14.]

[AD B]=-1iff [A],=-1and B], = 1. [By definition.]

[AD B]=-1iffa(t, AD B) =-1. [By steps 17 and 18 ]

a(t, AQl B)=[AD BJ. [By steps 13 and 19, afitheorem 2, page 43

QED, Theorem 5the 71’ connective extension fbheorem 3, page 43

Theorem 7: For allsand all non-parametric anch@gof x to the constituents &f

s|= AKX U Oy Ay)lgd-

1)

2)

3)

4)

5)

6)

For allsand all non-parametric anchagygof parameters oA to the constit-
uents ofs, s|= (A(x) U Ly Aly))[g] iff for all s and all non-parametric an-
chorsg, of parameters o\ to constituents o, s|= (Alg,] U [y AY)[9, ])-
[Property of anchors]

s|= Ao, ] U Oy Aly)lg, ) iff for all t such thas<gt, t [=Alg.] impliest |=
Oy Ay)[9,]- [Support condition 10, page 48

t|= 0y Aly)lg, ] iff there exists some non-parametaicchoringf . = {y/a}, a

[ constituent§) such that |=Alg_][f , ]. [Support condition 14, page 50

t |= Algg I[f ; ] implies there exists some non-parametitchoringf , =
{x/a}, a [J constituent§) such that |=Alg_][f , ]. [From the tautology ‘P
implies P’.]

t|=Alg [f ;] impliest =Ly Aly)[g,]- [By steps 3 and 4 and the transitivity
of conditional.]

For alls and all non-parametric anchaygof parameters o to the constit-

uents ofs, s |= (A(x) U [y Aly))[9,]. [By steps 1, 2, and 3].
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QED, axiom =A(X) O Ty Aly)).
Theorem & For allsand non-parametrigs, s|= 0y Aly) O A(x))[gs].

1)

2)

3)

4)

5)
6)

For alls and all non-parametric anchaggof parameters oA to the constit-
uents ofs s|=0y Ay) O A(x) iff for all sand all non-parametric anchcg;
of parameters o to the constituents of s |= Uy Aly)[gd U Alg, ]. [Prop-

erty of anchors.]
s [=0y Ay)lgs] U Alg,] iff for all t such thas < t, t |=0y Ay)[g,] im-

pliest|= Alg]. [Support condition 10, page 48

t|= D0y AY)[g, ] iff for all situationsr and non-parametrianchoringsf , =
{x/a}, a U constituentdt), t<gr impliesr [=A[g ][f ].

(For all situations and non-parametranchoringsf , = {x/a}, a U constitu-
entst), t<g r impliesr |=Alg_][f, ]) implies t|= Alg_][f ]. [Sincet<t, if
the antecedent is true, then|= Alg_ ][f ;] is true. Thus, the implication
holds.]

t[= 0y Ay)[g ] impliest [= Alg_][f ; ]. [By steps 3 and 4.]

For alls and all non-parametric anchagof parameters o to the constit-
uents ofs, s [= Cy Aly) U A(X)[g,]- [By steps 1, 2, and 5.]

QED, axiom =y Aly) O A(X)).

Theorem 9 For all's and all non-parametric anchayg of parameters oA to the
constituents 0§, s |= (HXA(X) = [x =A(X)).

1)

2)

3)

4)
5)
6)

7
8)

s |= (HHXA(X) O Ox -AX)[g ] iff for all t such thas<gt, t |[= XAX)[g]
impliest [= x —A(X)[g . [Support condition 10, page 4&d property of an-

chors]
t |[= LXAX)[g{ iff for all situationsr and non-parametrianchoringsf , =

{x/a}, a O constituent§), t part of r implies r |= -Alg]Jf , ] [

Support condition 15, page b0
t |= Ox -A(¥)[g ] iff for all situationsr and non-parametrianchoringsf , =

{x/a}, a O constituent§), t part of r implies r |[=-Alg]lf ; ] [

Support condition 12, page b0
t[= kA iff t [=0Cx -A(X)[gy. [By steps 2 and 3.]

s|= (KA(X) O Ox-A(x))[g . [By steps 1 and 4.]

s|= Ox -AX) O -XAX)[gg] iff for all t such thas<gt,t [= x-A(X)[g ]
impliest |= +XA(X)[g ] . [Support condition 10, page 48

s|=(Ox -A(X) U —XAX))[g4 - [By steps 6 and 4.]

For alls and all non-parametric anchaygof parameters o to the constit-
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uents ofs, s |= (+XA(X) = [x -A(X))[g . [By steps 5 and 7.]

QED, axiom = £EXA(X) = Ox-A(X).

Theorem 1Q For all's and all non-parametric anchagg of parameters of to the
constituents 0§, s [= (-HIXA(X) = [k -A(X)[g4]-

1)

2)
3)
4)
5)
6)

7
8)

s [= (HIXA(X) O Dk -A(X)[g4] iff for all t such tha < t, t |= LIXAXX)[g]
impliest [=Ix -A(x)[g] . [Support condition 10, page 4&nd property of an-

chors.]
t |= -xA(Y)[g ] iff there exists a non-parameta@nchoringf , = {x/a}, a [J

constituentdt), such that |= -Alg][f , ]. [Support condition 13, page 50

t |=0x -A(X)[g iff there exists some non-parametaiochoringf , = {x/a}, a
[J constituent§) such that |= -Alg][f, ].

t[= LXARX)[g4] iff t [-Ix -A(X)[g . [By steps 2 and 3]

s|= (XA O IX-A(X))[g4. [By steps 1 and 4.]

s |[= (x-A(x) O —xAX)[g ] iff for all t such thas <gt, t [= X -A(X)[g]
impliest [=LIXA(X)[g ] . [Support condition 10, page }#8

s|= (X -AKX) U -xAX))[g . [By steps 4 and 6.]

For alls and all non-parametric anchaggof parameters oA to the constit-
uents ofs, s |= (HXA(X) = [k -A(X)[g . [By steps 5 and 7.]

QED, axiom = £IXA(X) = [X-A(X).

Theorem 11 For alls and all non-parametric anchagg of parameters oA to the
constituents o$, s [= (A(x) U B)[g/] implies for allsand all non-parametric anchors
g, of parameters oA to the constituents af s |= (LkA(X) U B)[g -

0)
1)
2)
3)
4)

5)

Assume: A(X) O B) is a theorem. [By hypothesis.]

s|= AKX 0O B)lgJ iff s|=Ag,]10 Blgy] ). [Property of anchor ]

s |= Mg O Blg] ) iff for all g’¢ such thag' (y) = g(y) fory #x, s |=
(Alg’J O Blgy]).

s|= @lg'd U Blg] ) iff for all t such thats<g t, t [=A[g’ ] impliest |=
Blg |- [Support condition 10, page 48

For alls andg,, there existg'’  such thatt [= Alg’_ ] implies t |=B[g . [By
steps 0, 1, 2, and 3.]
Suppose: there exisss, t;, g

andt, |= A[g’tl].

s G andg’tl, 155105 7 G b # B[gsll
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6)
7)

8)

9)

10)

11)

12)

13)

14)

15)

16)
17)

~(t1 |= A[g’tl] implies t |= B[gS ]). [By 5 and negation of implication.]
1
~(t, |= Alg’; ] implies t; |= B[g, ]). [By 5 and 6 and substitution of equal
1 1

terms (gsl = gtl).]
Contradiction of step 4: ~(For dlisuch thas<gt, t |= A[g'] implies t |

BlgJ]). [By 7, lettings=t,, sinces <¢ s]
~(there exists,, t;, 0. , ¢, , andg’, ,s; <gt;, 0. =9, , t; # B[gsl] andt, |
1 1 1 1 1
Alg'; ])- [Contradiction of step 5, by step 8's contradiction of 4.]
1
For alls;, t,, gsl, gtl, andg’tl, ~(5sgYy and931: gtl andt, [# B[gsl] andt,

|= Alg’, ). [By step 9 and classical property of negation of universal quanti-
1

fication.]

For alls;, t;, gsl, gtl, andg’tl, (81 sgty andgslz gtl andt, |= A[g'tl]) im-
pliest, |= B[gsl]). [By step 10 and classical equivalence of ‘implies’ and ‘or’
(P -> Q iff (=P or Q)) and associativity of ‘and’.]

For alls, t;, gsl, and gtl, (5; sgt; and 931: gt1 and there existg’tl such
thatt, |= A[g’tl]) impliest, [# B[gsl]). [By step 11 and classical equivalence

of quantification of implication (for all x (P(x) -> Q) iff ((exists x P(x)) ->
Q), x not free in Q).]

For all sandg,, s |= ((XAx) O B)[g] iff for all t such thats <g t, t |=
[XAX)[g impliest [=B[g]. [Support condition 10, page A&nd property of
anchors.]

t[= IkAX)[g ] iff there existsg’, such thag’ (y) =g (y) fory # x, such that
|=A[g’,]. [By Support condition 14, page $0

For allsandg,, s|=(IXA(X) U B)[g . [By steps 12, 13 and 14, lettiisg =
s,t; =t gSl =0y andg’tl =0

(OxA(x) O B) is a theorem. [By step 15 and semantic definition of theorem.]
If (A(X) O B) is a theorem, thefixA(x) LI B) is a theorem. [By steps 0 and
16.]

QED, provability rule =AX) O B) /((XA(X) O B).

Theorem 12 For alls and all non-parametric anchagg of parameters oA to the
constituents o, s|= B U A(x))[gJ implies for allsand all non-parametric anchors
g, of parameters oA to the constituents af s [= B 1 UXA(X))[g]-

1)

2)

For allg ins,s|=8 U AX))gJ iff s|=B[g] U AlgJ]. [By anchor proper-

ty.]
For allg’¢ inswhere g’ (y) = g (y) for y #x, s [=B[g] U Alg] iff s|=B[g]
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3)

4)
5)

6)

7
8)

9)

10)

11)

O Al g’ [By given constraint that is not free inB]
s|=BlgJ U Al g’ iff for all t such thas<gt, t |=B[g] impliest|= A[ g’ ].

[By Support condition 10, page 48
For allr such that <g r, t [=B[g ] impliesr |=B[g ]. [By persistence.]

gs=9, an anchor i andr. [Sincesgst ands <gl then the constituents of

s are constituents d@fandr. Thus an anchor igis an anchor ih andr.]
Forallsandg,ins, s|= B0 A(x))[g ] implies for allt andr such thas<gt

<grand for allg’ inr where g’ (y) = gy) for y #x, t [= B[g ] impliesr |=
A g',]. [By steps 1, 2,4, and 5.]

s|= B0 UxAX)Ig] iff s|=B[g] U UxA(X)[gy. [Property of anchors.]

s |=Blg] U OxAX[g ] iff for all t such thas < t, t |=B[g] impliest |=
OXA(X)[g94- [Support condition 10, page 48
t |= OxA(X)[gg] iff for all situationsr and non-parametrianchoringsg’,,
whereg’ (y) = gJ(y), fory #x,g’, (x) U constituentf), t <cr impliesr |=
Alg’ ]. [Support condition 12, page b0

For allsandg, ins, s [=B[g] U Al g implies for allsandg,ins, s|=
Blg U DxAX)[gJ. [By steps 2, 6 and 9.]

Forallsandg ins s|= B0 A(X)[ gJ implies for allsandg, in s, s|= B
O OxA()[9y- [By steps 1, 7, and 10.]

QED, provability rule = @8 0 A(x))/(BO OxAX)).
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