
Chapter 7: An Analysis of the Execution of FELIX

FELIX has proved many theorems. A few of these have been discussed in previous

chapters. All of the proofs are in Appendix 3. This chapter presents data about the

execution of FELIX on these theorems, and provides some analysis of this data.

Speed of Execution

The data from the execution of FELIX in finding a proof of a theorem includes the

number of tasks “generated” by FELIX in the course of finding that proof, with this

number of tasks broken down in various categories. These categories include the

number of tasks which were “processed”, the number of tasks which were not pro-

cessed, the number of tasks of each type (interest, adoption, all_detachment, ex-

ists_detachment, reductio), the number of processed adoption tasks used in the final

proof, and the number of processed adoption tasks not used in the final proof. Also,

the time taken to find the proof is recorded.

The execution time is for the implementation of FELIX in LPA MacProlog 3.5 on a

Macintosh II with 8 megabytes of RAM.

In the following table, each problem has an ID (e.g. 5.1i) where the letter at the end

of the ID indicates the logic mode in which the problem was executed. The ‘[F]’

which follows an ID indicates that FELIX failed to find a proof. In each of these

cases, this is the correct result (i.e. the problem as not a theorem in the logic in which

that test was run). The times are given in seconds. When no number is given in a

field of an entry, then that number is ‘0’. ‘Ad’ is “adoption”, ‘Int’ is “interest”, ‘Ex’

is “exists detachment”, ‘All’ is “all detachment”, and ‘Red’ is “reductio”.

page 188

Time Total Tasks Unprocessed Tasks Adoptions
ID (Sec) Ad Int Ex All Red Ad Int Ex All Red Proof Nonproof
1c 2.96 11 5 1 2 1 8 3
1i 2.8
2c 0.51 4 1 1 3 0
2i 0.51 4 1 1 3 0
3c 16.98 46 21 4 9 8 2 11 25
3i 2.63 8 7 1 1 6 0
4c 2.88 8 6 3 2 3 7 1
4i[F] 1.35 1 5
5c 7.71 20 13 7 2 1 7 12 6
5i 6.28 20 13 2 1 12 6
5.1c 4.41 14 8 3 2 3 3 9 3
5.1i 6.96 18 17 3 12 6
6c 0.4 2 1 2 0
6i 0.41 2 1 2 0
7c 0.65 2 1 1 1 1 2 0
7i[F] 0.75 1 1 1
8c 7.06 16 2 6 1 4 5 1 8 5
8i 6.65 15 2 6 4 5 8 5
9c 1.6 5 1 1 1 1 1 1 6 0
9i 1.5 5 1 1 1 1 6 0
10c 25.16 27 1 5 1 2 1 2 15 5
10i 26.33 30 1 5 2 2 15 5
11c 12.65 20 13 2 3 7 1 7 14 6
11i[F] 10.98 9 21 2 2
11.1c 13.61 23 13 2 3 7 1 7 15 8
11.1i 65.63 89 41 9 11 11 3 7 6 50 37
12c 1.21 3 4 1 2 1 3 0
12i[F] 0.8 3
15c 1.41 5 2 1 1 5 0
15i 1.3 5 2 5 0
15.1c 3.33 12 5 1 1 1 1 9 4
15.1i 3.2 12 5 1 2 9 4
16c 3.81 11 5 3 1 1 1 2 1 7 3
16i 3.65 10 5 3 1 2 7 3
17c 4.15 11 7 1 1 1 1 1 10 2
17i 4.03 11 7 1 1 1 10 2
18c 2.33 6 4 2 2 2 6 1
18i 2.35 6 4 2 2 2 6 1
20c 790.55 70 8 1 17 6 14 1 1 17 6 44 19
20i 787.08 70 8 1 17 14 1 1 17 44 19
21c 6.15 16 4 6 1 1 6 1 11 4
26.1c 79.78 80 4 6 2 4 6 2 43 25
28.4c 154.48 1508 1 16 4 33 1 16 4 57 58
29c 2200.15[1] 149188 75 18 74 36 83
29.1c 174.76 86 99 37 16 36 26 37

[1] This test was run with dilemma supposition disabled. With dilemma supposition enabled, the test
found a proof in about 4500 seconds, but ran out of storage in preparing to print the proof.

page 189

Since infon logic is “weaker” than classical, one generally expects that the “same”

theorem in the two logics will be easier to prove in classical logic than in infon logic.

This is true of many of the problems listed in the table. However, there are some

cases in which the infon logic mode proof of a theorem is found sooner than the clas-

sical logic mode proof; 3, 15.1, 16, and 18.

FELIX is not a fast theorem prover. There are many reasons why this is so. There are

several aspects of its implementation which are slower than they could be: there are

several places in which work is duplicated in the course of a search (because it was

easier to implement it this way), and the Prolog system does not generate very fast

code. Also, there are certain situations which are by their nature time consuming for

the search algorithm. In problem 20 (the Schubert Steamroller), there is a great deal

of time spent doing ‘all detachment’ processing. All detachment processing has a

factorial complexity with respect to the number of “literals” in a disjunct developed

from a universal formula and the number of formulae adopted in the current state of

the search. Some subset of these literals may match the adoptions in many different

ways (factorially many different ways, in the worst case). Since FELIX does a nearly

exhaustive search among the possible matches, this can be extremely time consum-

ing.

Justifications used in proofs

The following table indicates which justifications are used in which proofs:

Justification...Problems
all_detachment....................................8c, 8i, 10c, 10i, 18c, 18i, 20c, 20i, 21c, 26.1c, 28.4c
bel_veridicality....................................26.1c, 28.4c, 29.1c
bel_anti_veridicality............................29.1c
bel_negative_introspection.................29.1c
child...21c, 26.1c, 28.4c, 29c, 29.1c
conditional...1c, 3c, 4c, 5c, 5i, 5.1c, 5.1i, 11c, 11.1c, 11.1i, 12c, 15.1c, 15.1i,
...16c, 16i, 17c, 17i, 18c, 18i, 21c
conjunction B......................................4c, 5c, 5i
conjunction(1).....................................3c, 3i, 11.1i, 26.1c
conjunction(2).....................................11.1i, 26.1c
contrapositive......................................2.1c, 5.1c
dilemma...5c, 5i, 5.1i, 11.1i, 17c, 17i

page 190

disjunction(1)......................................3i, 5.1i
disjunction(2)......................................5.1i
disjunction_and_negation...................3i, 4c, 5.1c, 15.1c, 15.1i, 29c, 29.1c
disjunction_to_conditional(1).............3c, 12c
disjunction_to_conditional(2).............3c, 4c, 5.1c
equivalence(1).....................................11c, 11.1c
equivalence(2).....................................11c, 11.1c
equivalence_defn................................11c, 11.1c
existential_generalization....................11c, 11.1c, 11.1i
existential_instantiation......................8c, 8i, 9c, 9i, 11c, 11.1c, 11.1i, 15c, 15i, 15.1c, 15.1i, 17c, 17i,
...18c, 18i, 20c, 20i, 28.4c
exists_detachment...............................6c, 6i, 9c, 9i, 11.1i, 15c, 15i, 15.1c, 15.1i, 17c, 17i, 20c, 20i
indirection...15.1c, 15.1i
modus_ponens.....................................1c, 2, 5c, 5i, 5.1c, 5.1i, 9c, 9i, 15c, 15i, 16c, 16i, 21c, 26.1c,
...28.4c, 29c
parent...21c, 26.1c, 28.4c, 29c, 29.1c
negated_disjunction............................3c, 4c
negated_disjunction(1)........................20c, 20i
negated_disjunction(2)........................20c, 20i
negated_equivalence_c.......................11c, 11.1c
negated_equivalence_i........................11.1i
negated_existential..............................11c, 11.1c, 11.1i
negated_universal................................11c, 11.1c, 11.1i, 20c, 20i, 28.4c
reductio_direct....................................2.1c, 29c, 29.1c
reductio_indirect.................................3c, 29c, 29.1c
seeing_is_believing.............................26.1c
support_disjunction1...........................29c, 29.1c
support_sit...26.1c, 28.4c
support_strong_negation.....................29c, 29.1c
universal_generalization.....................8c, 8i, 11c, 11.1c, 11.1i, 16c, 16i, 21c
universal_instantiation........................7c, 8c, 8i, 9c, 9i, 10c, 10i, 11c, 11.1c, 11.1i, 16c, 16i

There are 40 distinct justifications listed in the above table. However, some of them

are in commutative pairs: conjunction(1) and (2), disjunction(1) and (2), disjunc-

tion_to_conditional(1) and (2), equivalence(1) and (2), negated_disjunction(1) and

(2). Counting each of these pairs as only one justification, there are 35 different justi-

fications listed.

For the theorems proved, the justifications used in the most proofs are the condition-

al, existential_instantiation, and modus_ponens justifications.

These are the justifications which appear in the adoptions actually used in the proofs.

Counts could also be made of the justifications used in non-proof adoptions and in

unprocessed tasks.

page 191

The length of the search

The number of interest tasks processed indicates the “length” of the backward

AND/OR interest search and the number of adoption tasks processed indicates the

“length” of the forward adoption search. The nonproof adoptions are those adoption

tasks which were processed but which were not useful in reaching the goal state.

There is no count made of the interest tasks which were processed but which did not

play a role in the adoption of the goal formula. This would be interesting as a mea-

sure of how well focused the AND/OR search is. An estimate of this can be made by

counting the “backward” justifications (those which have a ‘B’ suffix) in the final

proof. This roughly corresponds to the interests “used” in the proof.

page 192

	Speed of Execution
	Justifications used in proofs
	The length of the search

