
Chapter 6: Extending FELIX to Multiple Intensional Contexts

This chapter proves the second part of the third hypothesis of this thesis:

Third Hypothesis: This new version of situation theory and the associated theorem
prover is appropriate as a knowledge representation and reasoning system for theo-
ries of perception and belief.

This proof is a demonstration that an automated reasoning system can be developed

for the situation theoretic belief and perception theories presented in chapter 5.

Intensional contexts[1] are the basic organizational tool for implementing reasoning

about “modal” relations. Intensional relations are those which take formulae as an ar-

gument, such as the supports relation or the belief relation. Every intensional context

except the root has a parent intensional context and any number (perhaps none) of

child contexts. The root intensional context has no parent intensional context, but

may have child contexts. An intensional context has a logic mode, either infon or

classical. An intensional context is defined by a “pattern” of a relation where the

propositional argument of that relation is “filled” by the formulae of the intensional

context and the non-propositional arguments are filled with constants. A pattern is

written ‘X^Y’, where X is a propositional variable and Y is the relation which has X

as one of its arguments. The pattern for a belief relation is ‘P^bel(A, P)’, where A is

some term naming an “agent” and P is a free meta-variable. The pattern for the sup-

ports relation is ‘P ^ (S |= P)’, where S is some term naming a situation and P is a

free meta-variable. The terms may be free variables. Belief contexts have a classical

logic mode and supports contexts have an infon logic mode.

Suppose the formula “s |= agent(a)”[2] is in the root intensional context. There is a

sub-context, call it context 2, of the root intensional context with pattern X^(s|=X).

Context 2 is for reasoning about the infons which s supports. FELIX infers that

[1] The idea of contexts is similar to the use of attachments. Particularly the notion of associating a
logic mode with a context. [Frisch&Scherl 1991] discuss a theory of attachments. This is also dis-
cussed on p. 212 of [Genesereth&Nilsson 1987]. These discussions of attachment focus on rea-
soning about beliefs, where the use of contexts is intended for any intensional relation, and is par-
ticularly extended to the supports relation as well as the belief relation.

[2] This can be read as “The situation s supports the infon that ‘a’ is an agent.”

page 162

“agent(a)” can be adopted in this sub-context by virtue of “s |= agent(a)” being

present in the parent intensional context. This can be thought of as “projecting” the

root intensional context formula onto the sub-context. The formula “s |= bel(a, t |=

hand(a, ah))” in the root intensional context can be projected onto context 2 as

“bel(a, t |= hand(a, ah))”. This can in turn be projected onto a sub-context of context

2 (call it context 3) defined by the pattern X^bel(a,X). The projection in context 3 is

“ t |= hand(a, ah)”. This can be projected onto a sub-context of context 3, call it con-

text 4, defined by pattern X^(t|=X). The projection in context 4 is “hand(a, ah).” The

formula “s |= bel(b, t |= hand(b, bh))” can be similarly projected onto contexts, with

“ bel(b, t |= hand(b, bh))” in context 2, “t |= hand(b, bh)” in context 5 (sub-context of

context 2, pattern X^bel(b, X)), and “hand(b, bh)” in context 6 (sub-context of con-

text 5, pattern X^(t|=X)). A picture of these contexts is in Exhibit 6. 1 on page 164.

The logical use of contexts is to reason about logical closure for the formula-type ar-

gument of the relation. Since an intensional context has a logic mode which depends

on the relation generating the intensional context, the logic of the closure depends on

the relation generating the intensional context. Logical closure for ‘belief’ formula

arguments is classical. Logical closure for ‘supports’ formula arguments is infonic.

FELIX could be extended to have more modes - nonmonotonic reasoning systems of

various kinds (varying sets of “axioms” within the same basic framework, perhaps) -

and the selection of mode for a belief intensional context could be made to depend

on the agent argument as well as the formula argument. Thus, this provides a mecha-

nism to tailor a major aspect of reasoning about an agent’s beliefs to that agent.

A simple supports relation theorem can be used to show the multiple intensional con-

text reasoning mechanism. The theorem is that if ‘p’ is universally supported and

‘p⇒q’ is universally supported, then ‘q’ is universally supported. This is formalized

as: Given ‘∀ t(sit(t)→t |=p)’ and ‘∀u(sit(u)→u |=(p⇒q))’, prove that ‘∀ s(sit(s)→s

|=q)’, where ‘sit(x)’ is the claim that x is a situation.

The proof which FELIX develops is given below. Lemma s1 proves the free variable

version of the consequent of the theorem (from which the universally bound version

can be inferred), and lemma s2 proves the consequent goal of lemma s1 supposing

page 163

the antecedent of this goal (from which the goal of lemma s1 can be inferred).

Lemma s2 reasons in two contexts to achieve its results. In the root intensional con-

text it instantiates the given formulae and applies modus ponens to get steps 4 and 5.

Steps 4 and 5 of the root intensional context are projected into context 2 to get steps

1 and 2 of context 2. Reasoning in context 2 using infon logic, FELIX infers that ‘q’

holds in context 2. Expanding ‘q’ into context 2’s parent intensional context, it gets

step 6 of context 1. This completes the proof of lemma s2.

page 164

Exhibit 6. 1: An Example Tree of Contexts.

s |= agent(a)
s |= bel(a, t |= hand(a, ah))
s |= bel(b, t |= hand(b, bh))

agent(a)
bel(a, t |= hand(a, ah))
bel(b, t |= hand(b, bh))

Context 1

Context 2

t |= hand(b, bh)t |= hand(a, ah)

hand(a, ah) hand(b, bh)

Context 5

Context 6

Context 3

Context 4

X^(s|=X)

X^bel(a, X)
X^bel(b, X)

X^(t|=X)X^(t|=X)

Extending the Implementation of FELIX for Multiple Contexts

The basic framework of FELIX is extended in two ways to handle reasoning in mul-

tiple contexts. One set of extensions are independent of the semantics of particular

intensional relations, the other extensions are intensional relation specific. The mod-

al-relation-independent extensions are in three areas. One extension is adding rules

to the adoption task processing and interest task processing which propagate tasks to

the relevant parent and child contexts. When adopting formula F, generate an adop-

tion task of the simple expansion of F for the parent intensional context and if F

matches a context-defining pattern then generate an adoption for the projection of F

onto its child intensional context. The simple expansion Y’ of a formula F in an in-

page 165

PROVE: ∀ s(sit(s)→s |=q)
GIVEN : ∀ t(sit(t)→t |=p)

∀u(sit(u)→u |=(p⇒q))

1 : ∀ s(sit(s)→s |=q) LEMMA s1 universal generalization
--

LEMMA s1:
PROVE: sit(s’)→s’ |=q

1 : sit(s’)→s’ |=q LEMMA s2 conditional

--
LEMMA s2:

PROVE: s’ |=q
SUPPOSE: sit(s’)

1 : sit(s’) given supposed
2 : ∀ t(sit(t)→t |=p) given input
3 : ∀u(sit(u)→u |=(p⇒q)) given input
4 : s’ |=p [2, 1] all_detachment
5 : s’ |=(p⇒q) [3, 1] all_detachment
6 : s’ |=q CTXT 2: [3] child

CONTEXT 2 : s’ |=Formula
1 : p CTXT 1: [4] parent
2 : p⇒q CTXT 1: [5] parent
3 : q [2, 1] modus_ponens

Exhibit 6. 2: Proof of
Universal Conditional Deduction Supports Theorem.

tensional context with defining pattern X^Y is found by substituting F for X in Y,

where Y’ is the substituted version of Y. In the proof in Exhibit 6. 2 on page 165,

context 2 of lemma s2 has the defining pattern of X^(s’ |=X). The simple expansion

of ‘q’ in this intensional context is ‘s’ |=q’. There is no projection of ‘q’ to a subcon-

text. A formula only has a projection if it is an atomic formula with an intensional re-

lation. The projection is the formula-type argument of the relation and the subcontext

pattern is the atomic formula with its formula type argument replaced by a meta-

variable. When ‘q’ is adopted in context 2, a task to adopt ‘s’ |=q’ in context 1 (the

parent intensional context of context 2) is generated. No parent intensional context

adoption tasks are generated when a formula is adopted as a result of a projection

from the parent intensional context. This prevents some wasted effort. Thus, when

‘p’ is adopted in context 2, no parent intensional context adoption task is generated.

The agenda mechanism of FELIX is extended to record the intensional context of

each task. When a task is selected for processing, the current intensional context of

the current supposition is “switched” to the intensional context of the selected task.

The ordering of tasks in the agenda relies not only on the priority number of the task

(lower priority numbers are processed before higher ones), but also on the intension-

al context of the task. If two tasks have different priority numbers, then the one with

the lower priority number is processed first, as is the case in “single-context” FELIX.

If two tasks have the same priority number, then their contexts are used to determine

which to process first. The task with an intensional context which is “closer” to a

focus intensional context is the one which is processed first. If the two tasks are

equally close to a focus intensional context, then the one with the lower intensional

context number is (arbitrarily) chosen. This ordering introduces two new concepts,

the focus intensional context and the distance between intensional contexts.

A intensional context is deemed a “focus” intensional context if interest is registered

in some focusing formula in that intensional context . A “focusing” formula is one

which is not an atomic modal formula, i.e. an atomic formula with a intensional rela-

tion. In the current version of FELIX, the non-focusing formulae are of the form

‘bel(A, P)’ or ‘S |= I’.

page 166

The distance between intensional contexts is measured with respect to the tree of in-

tensional contexts. The distance is the path length in the tree between the two inten-

sional contexts. The focus distance of an intensional context is the shortest path from

that intensional context to any focus intensional context.

The inference rule implementations are extended to cope with multiple intensional

contexts in a fairly simple way. Those rules which create a new supposition (condi-

tional supposition, universal supposition, reductio supposition, dilemma supposition)

set up the new supposition with the full expansion of the formula of interest as the ul-

timate interest of the new supposition, since linear processing suppositions always

starts in context 1 (the root intensional context). Beyond this these rules are essen-

tially unaffected by the intensional context mechanism.

The above describes three areas of FELIX’s operation; the projection and expansion

of formula adoptions and interests, the agenda task-ordering sensitivity to the inten-

sional context of the task, and supposition-creating inference rules. These three areas

of FELIX operate independently of the specific semantics of a particular intensional

relation and are not modified in any way when defining new intensional relations,

with one exception. The “expand formula” processing must be modified to handle

the expansion of formulae which contain existential instantiation terms (skolem

terms). This is done for the belief relation.

There is an additional issue relating to the semantics of references “across” inten-

sional contexts. This is particularly interesting with respect to the belief relation.

There is no reason to assume that because the a person calls something ‘a’, that an-

other person about whom the first person has beliefs calls that same thing the same

“name”. Thus, to say that A believes that B believes ‘a’ is a car might be represented

as: s |= bel(A, t |= bel(B, u |= car(a))). The problem with the representation is that it

assumes that whatever A refers to by ‘a’ is also what B refers to by ‘a’, and is also

what the theorist (the person writing the formula) refers to by ‘a’. Konolige introduc-

es a technique for handling this - the “bullet” operator.[3] Constants in the scope of

belief relations are given a ‘•’ prefix to indicate that the theorists name for a constant

[3] [Konolige 1986], p. 40-44 introduce the idea of the bullet operator and discuss the formal im-
plications. This is also presented in [Genesereth&Nilsson 1987].

page 167

is being used, not that of the “believer”. Thus, the previous formula would be: s |=

bel(A, t |= bel(B, u |= car(• a))). The belief logic developed in this thesis makes the

simplifying assumption that the theorist and all of the believers use the same

“names” to refer to the same objects.

The modal-relation-specific modifications which are made to FELIX to define a new

intensional relation are in specifying the “pattern” of the relation to give the syntax,

specifying the logic mode of the intensional relation and the forward and backward

reasons to give the semantics, and specifying the transformation rules for the “de-

tachment normal form”. As noted above, there may also be a modification necessary

to the “expand formula” procedure to handle existential formulae.

If there are multiple intensional relations defined, then it is generally appropriate to

give forward and backward reasons which define the semantics of formulae contain-

ing different intensional relations. For instance, in the case of the ‘bel’ relation and

‘|=’, there is a rule called ‘bel_veridicality’ which implements the idea that if some-

one believes something then that thing is true: if ‘S |= bel(A, P)’ then infer ‘P’ (all

beliefs are assumed to be factual in this simple model). This is present in FELIX as a

forward reason.

Belief relation specific extensions

The belief pattern is ‘X^bel(A,X)’. This defines an intensional context which con-

tains A’s beliefs. The logic mode of belief is classical, and thus the formula found in

the second argument is “interpreted” as a classical first order logic formula. This is

the technical expression of the claim that a person believes propositions about the

world, things which are (believed to be) true. In the situation theoretic approach,

these propositions are commonly of the form ‘S |= I’, where S is some situation and I

is some infon and this proposition is read “The situation S supports the infon I.”

The belief relation is an extension of infon logic; it is only found in infon formulae.

The forward reasons for belief, expressed as natural deduction inference rules, are:

page 168

Introduction Elimination

Γ : S |= sees(A, T) ∧ T |= P Γ : S |= bel(A, P)
_______________________ ______________

|= bel Γ : S |= bel(A, P) Γ : P

Γ : bel(A, P) ∨ bel(A, Q)

bel ∨ Γ : bel(A, P ∨ Q)

The backward reasons for belief are:

Γ : T |≠ P

|≠ bel Γ : S |≠ bel(A, T |= P)

Γ : bel(A, P), ∆ : bel(A, Q)

bel ∧ Γ,∆ : bel(A, P ∧ Q)

The expand-formula procedure is modified so that an existential instantiation term

which is created for an existential formula in a belief intensional context is “expand-

ed” by reconstructing the existential quantification. For instance, given the formula

‘s |= bel(a, ∃x p(x))’ in the root intensional context, there is the formula ‘bel(a, ∃x

p(x))’ projected into context 2 (X^(s |= X)), and the formula ‘∃x p(x)’ projected into

context 2’s child intensional context 3 (X^bel(a, X)). Using existential instantiation

in context 3, FELIX creates a new formula, say ‘p(b)’ where b is the existential in-

stantiation term for x. This expands to ‘bel(a, ∃x p(x))’, since b was created as an ex-

istential instantiation term of a belief existential formula. This preserves the desired

meaning of “existential belief”, where believing that something exists which satisfies

a particular formula does not imply that one believes any particular instantiation of

that formula. For instance, believing “Some day my prince will come” does not

imply that one believes that “my prince will come on Monday”, even if it is in fact

the case that one’s prince is coming on Monday.

page 169

This existential limitation on formula expansions can be easily extended to other in-

tensional relations.

The extensions to the the “detachment normal form” rules are as follows:

bel(A, P ∧ Q) →→ bel(A, P) ∧ bel(A, Q)
bel(A, (P → Q)) →→ bel(A, P) ⇒ bel(A, Q)
bel(A, P ∨ Q) →→ ~bel(A,~(P ∨ Q))

The first rule and second rules are warranted by the logical closure principle of be-

lief. The third rule is warranted by the consistency principle of belief (but not by the

knowledge principle, as discussed earlier).

Supports (|=) relation specific extensions

The intensional context pattern for the supports relation is X^(S |= X). Support inten-

sional contexts are in infon logic mode.

The extensions to the forward and backward reasons are as follows:

page 170

Forward reasons:

Introduction Elimination

Γ : (S |= P) ∨ (S |= Q) Γ : S |= (P ∨ Q)
_________________ ___________

|= ∨ Γ : S |= (P ∨ Q) Γ : (S |= P) ∨ (S |= Q)

Γ : S |= – – P
___________[4]

– – Γ : S |= P

Γ : S |= ^ P

|= ^ Γ : S |≠ P

Γ : S |= P

sit Γ : sit(S)

Backward reasons:

Γ : (S |= P) ∨ (S |= Q)

|= ∨ Γ : S |= (P ∨ Q)

Γ : S |≠ P

|= ^ Γ : S |= ^ P

Γ : S |= – P

|= – Γ : S |≠ P

No change is necessary to the procedure for expanding formulae from a child inten-

sional context into its parent. That is, (∃x (s |= p(x))) iff s |= (∃x p(x)).

The additional rules for the “detachment normal form” are as follows:
S |= (P ∧ Q) →→ (S |= P) ∧ (S |= Q)
S |= (P ∨ Q) →→ (S |= P) ∨ (S |= Q)

[4] This rule should be superfluous; it is taken care of by infon mode subcontext reasoning.

page 171

Applying FELIX to Problems with Beliefs

There are two major example theorem proving problems used to demonstrate

FELIX’s approach to proofs involving beliefs and the supports relation. One is the

poker game which is presented in an earlier chapter. The other the “wise men” puz-

zle. This puzzle is presented here in a simplified form involving only two wise men,

it is usually presented as the “3 wise men”, or even the “N wise men,” puzzle.

Poker Game

There are two results which FELIX must produce. One of these is Jack’s belief that

if Pete calls he loses. The other is Zack’s belief that if Pete calls he wins. These

problems are presented in detail in the previous chapter. What follows here is a dis-

cussion of the proofs which FELIX finds for these results. A simplification adopted

in both of these proofs is to state the problem as a conditional supposition; prove

“Given P, prove Q” rather than “Prove P implies Q”. This simplification helps re-

duce the storage required to solve the problem, which is a difficulty in getting

FELIX to run successfully.

The first problem presented is that of Jack’s beliefs. The proof is given in several

parts. The “given” and “to prove” formulae are in Exhibit 6. 3 on page 173. The

proof steps used in the root intensional context (context 1) are in

Exhibit 6. 4 on page 174. The proof steps used in context 2 are in

Exhibit 6. 5 on page 175. The remainder of the proof, the steps for contexts 3, 4, and

5, is in Exhibit 6. 6 on page 176. The only focus intensional context which FELIX

identifies in the course of finding this proof is context 5, and the goal of interest in

that intensional context is ‘loses(pete)’. Context 5 has the second most “local” adop-

tions, 4 of them, after the root intensional context (with 6)[5] . A local adoption is one

which is not the result of an intensional context expansion or projection. The nonlo-

cal adoptions have as their justification either ‘parent’ or ‘child’. Context 2 is largely

a conduit between contexts 1 and 4, and context 4 is entirely a conduit between 2 and

[5] The measure of more interest is what percentage of nonlocal adoption did the intensional context
use. The focus intensional context ought to have a high percentage (a high “hit” ratio).

page 172

5. The presentation of the proof can be made more succinct by eliminating the ex-

plicit presentation of steps which are only intermediate steps in the expansion or pro-

jection processes. Using this approach, all of the steps of context 4 and most of the

steps of context 2 need not be presented explicitly. Thus in context 5, the support

step CTXT4:[1] which refers to CTXT2:[1] which refers to CTXT1:[1] can be col-

lapsed to “CTXT1:[1] via 2&4”. The collapsed version of the proof is given also.

The collapsed version of context 1 is in Exhibit 6. 7 on page 177. The collapsed ver-

sion of context 2 is in Exhibit 6. 8 on page 178. The collapsed versions of contexts 3,

4, and 5 are in Exhibit 6. 9 on page 179.

The proof of Jack’s conditional belief about Pete only uses one of the “poker do-

main” rules[6]. The proof of Zack’s conditional belief is more complex and uses four

of the poker domain rules. This proof if presented in several parts. The problem

statement is given in Exhibit 6. 10 on page 180. The root intensional context proof is

in Exhibit 6. 11 on page 181. The proof steps for context 2 are in

Exhibit 6. 12 on page 182. The proof steps for context 3 are in

Exhibit 6. 13 on page 183. The proof steps for context 4 are in

Exhibit 6. 14 on page 184.

[6] Rule 3: “everybody_who_knows_poker_believes(knowing_better_hand_implies_knowing_re-
sults)”. This is presented in Exhibit 5.3 of Chapter 5.

page 173

PROVE: sz|=bel(jack, sp|=loses(pete))

GIVEN: sz|=bel(jack, sp|=calls(pete))
sz|=sees(jack, sp)
sz|=knows_poker(jack)
sp|=hand(stone, sh)∧hand(pete, ph)∧players(pete, stone)
better(sh, ph)
∀ s (sit(s)

→ s |= ∀ a(knows_poker(a)
⇒ bel(a, ∀ t, u(sit(t)∧sit(u)

→ ∀ p, px, py ((u |=players(px, py)∨players(py, px))
∧ ∃ x, y (better(x, y)

∧(t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))

∧bel(p, u |=(calls(py)⇒loses(py))))))))

Exhibit 6. 3: Jack’s Proof, part 1:
Problem Statement.

This proof is interesting in that FELIX moves back and forth (or up and down, per-

haps) between the various intensional contexts. FELIX does considerably more of

this shifting between intensional contexts in its search for the proof than is present in

page 174

Step : Adopted Formula Support Justification
Steps

1 : sz|=bel(jack, sp|=calls(pete)) given
2 : sz|=sees(jack, sp) given
3 : sz|=knows_poker(jack) given
4 : sp|=hand(stone, sh)∧hand(pete, ph)∧players(pete, stone) given
5 : better(sh, ph) given
6 : ∀ s (sit(s) → s |= ∀ a(knows_poker(a) given

⇒ bel(a, ∀ t, u(sit(t)∧sit(u)
→ ∀ p, px, py ((u |=players(px, py) ∨ players(py, px)) ∧ ∃ x, y (better(x, y)
∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧ bel(p, u |= (calls(py) ⇒ loses(py))))))))

7 : sit(sz) [1] support_sit F
8 : sit(sp) [4] support_sit F
9 : sz|=bel(jack, sp|=hand(stone, sh) [2, 4] seeing_is_

∧hand(pete, ph)∧players(pete, stone)) believing F
10 : sp|=players(pete, stone) CTXT 3: [3] child F
11 : sz |= ∀ a(knows_poker(a) [6, 7] all_detachment F

⇒ bel(a, ∀ t, u(sit(t)∧sit(u)
→ ∀ p, px, py ((u |=players(px, py)∨ players(py, px))
∧ ∃ x, y (better(x, y) ∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py)))))))

12 : sz|=bel(jack, sp|=hand(stone, sh)) CTXT 2: [4] child F
13 : sz|=bel(jack, sp|=hand(pete, ph)) CTXT 2: [5] child F
14 : sz|= bel(jack, ∀ t, u(sit(t)∧sit(u) CTXT 2: [7] child F

→ ∀ p, px, py ((u |=players(px, py)
∨ players(py, px))∧ ∃ x, y (better(x, y)
∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py))))))

15 : ∀ t, u(sit(t)∧sit(u) [14] bel_veridicality F
→ ∀ p, px, py ((u |=players(px, py)
∨ players(py, px))∧ ∃ x, y (better(x, y)
∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py)))))

16 : sz|=bel(jack, sp|=(calls(stone)⇒wins(stone))) [15, 8, 7, all_detachment F
 ∧bel(jack, sp|=(calls(pete)⇒loses(pete))) 10, 13, 12, 5]

17 : sz|=bel(jack, sp|=loses(pete)) CTXT 2: [10]child F

Exhibit 6. 4: Jack’s Proof, part 2: Context 1.

the final proof. However, even in the final proof there is some evidence of this be-

havior. One might expect to proceed in a fairly direct fashion where some steps are

made in context 1, then reasoning “descends” to context 2, then descends again to

context 3, then to context 4, then ascends back to context 1 and is done. This is not

what happens in this proof.

The proof does start out in this fashion, where in steps 1 through 13 of context 1 the

“given” formulae are adopted and some inferences are drawn from these formulae.

The final step of context 1, step 14, adopts a formulae which is the final step of con-

text 4. Thus, between steps 13 and 14 of context 1, the proof descends in some fash-

ion to context 4. This descent goes first to context 2. In context 2, various formulae

are adopted from context 1 and inferences are drawn from these formulae. Thus, all

of the steps of context 2 are completed without reference to contexts 3 or 4. To con-

tinue the descent toward context 4, the proof next goes to context 3. This context

page 175

CONTEXT 2 : sz|=Formula

Step : Adopted Formula Support Justification
Steps

1 : bel(jack, sp|=calls(pete)) CTXT 1: [1] parent F
2 : knows_poker(jack) CTXT 1: [3] parent F
3 : bel(jack, sp|=hand(stone, sh)/\hand(pete, ph)CTXT 1: [9] parent F

/\players(pete, stone))
4 : bel(jack, sp|=hand(stone, sh)) CTXT 4: [3] child F
5 : bel(jack, sp|=hand(pete, ph)) CTXT 4: [4] child F
6 : ∀ a(knows_poker(a) CTXT 1: [11]parent F

⇒ bel(a, ∀ t, u(sit(t)∧sit(u)
→ ∀ p, px, py ((u |=players(px, py)∨ players(py, px))
∧ ∃ x, y (better(x, y) ∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py)))))))

7 : bel(jack, ∀ t, u(sit(t)∧sit(u) [6, 2] all_detachment F
→ ∀ p, px, py ((u |=players(px, py)∨ players(py, px))
∧ ∃ x, y (better(x, y) ∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py))))))

8 : bel(jack, sp|=(calls(stone)->wins(stone))) CTXT 1: [16]parent F
/\bel(jack, sp|=(calls(pete)->loses(pete)))

9 : bel(jack, sp|=(calls(pete)->loses(pete))) [8] conjunction(1) F
10 : bel(jack, sp|=loses(pete)) CTXT 4: [6] child F

Exhibit 6. 5: Jacks’ Proof, part 3: Context 2.

shows a more complex motion of the proof through the intensional contexts. Steps 1

through 12 of context 3 consist of adopting formulae from the parent intensional

context (2) and making various inferences, in a fashion analogous to the steps of

context 2. Step 13 of context 3 is an adoption of a formulae from context 4. Before

this step can be made, the appropriate step of context 4 must be derived. So, at this

point, before finishing context 3, the proof “thread” descends to context 4.

The proof proceeds through steps 1 through 13 of context 4 in the now familiar pat-

tern of various adoptions from the steps already developed in the parent intensional

page 176

CONTEXT 3 : sp|=Formula

Step :Adopted Formula Support Justification

Steps
1 : hand(stone, sh)/\hand(pete, ph) CTXT 1: [4] parent F

/\players(pete, stone)
2 : hand(pete, ph)/\players(pete, stone) [1] conjunction(1) F
3 : players(pete, stone) [2] conjunction(1) F

CONTEXT 4 : sz|=bel(jack, Formula)

1 : sp|=calls(pete) CTXT 2: [1] parent F
2 : sp|=hand(stone, sh)/\hand(pete, ph) CTXT 2: [3] parent F

/\players(pete, stone)
3 : sp|=hand(stone, sh) CTXT 5: [4] child F
4 : sp|=hand(pete, ph) CTXT 5: [5] child F
5 : sp|=(calls(pete)->loses(pete)) CTXT 2: [9] parent F
6 : sp|=loses(pete) CTXT 5: [7] child F

CONTEXT 5 : sz|=bel(jack, sp|=Formula)

1 : calls(pete) CTXT 4: [1] parent F
2 : hand(stone, sh)/\hand(pete, ph) CTXT 4: [2] parent F

/\players(pete, stone)
3 : hand(pete, ph)/\players(pete, stone) [2] conjunction(1) F
4 : hand(stone, sh) [2] conjunction(2) F
5 : hand(pete, ph) [3] conjunction(2) F
6 : calls(pete)->loses(pete) CTXT 4: [5] parent F
7 : loses(pete) [6, 1] modus_ponens F

Exhibit 6. 6: Jack’s Proof, part 4: Contexts 3, 4, and 5.

context (3) and inferences made from those adoptions. Step 14 of context 4 is an

adoption of a step in context 3 which has not yet been made, so the thread can’t pro-

page 177

Step :Adopted Formula Support Justification
Steps

1 : sz|=bel(jack, sp|=calls(pete)) given
2 : sz|=sees(jack, sp) given
3 : sz|=knows_poker(jack) given
4 : sp|=hand(stone, sh)/\hand(pete, ph)/\players(pete, stone)given
5 : better(sh, ph) given
6 : ∀ s (sit(s) → s |= ∀ a(knows_poker(a) given

⇒ bel(a, ∀ t, u(sit(t)∧sit(u)
→ ∀ p, px, py ((u |=players(px, py) ∨ players(py, px)) ∧ ∃ x, y (better(x, y)
∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧ bel(p, u |= (calls(py) ⇒ loses(py))))))))

7 : sit(sz) [1] support_sit F
8 : sit(sp) [4] support_sit F
9 : sz|=bel(jack, sp|=hand(stone, sh) [2, 4] seeing_is_

/\hand(pete, ph)/\players(pete, stone)) believing F
10 : sp|=players(pete, stone) CTXT 3: [3] child F
11 : sz |= ∀ a(knows_poker(a) [6, 7] all_detachment F

⇒ bel(a, ∀ t, u(sit(t)∧sit(u)
→ ∀ p, px, py ((u |=players(px, py)∨ players(py, px))
∧ ∃ x, y (better(x, y) ∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py)))))))

12 : sz|=bel(jack, sp|=hand(stone, sh)) CTXT 5: [4] via 2&4, child F
13 : sz|=bel(jack, sp|=hand(pete, ph)) CTXT 5: [5] via 2&4, child F
14 : sz|= bel(jack, ∀ t, u(sit(t)∧sit(u) CTXT 2: [7] child F

→ ∀ p, px, py ((u |=players(px, py)
∨ players(py, px))∧ ∃ x, y (better(x, y)
∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py))))))

15 : ∀ t, u(sit(t)∧sit(u) [14] bel_veridicality F
→ ∀ p, px, py ((u |=players(px, py)
∨ players(py, px))∧ ∃ x, y (better(x, y)
∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py)))))

16 : sz|=bel(jack, sp|=(calls(stone)->wins(stone)))[15, 8, 7, all_detachment F
 /\bel(jack, sp|=(calls(pete)->loses(pete)))10, 13, 12, 5]

17 : sz|=bel(jack, sp|=loses(pete)) CTXT 5: [7] via 2&4, child F

Exhibit 6. 7: Jack’s Proof, part 2 Collapsed: Context 1.

ceed (yet) in context 4. Context 3 was “suspended” at step 13 waiting to adopt step

13 of context 4, which has now been made, so the proof can proceed in context 3.

The proof proceeds in context 3 by making the adoption from context 4 indicated in

step 13, then making the inference of step 14 of context 3, thereby completing con-

text 3. The proof of context 4 was suspended waiting for step 14 of context 3 to be

made, so the proof of context 4 can now continue with the adoption from context 3

and the final inference, thereby completing the proof of context 4. This derives the

step of context 4 on which context 1 was suspended, allowing the proof in context 1

to make its final adoption, thereby completing the entire proof.

The Wise Men

The proof of the wise men puzzle is quite different from that of the Poker Game. The

essential distinction is that for the wise men puzzle it is necessary to use reductio ad

absurdam reasoning, while this is not the case in the Poker Game problems. Since

reductio ad absurdam reasoning is only used as a last resort by FELIX, FELIX does

page 178

CONTEXT 2 : sz|=Formula

Step : Adopted Formula Support Justification
Steps

2 : knows_poker(jack) CTXT 1: [3] parent F
6 : ∀ a(knows_poker(a) CTXT 1: [11]parent F

⇒ bel(a, ∀ t, u(sit(t)∧sit(u)
→ ∀ p, px, py ((u |=players(px, py)∨ players(py, px))
∧ ∃ x, y (better(x, y) ∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py)))))))

7 : bel(jack, ∀ t, u(sit(t)∧sit(u) [6, 2] all_detachment F
→ ∀ p, px, py ((u |=players(px, py)∨ players(py, px))
∧ ∃ x, y (better(x, y) ∧ (t |=bel(p, u |=hand(px, x)∧hand(py, y))))
→ t |= bel(p, u |=(calls(px)⇒wins(px)))
∧bel(p, u |=(calls(py)⇒loses(py))))))

8 : bel(jack, sp |=(calls(stone)⇒ wins(stone))) CTXT 1: [16]parent F
∧bel(jack, sp |= (calls(pete) ⇒ loses(pete)))

9 : bel(jack, sp |= (calls(pete) ⇒ loses(pete))) [8] conjunction(1) F

Exhibit 6. 8: Jacks’ Proof, part 3 collapsed: Context 2.

a lot of fruitless searching in looking for a proof of this puzzle, and the proof it final-

ly generates is much longer than it needs to be. Further, the ‘sit(S)’ facts which

FELIX generates via forward reasoning are useless in this puzzle and litter the agen-

da of tasks. To streamline this process somewhat, the dilemma reasoning is removed

for processing this puzzle, as is the ‘sit(S)’ generating forward reason. No other

modifications are made to FELIX to achieve the given proof. The statement of the

theorem and the proof steps for the theorem are in Exhibit 6. 15 on page 185. The

proof of this theorem uses a lemma, “s1”, which is where the reductio ad absurdam

reasoning is carried out. This lemma is in Exhibit 6. 15 on page 185. The proof of

lemma s1 relies on indirect contradiction, where “Γ, P |- Q /\ – Q” implies “Γ |- – Q”,

for any Γ, P and Q. Direct contradiction is “Γ, P |- – P” implies “– P”. In lemma s1,

this rule is applied in step 10 of the context 3. Context 3 is the collection of formulae

which ‘s’ supports that ‘a’ believes. Context 3 is the reductio intensional context, the

intensional context in which reductio ad absurdam reasoning can be used, since it is

the intensional context in which the negated formula is “supposed”. The supposition

page 179

CONTEXT 3 : sp|=Formula

Step : Adopted Formula Support Justification

Steps
1 : hand(stone, sh)/\hand(pete, ph) CTXT 1: [4] parent F

/\players(pete, stone)
2 : hand(pete, ph)/\players(pete, stone) [1] conjunction(1) F
3 : players(pete, stone) [2] conjunction(1) F

CONTEXT 4 : sz |=bel(jack, Formula)

CONTEXT 5 : sz |=bel(jack, sp |=Formula)

1 : calls(pete) CTXT 1: [1] via 4&2, parent F
2 : hand(stone, sh)/\hand(pete, ph) CTXT 1: [9] via 4&2, parent F

/\players(pete, stone)
3 : hand(pete, ph)/\players(pete, stone) [2] conjunction(1) F
4 : hand(stone, sh) [2] conjunction(2) F
5 : hand(pete, ph) [3] conjunction(2) F
6 : calls(pete)->loses(pete) CTXT 2: [9] via 4, parent F
7 : loses(pete) [6, 1] modus_ponens F

Exhibit 6. 9: Jack’s Proof, part 4 collapsed: Contexts 3, 4, and 5.

is ‘s |= bel(a, – (s |= white(a)))’. The negated formula (P) in context 3 is ‘– (s |=

white(a))’. The other accepted formulae (Γ) are those that were initially given in the

main theorem as they are “projected” into context 3. The contradicted formulae (Q /\

– Q) are ‘s |= – bel(b, s |= white(b))’ and ‘– (s |= – bel(b, s |= white(b)))’ from steps

5 and 9 of context 3. Thus, the formula derived from the contradiction (– P) is ‘s |=

white(a)’, which is step 10 of context 3. This expands in the root intensional context

to the “to be proved” formula ‘s |= bel(a, s |= white(a))’.

The reductio argument takes place in the intensional context in which one is trying to

derive a formula. In this case, that is context 3. It is possible to derive a contradiction

in the root intensional context, between ‘s |= – bel(b, s |= white(b))’ and ‘– (s |= –

bel(b, s |= white(b)))’. However, this does not allow the derivation of the “proof”

page 180

PROVE: sj |= bel(zack, sp |= wins(pete))

GIVEN: sj |= bel(zack, sp |= calls(pete))

sj |= bel(zack, sp |= bel(pete, sp |= hand(stone, sh)))

sj |= bel(zack, sp |= players(pete, stone))

sj |= knows_poker(zack)

∀ s(sit(s)→ s |= ∀ a(knows_poker(a)
⇒ bel(a, ∀ t(sit(t)

→ t |= ∀ p1, p2(players(p1, p2)⇒player(p1)∧player(p2))))))

∀ s(sit(s)→ s |= ∀ a(knows_poker(a)
⇒ bel(a, ∀ t(sit(t)→ t |= ∀ p(player(p)⇒ ∃ x bel(p, t |=hand(p, x)))))))

∀ s(sit(s)→ s |= ∀ a(knows_poker(a)
⇒ bel(a, ∀ t(sit(t)

→ t |= ∀ p1, p2(players(p1, p2)∨players(p2, p1)
⇒ ∃ x, y bel(p1, t |= hand(p1, x)∧hand(p2, y))

⇒ bel(p1, t |=(calls(p1)⇒wins(p1)))
∨bel(p1, t |= (calls(p1)⇒loses(p1))))))))

∀ s(sit(s)→ s |= ∀ a(knows_poker(a)
⇒ bel(a, ∀ t(sit(t)

→ t |= ∀ x(calls(x)⇒ – bel(x, t |=(calls(x)⇒loses(x))))))))

Exhibit 6. 10: Zack’s Proof, part 1: Problem Statement.

goal. All it warrants is the derivation of the negation of the supposition formula as

projected into that context. Since this is the root intensional context, the projection is

the identity operation and the negated formula one can derive is ‘– s |= bel(a, – (s |=

page 181

Step :Adopted Formula Support Justification
 Steps

1 : sj|=bel(zack, sp|=calls(pete)) given input
2 : sj|=bel(zack, sp|=bel(pete, given input

sp|=hand(stone, sh)))
3 : sj|=bel(zack, given input

sp|=players(pete, stone))
4 : sj|=knows_poker(zack) given input

5 : ∀ s(sit(s)→ s |= ∀ a(knows_poker(a) given input
⇒ bel(a, ∀ t(sit(t) → t |= ∀ p1, p2(players(p1, p2)
⇒player(p1)∧player(p2))))))

6 : ∀ s(sit(s)→ s |= ∀ a(knows_poker(a) given input
⇒ bel(a, ∀ t(sit(t)→ t |= ∀ p(player(p)
⇒ ∃ x bel(p, t |=hand(p, x)))))))

7 : ∀ s(sit(s)→ s |= ∀ a(knows_poker(a) given input
⇒ bel(a, ∀ t(sit(t)
→ t |= ∀ p1, p2(players(p1, p2)∨players(p2, p1)
⇒ ∃ x, y bel(p1, t |= hand(p1, x)∧hand(p2, y))
⇒ bel(p1, t |=(calls(p1)⇒wins(p1)))
∨bel(p1, t |= (calls(p1)⇒loses(p1))))))))

8 : ∀ s(sit(s)→ s |= ∀ a(knows_poker(a) given input
⇒ bel(a, ∀ t(sit(t)→ t |= ∀ x(calls(x)
⇒ – bel(x, t |=(calls(x)⇒loses(x))))))))

9 : sit(sj) [1] support_sit F
10 : sj |= ∀ a(knows_poker(a) [5, 9] all_detachment F

⇒ bel(a, ∀ t(sit(t) → t |= ∀ p1, p2(players(p1, p2)
⇒player(p1)∧player(p2))))))

11 : sj |= ∀ a(knows_poker(a) [6, 9] all_detachment F
⇒ bel(a, ∀ t(sit(t)→ t |= ∀ p(player(p)
⇒ ∃ x bel(p, t |=hand(p, x)))))))

12 : sj |= ∀ a(knows_poker(a) [7, 9] all_detachment F
⇒ bel(a, ∀ t(sit(t)
→ t |= ∀ p1, p2(players(p1, p2)∨players(p2, p1)
⇒ ∃ x, y bel(p1, t |= hand(p1, x)∧hand(p2, y))
⇒ bel(p1, t |=(calls(p1)⇒wins(p1)))
∨bel(p1, t |= (calls(p1)⇒loses(p1))))))))

13 : sj |= ∀ a(knows_poker(a) [8, 9] all_detachment F
⇒ bel(a, ∀ t(sit(t)→ t |= ∀ x(calls(x)
⇒ – bel(x, t |=(calls(x)⇒loses(x))))))))

14 : sj |= bel(zack, sp |= wins(pete)) CTXT 4: [15] via 2&3; child F

Exhibit 6. 11: Zack’s Proof, part 2: Context 1.

white(a)))’. This formula does not (directly) warrant the conclusion that ‘s |= bel(a, s

|= white(a))’. So, it is necessary to the reductio argument in the “interesting” inten-

sional context, which in this case is context 3, where negating the supposition as pro-

jected into that intensional context yields the desired result.

The second wise men problem involves a theorem that given that s supports that B

does not believe that s supports that B has a white dot, that B knows that either A or

B has a white dot, and that B believes that A has a white dot or B believes that A

doesn’t have a white dot (since B can see A), prove that B believes A has a white

dot. As noted in the previous chapter, proving this theorem involves several belief

page 182

Step :Adopted Formula Support Justification
 Steps

4 : knows_poker(zack) CTXT 1: [4] parent F
5 : ∀ a(knows_poker(a) CTXT 1: [10]parent F

⇒ bel(a, ∀ t(sit(t) → t |= ∀ p1, p2(players(p1, p2)
⇒player(p1)∧player(p2))))))

6 : bel(zack, ∀ t(sit(t) [5, 4] all_detachment F
 → t |= ∀ p1, p2(players(p1, p2)
⇒player(p1)∧player(p2))))

7 : ∀ a(knows_poker(a) CTXT 1: [11]parent F
⇒ bel(a, ∀ t(sit(t)→ t |= ∀ p(player(p)
⇒ ∃ x bel(p, t |=hand(p, x))))))

8 : bel(zack, ∀ t(sit(t)→ t |= ∀ p(player(p) [7, 4] all_detachment F
⇒ ∃ x bel(p, t |=hand(p, x)))))

9 : ∀ a(knows_poker(a) CTXT 1: [12]parent F
⇒ bel(a, ∀ t(sit(t)
→ t |= ∀ p1, p2(players(p1, p2)∨players(p2, p1)
⇒ ∃ x, y bel(p1, t |= hand(p1, x)∧hand(p2, y))
⇒ bel(p1, t |=(calls(p1)⇒wins(p1)))
∨bel(p1, t |= (calls(p1)⇒loses(p1)))))))

10 : bel(zack, ∀ t(sit(t) [9, 4] all_detachment F
→ t |= ∀ p1, p2(players(p1, p2)∨players(p2, p1)
⇒ ∃ x, y bel(p1, t |= hand(p1, x)∧hand(p2, y))
⇒ bel(p1, t |=(calls(p1)⇒wins(p1)))
∨bel(p1, t |= (calls(p1)⇒loses(p1)))))))

11 : ∀ a(knows_poker(a) CTXT 1: [13]parent F
⇒ bel(a, ∀ t(sit(t)→ t |= ∀ x(calls(x)
⇒ – bel(x, t |=(calls(x)⇒loses(x))))))

12 : bel(zack, ∀ t(sit(t)→ t |= ∀ x(calls(x) [11, 4] all_detachment F
⇒ – bel(x, t |=(calls(x)⇒loses(x))))))

Exhibit 6. 12: Zack’s Proof, part 3: Context 2.

principles. This is the only example proof which involves either positive or negative

introspection, and it uses them both. The proof is given in Exhibit 6. 16 on page 186.

The positive introspection principle of belief is implicit in the reductio step. If B be-

lieves P, then B believes that he believes P. Thus, it is contradictory in the intension-

al context of B’s beliefs (context 3) for B to believe P and to believe that he doesn’t

believe P. The veridicality principle is used in reasoning backwards - this application

of the rule being called “bel_anti_veridicality”. Logical closure is the principle be-

hind the use of classical mode logic for belief intensional contexts. The negative in-

trospection principle appears directly as a justification in the proof.

page 183

Step : Adopted Formula Support Justification
 Steps

1 : sp |= calls(pete) CTXT 2: [1] parent F
2 : sit(sp) [1] support_sit F

5 : ∀ t(sit(t) → t |= ∀ p1, p2(players(p1, p2) CTXT 2: [6] parent F
⇒player(p1)∧player(p2))))

6 : sp |= ∀ p1, p2(players(p1, p2) [5, 2] all_detachment F
⇒player(p1)∧player(p2))))

7 : ∀ t(sit(t)→ t |= ∀ p(player(p) CTXT 2: [8] parent F
⇒ ∃ x bel(p, t |=hand(p, x)))))

8 : sp |= ∀ p(player(p) [7, 2] all_detachment F
⇒ ∃ x bel(p, sp |=hand(p, x)))

9 : ∀ t(sit(t) CTXT 2: [10]parent F
→ t |= ∀ p1, p2(players(p1, p2)∨players(p2, p1)
⇒ ∃ x, y bel(p1, t |= hand(p1, x)∧hand(p2, y))
⇒ bel(p1, t |=(calls(p1)⇒wins(p1)))
∨bel(p1, t |= (calls(p1)⇒loses(p1))))

10 : sp |= ∀ p1, p2(players(p1, p2)∨players(p2, p1) [9, 2] all_detachment F
⇒ ∃ x, y bel(p1, sp |= hand(p1, x)∧hand(p2, y))
⇒ bel(p1, sp |=(calls(p1)⇒wins(p1)))
∨bel(p1, sp |= (calls(p1)⇒loses(p1))))

11 : ∀ t(sit(t)→ t |= ∀ x(calls(x) CTXT 2: [12]parent F
⇒ – bel(x, t |=(calls(x)⇒loses(x)))))

12 : sp |= ∀ x(calls(x) [11, 2] all_detachment F
⇒ – bel(x, sp |=(calls(x)⇒loses(x))))

13 : sp |= bel(pete, sp|=(calls(pete)⇒wins(pete))) CTXT 4: [13]child F
14 : sp |= (calls(pete)⇒wins(pete)) [13] bel_veridicality F

Exhibit 6. 13: Zack’s Proof, part 4: Context 3.

Frisch&Scherl 1991 “A General Framework for Modal Deduction” by Alan M.
Frisch and Richard B. Scherl, pp. 196-207, in Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Second Inter-
national Conference (KR91) edited by James Allen, Richard Fikes,
and Erik Sandewall. Morgan Kaufmann Publishers, Inc:San Mateo,
CA. 1991.

Genesereth&Nilsson 1987 Logical Foundations of Artificial Intelligence by
Michael Genesereth and Nils Nilsson. Morgan Kaufmann Publishers,
Inc:Los Altos, CA. 1987.

Konolige 1986 A Deduction Model of Belief by Kurt Konolige, Los Altos:Mor-
gan Kaufmann Publishers, Inc. 1986.

page 184

Step : Adopted Formula Support Justification
 Steps

1 : calls(pete) CTXT 3: [1] parent F
2 : bel(pete, sp|=hand(stone, sh)) CTXT 1: [2] via 2&3; parent F
3 : players(pete, stone) CTXT 1: [3] via 2&3; parent F
4 : ∀ p1, p2(players(p1, p2) CTXT 3: [6] parent F

⇒player(p1)∧player(p2))))
5 : player(pete) [4, 3] all_detachment F
6 : ∀ p(player(p) ⇒ ∃ x bel(p, sp |=hand(p, x))) CTXT 3: [8] parent F

7 : – ∀ x – bel(pete, sp |=hand(pete, x))) [6, 5] all_detachment F
8 : ∃ x bel(pete, sp |=hand(pete, x))) [7] negated_universal
9 : bel(pete, sp|=hand(pete, xa1@)) [8] existential_

 instantiation F
10 : ∀ p1, p2(players(p1, p2)∨players(p2, p1) CTXT 3: [10] parent F

⇒ ∃ x, y bel(p1, sp |= hand(p1, x)∧hand(p2, y))
⇒ bel(p1, sp |=(calls(p1)⇒wins(p1)))
∨bel(p1, sp |= (calls(p1)⇒loses(p1))))

11 : ∀ x(calls(x) CTXT 3: [12] parent F
⇒ – bel(x, sp |=(calls(x)⇒loses(x))))

12 : – bel(pete, sp |=(calls(pete)⇒loses(pete))) [11, 1] all_detachment F
13 : bel(pete, sp|=(calls(pete)⇒wins(pete))) [10, 12, 9, 2, 3]all_detachment F
14 : calls(pete)⇒wins(pete) CTXT 3: [14] parent F

15 : wins(pete) [14, 1] modus_ponens F

Exhibit 6. 14: Zack’s Proof, part 5: Context 4.

page 185

PROVE: s |= bel(a, s |= white(a))

GIVEN: s |= bel(a, s |= (– white(a) ⇒ bel(b, s |= – white(a))))
 s |= bel(a, s |= bel(b, s |= white(a) ∨ white(b)))
 s |= bel(a, s |= white(a) ∨ – white(a))
 s |= bel(a, s |= – bel(b, s |= white(b)))

Step : Adopted Formula Support Justification
Steps

1 : s |= bel(a, s |= white(a)) CTXT 3: [1] via 2; child B

CONTEXT 3 : s |= bel(a, Formula)
1 : s |= white(a) LEMMA s1 reductio_direct B

LEMMA s1
PROVE: s |= bel(a, s |= white(a))
SUPPOSE: s |= bel(a, – (s |= white(a)))

6 : s |= bel(a, s |= white(a)) CTXT 3: [10] via 2; child B

CONTEXT 2 : s |= Formula
CONTEXT 3 : s |= bel(a, Formula)

1 : – (s |= white(a) input via CTXT 1&2
4 : s |= white(a)∨ – white(a) input via CTXT 1&2

5 : s |= – bel(b, s |= white(b)) input via CTXT 1&2
6 : (s |= white(a)) ∨ (s |= – white(a)) [4] support_

disjunction1 F
7 : s |= – white(a) [6, 1] disjunction_and_

negation F
8 : s |= bel(b, s |= white(b)) CTXT 4: [5] child F
9 : – (s |= – bel(b, s |= white(b))) [8] support_strong_

negation B
10 : s |= white(a) [5, 9] reductio_indirect B

CONTEXT 4 : s |= bel(a, s |= Formula)

1 : – white(a)⇒bel(b, s |= – white(a)) given via CTXT 1, 2&3; parent F
3 : – white(a) CTXT 3: [7] parent F

4 : bel(b, s |= – white(a)) [1,3] modus_ponens F
5 : bel(b, s |= white(b)) CTXT 6: [3] child F

CONTEXT 6 : s |= bel(a, s |= bel(b, Formula))
CONTEXT 7 : s |= bel(a, s |= bel(b, s |= Formula))

1 : white(a)∨white(b) given via CTXT 1, 2,3;&6; parent F
2 : – white(a) CTXT 4: [4] via 6; parent F
3 : white(b) [1, 2] disjunction_and_

negation F

Exhibit 6. 15: Two Wise Men Proof

page 186

PROVE: s |= bel(b, s |= white(a))
GIVEN: s |= bel(b, s |= white(a) ∨ white(b))

s |= bel(b, s |= white(a)) ∨ bel(b, s |= – white(a))
s |= – bel(b, s |= white(b))

Step :Adopted Formula Support Justification
Steps

1 : s |= bel(b, s |= white(a)) CTXT 3: [1] via 2; child F

CONTEXT 2 : s |=Formula
CONTEXT 3 : s |=bel(b, Formula)

1 : s |= white(a) LEMMA s1 reductio_direct B

LEMMA s1

PROVE: s |= bel(b, s |= white(a))
SUPPOSE: s |= bel(b, –(s |= white(a)))

1 : s |= bel(b, –(s |= white(a))) input
3 : s |= bel(b, s |= white(a)) ∨ bel(b, s |= – white(a)) input

4 : s |= – bel(b, s |= white(b)) input
5 : – (s |= white(a)) [1] bel_veridicality F
6 : (s |= bel(b, s |= white(a))) [3] support_

 ∨ (s |= bel(b, s |= – white(a))) disjunction1 F
7 : – (s |= bel(b, s |= white(a))) [5] bel_anti_

veridicality B
8 : (s |= bel(b, s |= – white(a))) [7, 6] disjunction_and_

negation B
9 : s |= bel(b, s |= – bel(b, s |= white(b)) [4] bel_negative_

introspection B
10 : s |= bel(b, s |= white(a)) CTXT 3: [6] via 2; child F

CONTEXT 2 : s |=Formula
CONTEXT 3 : s |=bel(b, Formula)

3 : s |= white(b) CTXT 4: [3] child F
4 : s |= – bel(b, s |= white(b)) CTXT 1: [9] via 2; parent F
5 : – (s |= bel(b, s |= white(b))) [4] support_strong_

negation B
6 : s |= white(a) [3, 5] reductio_indirect B

CONTEXT 4 : s |=bel(b, s |=Formula)
1 : – white(a) CTXT 1: [8]via 2&3; parent F

2 : white(a) ∨ white(b) input via 1,2&3; parent F
3 : white(b) [2, 1] disjunction_and_

negation F

Exhibit 6. 16: Wise Men Introspection Proof

	Extending the Implementation of FELIX for Multiple Contexts
	Belief relation specific extensions
	Supports (|=) relation specific extensions
	Forward reasons:
	Backward reasons:

	Applying FELIX to Problems with Beliefs
	Poker Game
	The Wise Men

