
Logic for Systems Note
1: Extending the WAM
with Procedure Box
Debugging
Lindsey Spratt
March, 2019.

Abstract

A trace and interactive debug facility organized around the
procedure box control flow model is a powerful addition to a
Prolog implementation. Implementing this facility is
complicated when the Prolog implementation is built around
the Warren Abstract Machine (WAM). This note describes in
detail an approach to extending a standard WAM
implementation to support a trace and interactive debug
facility.

Tools for debugging Prolog are essential for a useable
implementation. The standard approach is powerful bug
complicated to implement in an integrated way with the
Warren Abstract Machine (WAM). This note provides a
detailed tutorial approach to such an implementation
extending the final Prolog WAM model in [Aït-Kaci, 1999]. In
this note we present a simple trace and debugging
implementation as a series of simplified Prolog meta-
interpreters then follow that with the WAM-based
implementations. First we present the standard debugging
model.

The Procedure Box Control Flow
Model
The standard model for tracing and debugging Prolog is the
procedure box control flow model introduced by Lawrence
Byrd [Byrd 1980]. Some version of this model is available in

Extending the WAM with Procedure Box Debugging

1 of 40! Spratt, LFS-1

all mature Prolog implementations. The GNU Prolog manual
describes this model as follows:

The debugger executes a program step by step tracing
an invocation to a predicate (call) and the return from
this predicate due to either a success (exit) or a
failure (fail). When a failure occurs the execution
backtracks to the last predicate with an alternative
clause. The predicate is then re- invoked (redo).
Another source of change of the control flow is due
to exceptions. When an exception is raised from a
predicate (exception) by throw/1 [...] the control is
given back to the most recent predicate that has
defined a handler to recover this exception using
catch/3 [...]. The procedure box model shows these
different changes in the control flow, as illustrated
here:

Each arrow corresponds to a port. An arrow to the
box indicates that the control is given to this
predicate while an arrow from the box indicates that
the control is given back from the procedure. This
model visualizes the control flow through these five
ports and the connections between the boxes
associated with subgoals. Finally, it should be clear
that a box is associated with one invocation of a
given predicate. In particular, a recursive predicate
will give raise to a box for each invocation of the
predicate with different entries/exits in the control
flow. Since this might get confusing for the user, the
debugger associates with each box a unique identifier
(i.e. the invocation number). (p. 31, [Diaz, 2013])

SICStus Prolog also uses this five-port execution model.
SWI-Prolog implements a six-port version that adds a unify
port: “The additional unify port allows the user to inspect the

predicate

redo

exitcall

fail

exception

Extending the WAM with Procedure Box Debugging

2 of 40! Spratt, LFS-1

result after unification of the head” (p. 29, [Wielemaker
2019]). XSB Prolog implements the basic four-port debugger
(p. 315, [Swift et al, 2013]). Ciao Prolog also implements the
basic four-port debugger ([Cabeza et al, 2018]).

Some of these Prolog implementations have much more
sophisticated debugging environments than the command-
line procedure box control flow approach. However this is in
addition to a command line interaction for the procedure box
as a basic debugging tool.

This document focuses on how to support command-line
interactive control of the four-port version with the basic set
of call, exit, fail, and redo. The interaction occurs as the
Prolog evaluation arrives at a port of the procedure box
where supported commands include: "c" (creep), "s" (skip),
"l" (leap), "+" (spy this), "-" (nospy this), "f" (fail), "r" (retry),
"g" (ancestors), "a" (abort), and "n" (nodebug).

This model can be implemented by creating an interpreter in
Prolog for Prolog programs and instrumenting this interpreter
appropriately. Such an interpreter relies on the clause/2
predicate to discover the clauses that define a predicate.
This approach does not work with Prolog programs that have
been compiled to use the WAM since the clause/2 predicate
does not have access to the clauses for the compiled
predicates. This is because the compiled predicate’s clauses
are stored only as byte sequences specifying instructions
that are to be evaluated by the WAM: the logical
representations of the clauses are not retained.

Mature Prolog systems provide some version of tracing and
debugging support that is integrated with their
implementation of the WAM. There does not appear to be
any generally available discussion of how to achieve this
integration.

This paper describes how the four-port model for tracing can
be supported directly in the WAM. Hassan Aït-Kaci’s
Warren’s Abstract Machine: A Tutorial Reconstruction [Aït-
Kaci, 1991] provides an elegant explanation of the

Extending the WAM with Procedure Box Debugging

3 of 40! Spratt, LFS-1

implementation of the WAM.1The final model of this book is
extended in this note with elements needed to integrate
tracing with interactive controls. The approach to tracing
presented here was inspired by the implementation of GNU
Prolog [Diaz, 2013]. The approach was tested in an
implementation extending Matt Lilley’s Proscript project
https://github.com/thetrime/proscript in a fork by the author at
https://github.com/lindseyspratt/proscript .

The $trace predicate

The basic implementation scheme is to conditionally divert
the CALL and EXECUTE instructions for a predicate-to-be-
traced to invoke a ‘$trace’ predicate with the to-be-traced
predicate and its arguments as Prolog structure term in an
argument to ‘$trace’. The ‘$trace’ predicate is written in
Prolog and compiled. It manages the user interaction:
displays the trace information, gets the user’s command,
continues the WAM execution of the subject predicate call
using the Prolog call/1 builtin (after setting a flag to avoid
immediately re-invoking the ‘$trace’ predicate on this same
subject predicate call), and following that call with more user
interaction management.

A general version of this predicate is ‘$trace’/1.

The ‘$trace_set’ builtin sets a flag that the WAM inspects to
determine when to invoke the ‘$trace’ predicate. The
‘$trace_interact’ predicate when ‘creeping’ on a ‘call’ port
sets the trace mode to trace_next_jmp: this tells call/1 and
the WAM to active tracing for the next call or execute
instruction. When ‘$trace_interact’ is ‘creeping’ on an ‘exit’
port it sets the trace mode to ‘trace’ as its final predicate call.
Setting the mode to no_trace after ‘call(Goal)’ tells the WAM
to not invoke ‘$trace’ so that the call of ‘$trace_interact’/3
and any predicates it may call are not (recursively) traced.
The call of ‘$trace_set’ is itself a risk of recursively invoking
the ‘$trace’ predicate: this is avoided by an explicit
prohibition in the WAM call and execute instructions. They
never invoke ‘$trace’ on ‘$trace_set’ regardless of the current

Extending the WAM with Procedure Box Debugging

4 of 40! Spratt, LFS-1

1 David S. Warren’s “WAM for Everyone” [Warren, 2018] is a more
modern and succinct presentation of the WAM. However it is not used as
a reference point in this document because it does not provide the
procedural detail that [Aït-Kaci, 1999] presentation does.

'$trace'(Goal) :-
 '$trace_interact'(‘Call’,
 ‘Fail’, Goal),
 call(Goal),
 '$trace_set'(no_trace),
 '$trace_interact'(‘Exit’,
 ‘Redo’, Goal).

https://github.com/thetrime/proscript
https://github.com/thetrime/proscript
https://github.com/lindseyspratt/proscript
https://github.com/lindseyspratt/proscript

trace mode. (This prohibition may be extended to not
invoking ‘$trace’ on any predicate with a functor starting with
‘$trace’.)

Using the ‘$trace’ predicate approach allows us to express
most of the trace and debug logic in Prolog with only small
modifications to the WAM implementation.

The following material presents the tracing features in a
simple Prolog interpreter written in Prolog then presents the
implementation of these features in modifications to the final
Prolog-like WAM instructions in [Aït-Kaci, 1999] and an
associated ‘$trace’ predicate. There are several versions of
the trace/debug implementation, each one adding more
features.

Extending the WAM with Procedure Box Debugging

5 of 40! Spratt, LFS-1

A Tracing Prolog Interpreter
The basic 4-port procedure box control flow model can be
demonstrated using a Prolog interpreter written in Prolog.
The following discussion develops a series of interpreters,
interpret1/1 through interpret4/1, with progressively more
informative tracing. A fifth version, interpret5/1, is presented
later that introduces user interactions.

interpret1/1: simple interpreter without tracing.

The most basic interpreter. interpret1/1:

This interpreter uses the cls/2 predicate to get program
clauses.

The simple program for predicates p/0, q/0, and r/0 is
shown where p/0 is true if q/0 is true or if r/0 is true and
each of q/0 and r/0 are true as simple facts.

This program is represented using the cls/2 predicate to
make it evaluatable by interpret1/1.

Evaluating interpret1(p) succeeds twice (once for q and
once for r).

interpret2/1: extending to basic four-port display

We can extend interpret1 to display the 4-port procedure
box control flow model as interpret2/1.

This program is very similar to interpret1 with the third
clause (for interpret2(Goal)) extended using the new msg/3
predicate to display the trace information. Evaluating
interpret1(p) and interpret2(p) in gprolog produces:

| ?- interpret1(p).

true ? ;

yes
| ?- interpret2(p).

Extending the WAM with Procedure Box Debugging

6 of 40! Spratt, LFS-1

interpret1(true) :- !.
interpret1((G1, G2)) :- !,
interpret1(G1), interpret1(G2).
interpret(Goal) :-
 cls(Goal, MoreGoals),
 interpret1(MoreGoals).

p :- q.
p :- r.
q.
r.

cls(p, q).
cls(p, r).
cls(q, true).
cls(r, true).

interpret2(true) :- !.
interpret2((G1, G2)) :- !,
interpret2(G1), interpret2(G2).
interpret2(Goal) :-
 msg('Call', 'Fail', Goal),
 clause(Goal, MoreGoals),
 interpret2(MoreGoals),
 msg('Exit', 'Redo', Goal).

msg(Success, _Failure, Goal) :-
 write(Success), write(' '),
 write(Goal), nl.

msg(_Success, Failure, Goal) :-
 write(Failure), write(' '),
 write(Goal), nl, !, fail.

Call p
Call q
Exit q
Exit p

true ? ;
Redo p
Redo q
Fail q
Call r
Exit r
Exit p

true ? ;
Redo p
Redo r
Fail r
Fail p

no
| ?-

In this console output we can see that interpret1(p) succeeds
twice.
The interpret2(p) evaluation displays three results, the first
succeeds using ‘q’, the second redoes p and q then
succeeds using r, and the third result redoes p and r then
fails p.

The trace facility in a prolog such as GNU Prolog or SWI-
Prolog has a more informative display and provides
interactive commands that allows the developer to explore
the evaluation in detail. We can extend interpreter2 to
provide a more informative display by showing the stack
depth of a particular goal evaluation and a unique identifier
of each evaluation.

Extending the WAM with Procedure Box Debugging

7 of 40! Spratt, LFS-1

interpret3/2: extending to display evaluation depth

Extending the interpreter to show the evaluation depth is
shown in interpret3/2.

The second argument of interpret3/2 is a list of the goals that
are ancestors of the evaluation of the current goal. msg3/3 is
an extension of msg2/3 that displays the number ancestors
for the current goal as the evaluation depth. A trace of
interpret3(p, []) is:

| ?- interpret3(p, []).
0 Call p
1 Call q
1 Exit q
0 Exit p

true ? ;
0 Redo p
1 Redo q
1 Fail q
1 Call r
1 Exit r
0 Exit p

true ? ;
0 Redo p
1 Redo r
1 Fail r
0 Fail p

no

In this trace the ‘0 Call p’ shows the top level evaluation of p/
0 which has no ancestors and so is at depth 0, followed by
the evaluation of q/0 at depth1. The user requests another
answer (‘;’) forcing the ‘Redo’ of p and q and the evaluation
of r. The user again requests another answer which fails.

Extending the WAM with Procedure Box Debugging

8 of 40! Spratt, LFS-1

interpret3(true, _) :- !.

interpret3((G1, G2), Anc) :-
 !,
 interpret3(G1, Ancestors),
 interpret3(G2, Ancestors).

interpret3(Goal, Anc) :-
 NewAncestors = [Goal|Anc],
 msg3('Call', 'Fail', NewAnc),
 cls(Goal, MoreGoals),
 interpret3(MoreGoals, NewAnc),
 msg3('Exit', 'Redo', NewAnc).

msg3(Success, _, [Goal|Anc]) :-
 length(Anc, Depth),
 write(Depth), write(' '),
 write(Success), write(' '),
 write(Goal), nl.

msg3(_, Failure,[Goal|Anc]) :-
 length(Anc, Depth),
 write(Depth), write(' '),
 write(Failure), write(' '),
 write(Goal), nl, !, fail.

interpret4/1: extending to include invocation identifier

We add the invocation identifier and its display in
interpreter4:

The invocation/1 predicate is used to store the current
invocation number persistently across backtracking of
failures by retracting the old fact and asserting a new fact
with the updated invocation number. (The retract/1, retractall/
1, and assertz/1 builtin predicates do not undo their clause
base modifications on backtracking.)

Using interpret4(p) we get:

| ?- interpret4(p).
 1 1 Call: interpret4(p) ? l
1 0: Call p
2 1: Call q
2 1: Exit q
1 0: Exit p

true ? ;
1 0: Redo p
2 1: Redo q
2 1: Fail q
3 1: Call r
3 1: Exit r
1 0: Exit p

true ? ;
1 0: Redo p
3 1: Redo r
3 1: Fail r
1 0: Fail p

no

The first column is the invocation number and the second
column is the depth indicator (as in interpret3/2).

Extending the WAM with Procedure Box Debugging

9 of 40! Spratt, LFS-1

interpret4(Goal) :-
 clear_invocation,
 interpret4(Goal, []).

interpret4(true, _) :- !.

interpret4((G1, G2), Anc) :-
 !,
 interpret4(G1, Anc),
 interpret4(G2, Anc).

interpret4(Goal, Anc) :-
 increment_invocation(K),
 NewAnc = [Goal|Anc],
 !,
 msg4('Call', 'Fail',
 NewAnc, K),
 cls(Goal, MoreGoals),
 interpret4(MoreGoals, NewAnc),
 msg4('Exit', 'Redo',
 NewAnc, K).

msg4(Success, _Failure,
 [Goal|Anc], Invocation) :-
 length(Anc, Depth),
 write(Invocation), write(' '),
 write(Depth), write(': '),
 write(Success), write(' '),
 write(Goal), nl.

msg4(_Success, Failure,
 [Goal|Anc], Invocation) :-
 length(Anc, Depth),
 write(Invocation), write(' '),
 write(Depth), write(': '),
 write(Failure), write(' '),
 write(Goal), nl, !, fail.

clear_invocation :-
 retractall(invocation(_)),
 assertz(invocation(0)).

increment_invocation(K) :-
 retract(invocation(J)),
 K is J + 1,
 assertz(invocation(K)).

Integrating Tracing with the WAM
This simple interpreter demonstrates the basic information
that we would like to display and it provides a framework that
can be extended in many ways to support interactions,
ancestor display, spying on specific predicates (much like
setting break points in other debugging models), and more.
The complication is in integrating this with the WAM byte
interpreter.

The specific problem solved here is how to extend the final
WAM of [Aït-Kaci, 1999] to support the sort of trace output
demonstrated above by the interpret4/1 predicate.

The design goal is to modify the WAM as little as possible
and implement the bulk of the trace behavior in Prolog code
that cooperates with these WAM modifications.

One major complication is that there is no version of the cls/
2 predicate (e.g. clause/2) available to us that reveals the
clauses implementing a predicate once that predicate has
been compiled. The information about what are the clauses
of a compiled program is encoded in WAM instructions (in
GNU Prolog this encoding may be as machine instructions).
We need to integrate the trace behavior with various of these
WAM instructions: call, execute, try_me_else,
retry_me_else, and trust_me.

The simplest trace mechanism
This first version of the trace mechanism corresponds to the
interpret2/1 example above. The displayed trace information
is only Call, Exit, Fail, and Redo for each goal.

The basic design of the trace mechanism is to have the call
P and execute P instructions conditionally translate to call
‘$trace’/1 and execute ‘$trace’/1 instructions where the A1
register is a structure of functor(P) with arguments from the
original Ai.

There are two new registers in the WAMt: TC, the trace call
register, and TP, the trace predicate register. The TC register
indicates what should be done regarding tracing of call and
execute instructions: 0 is no_trace, 1 is trace, 2 is
trace_next, and 3 is trace_next_jmp.

Extending the WAM with Procedure Box Debugging

10 of 40! Spratt, LFS-1

The TP register is the code address of the compiled code for
the ‘$trace’/1 predicate. The TP register is set on initialization
of the WAM and never changes. The ‘$trace’/1 predicate
provides the actual tracing output for a call of a goal.

The choice-point frame is extended with one more slot for
TC. This makes 8 fixed slots in the choice-point frame
instead of 7.

The ‘$trace’/1 predicate.

The bulk of the trace logic is implemented in Prolog code,
the ‘$trace’/1 predicate that produces the simplest tracing,
analogous to the interpret2/1 predicate discussed above.

The ‘$trace_set’/1 builtin predicate sets the WAM TC register
directly. It invokes the trace_set procedure.

The intent of the call/1 goal in ‘$trace’/1 is to evaluate the
traced Goal without (recursively) invoking ‘$trace’/1 on it.
The management of the TC register achieves this intent.
This implementation allows for the call/1 predicate itself to be
implemented in Prolog and to rely on a ‘$jmp’/1 builtin
predicate to make the final preparations for redirecting the
WAM to evaluate the instructions for Goal.

Extending the WAM with Procedure Box Debugging

11 of 40! Spratt, LFS-1

‘$trace’(notrace) :-
 !,
 ‘$trace_set’(no_trace).

'$trace'(Goal) :-
 '$trace_set'(no_trace),
 '$trace_msg'(‘Call’, ‘Fail’,
 Goal),
 '$trace_set'(trace_next_jmp),
 call(Goal),
 '$trace_set'(no_trace),
 '$trace_msg'(‘Exit’, ‘Redo’,
 Goal),
 '$trace_set'(trace).

'$trace_msg'(Success, _, Goal) :-
 ‘$trace_msg1’(Success, Goal).
'$trace_msg'(_, Failure, Goal) :-
 ‘$trace_msg1’(Failure, Goal),
 !,
 fail.

‘$trace_msg1’(Label, Goal) :-
 write(Label),
 write(''),
 writeln(Goal).

procedure trace_set(mode);
 begin
 if (mode = ‘no_trace’)
 then TC <- 0
 else if (mode = ‘trace’)
 then TC <- 1
 else if (mode = ‘trace_next’)
 then TC <- 2
 else if
 (mode = ‘trace_next_jmp’)
 then TC <- 3
 else ERROR;
 end;

Setting TC == trace_next_jmp makes the ‘$jmp’/0 predicate
set TC == trace_next. The ‘$jmp’/0 predicate is used in the
implementation of the call/1 predicate to prepare for the
invocation of the WAM call instruction. The trace_next mode
makes the WAM call instruction set TC == trace so that the
next evaluation of the call instruction will invoke ‘$trace’/1.

There are two convenience predicates for setting the trace
mode, trace/0 and notrace/0.

These can be used to start and stop tracing of a query, such
as:

?- trace, mem(X, [a,b]),
 mem(X, [c,b]), notrace.

This query traces the evaluation of the two mem/2 goals
then stops the trace.

The call/1 predicate.

The details of the call/1 predicate for a Prolog
implementation are beyond the scope of the WAM design.
We use a sketch of an implementation of call/1.

The compile_clause_anon/1 goal compiles the Vars and
Goal into a predicate, but does not actually declare it
anywhere. The functor is therefore irrelevant. The builtin
‘$jmp’/1 predicate calls the anonymous predicate.

The ‘$jmp’/1 builtin uses a jmp procedure.

The TC register is conditionally advanced from mode 3 to 2
(trace_next_jmp to trace_next). Using the trace_next_jmp
mode allows for calls to occur in the implementation of call/1
where those calls do not advance the mode from trace_next
to trace and are not themselves traced.

WAM Modification Summary
The WAM instructions modified in the following text are: call,
exec, try_me_else, retry_me_else, trust_me, try, retry, and
trust. The modified procedure is backtrack. New procedures
are: setup_trace_call, adv_next_trace_cond,
comp_call_or_execute, and backtrack_trace.

Extending the WAM with Procedure Box Debugging

12 of 40! Spratt, LFS-1

trace :-
 ‘$trace_set’(trace).

notrace :-
 ‘$trace_set’(no_trace).

call(Goal):-
 term_variables(Goal, Vars),
 compile_clause_anon(
 query(Vars):-Goal),
 !,
 '$jmp'(Vars).

procedure jmp(vars);
 begin
 if (TC = 3) then TC <- 2;
 {set P to address of newly
compiled code for query of Goal}
 end;

mem(X, [X|_]).
mem(X, [_|T]) :- mem(X, T).

The setup_trace_call procedure.

The setup_trace_call procedure is used in the call and
execute instructions to prepare the WAM to execute ‘$trace’/
3 predicate.

This procedure sets up the values in the A1 and A2
registers. The A1 registers either holds an atom when the
procedure being traced has no arguments (arity is 0) or it
holds a structure when the procedure being traced has 1 or
more arguments (arity >= 1). (The fun(P) function returns
the functor of the P predicate. The ar(P) function returns the
arity of the P predicate.)

The statement ‘put_structure P,X(N+1);’ creates a
structure value in register X(N+1) which is guaranteed to be
an unused register when evaluating this call instruction
since there are only N permanent registers in use when this
call is evaluated.

The adv_next_trace_cond procedure

This procedure advances the mode to ‘trace’ conditional on
if it is currently ‘trace_next’, otherwise it leaves the mode
unchanged.

The comp_call_or_execute procedure

The comp_call_or_execute procedure implements common
steps used in both the call and execute instructions to
complete their processing including setting the B0 register
and the P register. This procedure handles the check for
tracing and sets up for calling tracing if appropriate.

Extending the WAM with Procedure Box Debugging

13 of 40! Spratt, LFS-1

procedure setup_trace_call(
 P:predicate):
 begin
 if(arity(P) = 0)
 then
 put_value functor(P),A1;
 else
 begin
 put_structure
 fun(P)/ar(P),X(N+1);
 for i = 1 to ar(P)
 begin
 set_value Ai;
 end;
 put_value X(N+1),A1;
 end;
 end;

procedure adv_next_trace_cond
 begin
 if (TC = 2) then TC <- 1;
 end;

procedure comp_call_or_execute
 (P:predicate):
 begin
 B0 <- B;
 if (TC = 1 && traceable(P))
 then
 begin
 TC <- 0; // no trace
 setup_trace_call;
 num_of_args = 1;
 P <- TP;
 end
 else
 begin
 adv_next_trace_cond;
 num_of_args <- ar(P);
 P <- @(P);
 end;
 end;

The call instruction

Original version

The final WAM call instruction (p. 106 in [Aït-Kaci, 1999]) is
call P, N where P is a predicate p/n and N is the number of
stack variables remaining in the current environment.

[The N parameter is not used in the implementation of the
call instruction - it is used by the allocate instruction when
determining how many permanent variable slots are needed
in the Environment when evaluating the code addressed by
the call instruction.]

Traceable

This implementation must be modified to check if the current
trace_call mode (TC = 1, trace) requires tracing and that the
predicate P is traceable. The predicates with names starting
with ‘$trace’ and the true/0 and fail/0 predicates are not
traceable. These predicates are protected from tracing to
prevent unbounded recursion when the tracing mechanism
attempts to trace itself.

Debug version

If tracing is required and appropriate then the predicate P
and arguments Ai are copied to a HEAP structure using
put_structure and set_value by the setup_trace_call
procedure and the call instruction sets up to call the ‘$trace’/
1 predicate by setting the num_of_args to 1 and the next
code instruction address to TP.

From the implementation of the execute instruction
developed below the ‘completion’ of the instruction after the
setting of the CP register is the same in both the call and
execute instructions. This is the comp_call_or_execute
procedure.

The collapsed version rewrites the call instruction using the
comp_call_or_execute procedure.

The execute instruction

The execute instruction (p. 107 in [Aït-Kaci, 1999]) is a
simplified version of the call instruction.

Extending the WAM with Procedure Box Debugging

14 of 40! Spratt, LFS-1

Original version:

if defined(P)
 then
 begin
 CP <- P + inst_size(P);
 num_of_args <- ar(P);
 B0 <- B;
 P <- @(P)
 else backtrack;

function traceable
 (P:predicate): boolean
 return
 !(fun(P) startsWith ‘$trace’
 || P = true/0
 || P = fail/0);

Debug version:

expanded:
if defined(P)
 then
 begin
 CP <- P + inst_size(P);
 B0 <- B;
 if (TC = 1 && traceable(P))
 then
 begin
 TC <- 0; // no trace
 setup_trace_call;
 num_of_args = 1;
 P <- TP;
 end
 else
 begin
 adv_next_trace_cond;
 num_of_args <- ar(P);
 P <- @(P);
 end
 end
 else backtrack;

Debug version collapsed:
if defined(P)
 then
 begin
 CP <- P + inst_size(P);
 comp_call_or_execute(P);
 end
 else backtrack;

execute P: where P is the predicate to be evaluated.

This code is the same as for call but without the ‘CP <- P +
inst_size(P);’ statement.

Debug version

The version of this instruction extended for tracing is similar
to the extended call instruction.

Using the comp_call_or_execute procedure that contains
the steps common between the call and execute
instructions the implementation of the execute instruction
can be restated as shown.

Extending the WAM with Procedure Box Debugging

15 of 40! Spratt, LFS-1

Original version:

if defined(P)
 then
 begin
 num_of_args <- arity(P);
 B0 <- B;
 P <- @(P)
 end
 else backtrack;

Debug version expanded:

if defined(P)
 then
 begin
 B0 <- B;
 if (TC = 1 && traceable(P))
 then
 begin
 TC <- 0; // no trace
 setup_trace_call;
 num_of_args = 1;
 P <- TP;
 end
 else
 begin
 num_of_args <- ar(P);
 P <- @(P);
 end;

 end
 else backtrack;

Debug version collapsed:

if defined(P)
 then comp_call_or_execute;
 else backtrack;

The try_me_else instruction

The try_me_else instruction (p. 108 in [Aït-Kaci, 1999]) sets
up a new choice-point frame. This frame is extended with
one new slot for the TC (‘trace call’) register.

try_me_else L: where L is the code area address of the
instructions for the next clause. The backtrack function sets
P to L (from slot n+4 of the choice-point frame).

The frame size is increased to 9 and there is a new slot for
TC.

Extending the WAM with Procedure Box Debugging

16 of 40! Spratt, LFS-1

Original:

if E > B
 then
 newB <-
 E +
 CODE[STACK[E+1] - 1] +
 2;
 else
 newB <-
 B +
 STACK[B] +
 8;
STACK[newB] <- num_of_args;
n <- STACK[newB];
for i <- 1 to n
 do STACK[newB + i] <- Ai;
STACK[newB + n + 1] <- E;
STACK[newB + n + 2] <- CP;
STACK[newB + n + 3] <- B;
STACK[newB + n + 4] <- L;
STACK[newB + n + 5] <- TR;
STACK[newB + n + 6] <- H;
STACK[newB + n + 7] <- B0;
B <- newB;
HB <- H;
P <- P + inst_size(P);

Debug:

if E > B
 then
 newB <-
 E +
 CODE[STACK[E+1] - 1] +
 2;
 else newB <-
 B + STACK[B] + 9;
STACK[newB] <- num_of_args;
n <- STACK[newB];
for i <- 1 to n
 do STACK[newB + i] <- Ai;
STACK[newB + n + 1] <- E;
STACK[newB + n + 2] <- CP;
STACK[newB + n + 3] <- B;
STACK[newB + n + 4] <- L;
STACK[newB + n + 5] <- TR;
STACK[newB + n + 6] <- H;
STACK[newB + n + 7] <- B0;
STACK[newB + n + 8] <- TC;
B <- newB;
HB <- H;
P <- P + inst_size(P);

The backtrack_trace procedure

The backtrack_trace procedure is common to several
instructions. At this point it is a simple single assignment. It
provides a single place to handle changes to these
instructions across the different versions of tracing
mechanisms.

The retry_me_else instruction

retry_me_else L: After backtracking to the current choice-
point, reset registers, update next clause to L, and continue
with the next instruction.

The debug version is nearly identical with the original
version. It only adds the resetting of TC.

Extending the WAM with Procedure Box Debugging

17 of 40! Spratt, LFS-1

procedure backtrack_trace(
 B:integer, n:integer):
 begin
 TC <- STACK[B + n + 8];
 end;

original:

n <- STACK[B];
for i <- 1 to n
 do Ai <- STACK[B+i];
E <- STACK[B + n + 1];
CP <- STACK[B + n + 2];
STACK[B + n + 4] <- L;
unwind_trail(
 STACK[B + n + 5], TR);
TR <- STACK[B + n + 5];
HB <- H;
P <- P + inst_size(P);

debug:

n <- STACK[B];
for i <- 1 to n
 do Ai <- STACK[B+i];
E <- STACK[B + n + 1];
CP <- STACK[B + n + 2];
STACK[B + n + 4] <- L;
unwind_trail(
 STACK[B + n + 5], TR);
TR <- STACK[B + n + 5];
HB <- H;
backtrack_trace(B, n);
P <- P + inst_size(P);

The trust_me instruction

trust_me: After backtracking to the current choice-point,
reset registers, discard the choice-point, and continue with
the next instruction.

Note that the statement setting HB depends on the value of
B and that the value of B is set in the immediately previous
statement.

The trace version extends the original version to reset the
TC register using the backtrack_trace procedure.

Extending the WAM with Procedure Box Debugging

18 of 40! Spratt, LFS-1

original:

n <- STACK[B];
for i <- 1 to n
 do Ai <- STACK[B + i];
E <- STACK[B + n + 1];
CP <- STACK[B + n + 2];
unwind_trail(
 STACK[B + n + 5], TR);
TR <- STACK[B + n + 5];
H <- STACK[B + n + 6];
B <- STACK[B + n + 3];

HB <- STACK[B + n + 6];
P <- P + inst_size(P);

debug:

n <- STACK[B];
for i <- 1 to n
 do Ai <- STACK[B + i];
E <- STACK[B + n + 1];
CP <- STACK[B + n + 2];
unwind_trail(
 STACK[B + n + 5], TR);
TR <- STACK[B + n + 5];
H <- STACK[B + n + 6];
backtrack_trace(B, n);
B <- STACK[B + n + 3];

HB <- STACK[B + n + 6];
P <- P + inst_size(P);

The try instruction

try L: Set up new choice-point frame and continue execution
to code address L.

The frame size is increased to 9 and there is a new slot for
TC.

Extending the WAM with Procedure Box Debugging

19 of 40! Spratt, LFS-1

original:

if E > B
 then
 newB <- E +
 CODE[STACK[E+1] - 1] +
 2;
 else newB <- B +
 STACK[B] +
 8;
STACK[newB] <- num_of_args;
n <- STACK[newB];
for i <- 1 to n
 do STACK[newB + i] <- Ai;
STACK[newB + n + 1] <- E;
STACK[newB + n + 2] <- CP;
STACK[newB + n + 3] <- B;
STACK[newB + n + 4] <-
 P + inst_size(P);
STACK[newB + n + 5] <- TR;
STACK[newB + n + 6] <- H;
STACK[newB + n + 7] <- B0;
B <- newB;
HB <- H;
P <- L;

debug:

if E > B
 then newB <-
 E +
 CODE[STACK[E+1] - 1] +
 2;
 else newB <-
 B +
 STACK[B] +
 9;
STACK[newB] <- num_of_args;
n <- STACK[newB];
for i <- 1 to n
 do STACK[newB + i] <- Ai;
STACK[newB + n + 1] <- E;
STACK[newB + n + 2] <- CP;
STACK[newB + n + 3] <- B;
STACK[newB + n + 4] <-
 P + inst_size(P);
STACK[newB + n + 5] <- TR;
STACK[newB + n + 6] <- H;
STACK[newB + n + 7] <- B0;
STACK[newB + n + 8] <- TC;
B <- newB;
HB <- H;
P <- L;

The retry instruction

retry L: After backtracking to the current choicepoint, reset
registers, update next clause to the next instruction, and
continue with L.

The trace version is nearly identical with the original version.
It only adds the resetting of TC.

Extending the WAM with Procedure Box Debugging

20 of 40! Spratt, LFS-1

original:

n <- STACK[B];
for i <- 1 to n
 do Ai <- STACK[B+i];
E <- STACK[B + n + 1];
CP <- STACK[B + n + 2];
STACK[B + n + 4] <-
 P + inst_size(P);
unwind_trail(
 STACK[B + n + 5], TR);
TR <- STACK[B + n + 5];
H <- STACK[B + n + 6];
HB <- H;
P <- L;

debug:

n <- STACK[B];
for i <- 1 to n
 do Ai <- STACK[B+i];
E <- STACK[B + n + 1];
CP <- STACK[B + n + 2];
STACK[B + n + 4] <-
 P + inst_size(P);
unwind_trail(
 STACK[B + n + 5], TR);
TR <- STACK[B + n + 5];
H <- STACK[B + n + 6];
HB <- H;
backtrack_trace(B, n);
P <- L;

The trust instruction

trust L: After backtracking to the current choice-point, reset
registers, discard the choice-point, and continue with L.

Note that the statement setting HB depends on the value of
B and that the value of B is set in the immediately previous
statement.

The trace version extends the original version to reset the
TC register using the backtrack_trace procedure.

The backtrack procedure

The tutorial WAM uses a backtrack procedure to reset the
B0 and P registers. To the right are the original and trace
versions of this procedure.

In the trace version the TC register is restored when
backtracking in the call to backtrace_trace.

Extending the WAM with Procedure Box Debugging

21 of 40! Spratt, LFS-1

original:

n <- STACK[B];
for i <- 1 to n
 do Ai <- STACK[B + i];
E <- STACK[B + n + 1];
CP <- STACK[B + n + 2];
unwind_trail(
 STACK[B + n + 5], TR);
TR <- STACK[B + n + 5];
H <- STACK[B + n + 6];
B <- STACK[B + n + 3];
HB <- STACK[B + n + 6];
P <- L;

debug:

n <- STACK[B];
for i <- 1 to n
 do Ai <- STACK[B + i];
E <- STACK[B + n + 1];
CP <- STACK[B + n + 2];
unwind_trail(
 STACK[B + n + 5], TR);
TR <- STACK[B + n + 5];
H <- STACK[B + n + 6];
backtrack_trace(B, n);
B <- STACK[B + n + 3];
HB <- STACK[B + n + 6];
P <- L;

procedure backtrack; // original
 begin
 if B = bottom_of_stack
 then fail_and_exit_program
 else
 begin
 B0 <- STACK[
 B + STACK[B] + 7];
 P <- STACK[
 B + STACK[B] + 4];
 end;
 end backtrack;

procedure backtrack; // trace
 begin
 if B = bottom_of_stack
 then fail_and_exit_program
 else
 begin
 B0 <- STACK[
 B + STACK[B] + 7];
 backtrack_trace(B, n);
 P <- STACK[
 B + STACK[B] + 4];
 end;
 end backtrack;

Extending the trace mechanism to
display depth
This section develops the trace mechanism analogous to the
interpret3/1 example. This version requires that the WAM
and the ‘$trace’/2 predicate (extending the ‘$trace’/1
predicate) manage the Ancestors list. The Ancestors list is
stored on HEAP and the address of the list is in the TI
register. In most respects this version is the same as above.

The major changes are in the ‘$trace’/2 predicate and in the
call and execute instructions.

The changes to the call and execute instructions are in the
common comp_call_or_execute function. All of the
instructions that manage the TC register must also manage
the TI register. The call/1 predicate is unchanged.

The ‘$trace’/2 predicate.

The ‘$trace’/2 predicate that produces the tracing with depth
numbers is analogous to the interpret3/2 predicate
discussed above.

The ‘$trace’/2 changes include adding the
'$trace_push_info'(Goal, Anc) goal to extend the
Anc (Ancestors) list with Goal. ‘$trace_push_info’/2 uses the
new ‘$trace_set_info’/1 builtin.

The ‘$trace_msg’/3 predicate is extended to ‘$trace_msg’/4
with the Anc parameter.

The ‘$trace_set_info’/1 builtin predicate sets the WAM TI
(“trace info”) register directly using the trace_set_info
procedure.

WAM Modification Summary

The modified instructions are try_me_else and try. The
modified procedures are setup_trace_call,
trace_call_or_execute, suspend_trace,
comp_call_or_execute, and backup_trace.

Extending the WAM with Procedure Box Debugging

22 of 40! Spratt, LFS-1

‘$trace’(notrace, _) :-
 !,
 ‘$trace_set’(no_trace).

'$trace'(Goal, Anc) :-
 '$trace_set'(no_trace),
 '$trace_msg'(‘Call’, ‘Fail’,
 Goal, Anc),
 '$trace_push_info'(Goal, Anc),
 '$trace_set'(trace_next_jmp),
 call(Goal),
 '$trace_set'(no_trace),
 '$trace_msg'(‘Exit’, ‘Redo’,
 Goal, Anc),
 '$trace_set'(trace).

'$trace_push_info'(Goal, Anc) :-
 format(atom(X), '~w\n',
 [Goal]),
 '$trace_set_info'([X|Anc]).
'$trace_push_info'(_, Anc) :-
 '$trace_set_info'(Anc),
 !, fail.

'$trace_msg'(Success, _, Goal,
 Anc) :-
 ‘$trace_msg1’(Success, Goal,
 Anc).

'$trace_msg'(_, Failure, Goal,
 Anc) :-
 ‘$trace_msg1’(Failure, Goal,
 Anc),
 !,
 fail.

‘$trace_msg1’(Label, Goal,
 Anc) :-
 length(Ancestors, K),
 write(K),
 write(‘ ‘),
 write(Label),
 write(' '),
 writeln(Goal).

procedure trace_set_info(
 info:integer);
 begin
 TI <- info;
 end;

The setup_trace_call procedure.

The setup_trace_call procedure is used in the call and
execute instructions to prepare the WAM to execute ‘$trace’/
3 predicate.

This procedure sets up the values in the A1 and A2 registers.
The A1 register either holds an atom when the procedure
being traced has no arguments (arity is 0) or it holds a
structure when the procedure being traces has 1 or more
arguments (arity >= 1). The A2 register is the trace info - the
Ancestors list.

The trace_call_or_execute function

The trace_call_or_execute function returns true if the input
predicate P is traceable (e.g. not a special predicate such as
‘$trace’ or ‘true’) and if the TC register is 1.

The suspend_trace procedure

The suspend_trace function changes the trace mode to that
mode’s suspended version: trace -> no_trace.

The comp_call_or_execute procedure

The comp_call_or_execute procedure implementation is
changed to expect 2 arguments for ‘$trace’/2 as set up by
the new version of the setup_trace_call function.

Extending the WAM with Procedure Box Debugging

23 of 40! Spratt, LFS-1

procedure setup_trace_call(
 P:predicate):
 begin
 if(ar(P) = 0)
 then
 put_value functor(P),A1;
 else
 begin
 put_structure
 fun(P)/ar(P),X(N+1);
 for i = 1 to ar(P)
 begin
 set_value Ai;
 end;
 put_value X(N+1),A1;
 end;
 put_value TI,A2;
 end;

procedure trace_call_or_execute(
 P:predicate) returns boolean
 begin
 return
 TC = 1 && traceable(P);
 end;

procedure suspend_trace
 begin
 if (TC = 1) then TC <- 0;
 end;

procedure comp_call_or_execute(
 P:predicate):
 begin
 B0 <- B;
 if (trace_call_or_execute(P))
 then
 begin
 suspend_trace;
 setup_trace_call(P);
 num_of_args = 2;
 P <- TP;
 end
 else
 begin
 adv_next_trace_cond;
 num_of_args <- ar(P);
 P <- @(P);
 end;

The call instruction

The call instruction for depth-extended tracing adds
management of the ‘Ancestors’ argument. The changes for
this management are in the comp_call_or_execute and
setup_trace_call functions.

The $trace/2 predicate has 2 arguments instead of 1. The
second argument is the ancestors list set by the $trace/2
predicate before evaluating the call/1 goal.

The execute instruction

The version of this instruction extended for tracing is similar
to the extended call instruction, relying on changes in the
comp_call_or_execute and setup_trace_call functions.

This code is the same as for call but without the ‘CP <- P +
inst_size(P);’ statement.

The backtrack_trace procedure

The backtrack_trace procedure is extended to restore the TI
register. This handles the only change needed to support
the retry_me_else, trust_me, retry, and trust instructions.
Also this change adapts the backtrack procedure.

Extending the WAM with Procedure Box Debugging

24 of 40! Spratt, LFS-1

if defined(P)
 then
 begin
 CP <- P + inst_size(P);
 comp_call_or_execute(P);
 end
 else backtrack;

if defined(P)
 then comp_call_or_execute(P);
 else backtrack;

procedure backtrack_trace(
 B:integer, n:integer):
 begin
 TC <- STACK[B + n + 8];
 TI <- STACK[B + n + 9];
 end;

The try_me_else instruction

The frame size is increased to 10 and there is a new slot for
TI.

The try instruction

The frame size is increased to 10 and there is a new slot for
TI.

Extending the WAM with Procedure Box Debugging

25 of 40! Spratt, LFS-1

if E > B
 then newB <-
 E + CODE[STACK[E+1] - 1] + 2
 else newB <- B + STACK[B] + 10;
STACK[newB] <- num_of_args;
n <- STACK[newB];
for i <- 1 to n
 do STACK[newB + i] <- Ai;
STACK[newB + n + 1] <- E;
STACK[newB + n + 2] <- CP;
STACK[newB + n + 3] <- B;
STACK[newB + n + 4] <- L;
STACK[newB + n + 5] <- TR;
STACK[newB + n + 6] <- H;
STACK[newB + n + 7] <- B0;
STACK[newB + n + 8] <- TC;
STACK[newB + n + 9] <- TI;
B <- newB;
HB <- H;
P <- P + inst_size(P);

if E > B
 then newB <- E +
CODE[STACK[E+1] - 1] + 2
 else newB <- B + STACK[B] + 10;
STACK[newB] <- num_of_args;
n <- STACK[newB];
for i <- 1 to n
 do STACK[newB + i] <- Ai;
STACK[newB + n + 1] <- E;
STACK[newB + n + 2] <- CP;
STACK[newB + n + 3] <- B;
STACK[newB + n + 4] <- P +
instruction_size(P);
STACK[newB + n + 5] <- TR;
STACK[newB + n + 6] <- H;
STACK[newB + n + 7] <- B0;
STACK[newB + n + 8] <- TC;
STACK[newB + n + 9] <- TI;
B <- newB;
HB <- H;
P <- L;

Extending the trace mechanism to
identify each procedure invocation
This section develops the trace mechanism analogous to the
interpret4/1 example. This version requires that the WAM
and the ‘$trace’/3 predicate (extending the ‘$trace’/2
predicate) handle the trace identifier. The trace identifier list
is stored in the TD register. In most respects this version is
the same as above. The only changes are in the ‘$trace’/3
predicate and in the call and execute instructions. The
try_me_else, retry_me_else, trust_me, try, retry, and trust
instructions are all the same as for the previous version. The
backtrack function is also unchanged.

The ‘$trace’/3 predicate.

The ‘$trace’/3 predicate that produces the tracing with depth
numbers is analogous to the interpret4/2 predicate
discussed above.

The ‘$trace_push_info’/2 predicate is changed to
‘$trace_push_info’/3 with the addition of the ID parameter.
The Ancestors list is now a list of pairs of ID and Goal-as-
string.

WAM Modification Summary

The modified instructions are call and execute. The
modified procedures are setup_trace_call and
comp_call_or_execute.

The setup_trace_call procedure.

The setup_trace_call function is used in the call and execute
instructions to prepare the WAM to execute ‘$trace’/3
predicate.

This procedure sets up the values in the A1, A2, and A3
registers. The A1 registers either holds an atom when the
procedure being traced has no arguments (arity is 0) or it
holds a structure when the procedure being traces has 1 or
more arguments (arity >= 1). The A2 register is the trace info

Extending the WAM with Procedure Box Debugging

26 of 40! Spratt, LFS-1

‘$trace’(notrace, _) :-
 !,
 ‘$trace_set’(no_trace).

'$trace'(Goal, Anc, ID) :-
 '$trace_set'(no_trace),
 '$trace_msg'(‘Call’, ‘Fail’,
 Goal, Anc, ID),
 ‘$trace_push_info’(
 ID, Goal, Anc),
 '$trace_set'(trace_next_jmp),
 call(Goal),
 '$trace_set'(no_trace),
 '$trace_msg'(‘Exit’, ‘Redo’,
 Goal, Anc, ID),
 '$trace_set'(trace).

'$trace_push_info'(
 ID, Goal, Anc) :-
 format(atom(X), '~w\n',
 [Goal]),
 '$trace_set_info'([ID-X|Anc]).
'$trace_push_info'(_, _, Anc) :-
 '$trace_set_info'(Anc),
 !, fail.

'$trace_msg'(Success, _, Goal,
 Anc, ID) :-
 ‘$trace_msg1’(Success, Goal,
 Anc, ID).

'$trace_msg'(_, Failure, Goal,
 Anc, ID) :-
 ‘$trace_msg1’(Failure, Goal,
 Anc, ID), !, fail.

procedure setup_trace_call:
 begin
 if(ar(P) = 0)
 then
 put_value fun(P),A1;
 else
 begin
 put_structure
 fun(P)/ar(P),X(N+1);
 for i = 1 to arity(P)
 begin
 set_value Ai;
 end;
 put_value X(N+1),A1;
 end;
 put_value TI,A2;
 put_value TD,A3;
 end;

- the Ancestors list. The A3 register is the incremented
invocation identifier.

The comp_call_or_execute procedure

The comp_call_or_execute procedure implementation is
changed to increment the TD register and to expect 3
arguments for ‘$trace’/3 as set up by the new version of the
setup_trace_call function.

The call instruction

The call instruction for depth-extended tracing adds
handling of the invocation identifier argument. These
changes are handled in the setup_trace_call and
comp_call_or_execute functions.

The $trace/3 predicate has 3 arguments instead of 2. The
third argument is the invocation identifier incremented in the
WAM just prior to an invocation of ‘$trace’/3.

The execute instruction

The version of this instruction extended for tracing is similar
to the extended call instruction.

This code is the same as for call but without the ‘CP <- P +
instruction_size(P);’ statement.

Extending the WAM with Procedure Box Debugging

27 of 40! Spratt, LFS-1

procedure comp_call_or_execute(
 P:predicate):
 begin
 B0 <- B;
 if (trace_call_or_execute(P))
 then
 begin
 suspend_trace();
 TD <- TD + 1;
 setup_trace_call(P);
 num_of_args = 3;
 P <- TP;
 end
 else
 begin
 adv_next_trace_cond;
 num_of_args <- ar(P);
 P <- @(P);
 end;
 end;

if defined(P)
 then
 begin
 CP <- P + inst_size(P);
 comp_call_or_execute(P);
 end
 else backtrack;

if defined(P)
 then comp_call_or_execute(P);
 else backtrack;

Controlling the Trace
The trace produced by the WAM at this point is complete for
the four ports, Call, Exit, Fail, and Redo. It provides the
same information as the interpret4/1 example predicate.
There are several enhancements that make this
implementation much more useful. One enhancement is to
allow the user to interact with the trace and skip, creep,
retry, leap, fail, abort, or disable the trace at each port of
each invocation. A second enhancement is to allow the user
to specify predicate invocations on which to spy (i.e. setting
break points) and the port at which to interact. A third
enhancement is to allow the user to explore the current
execution environment: write or print values, show
ancestors, show alternatives, or show listing of the current
predicate.

interpret5/1: interactive control of tracing.

The interpret5/1 predicate implementation extends
interpret4/1 to support interactive control of the trace. This
implementation includes control commands to skip, creep,
and fail. The ancestors command displays the goal call stack
of the current goal.

The interpret5/4 predicate includes two arguments to handle
the interactive choice for the tracing mode, ‘trace’ or
‘notrace’. This mode is input to trace5/5: ‘notrace’ skips the
interaction and the goal trace output, ‘trace’ invokes the
interaction with the user. The interpret5/4 predicate is written
using the DCG notation (e.g. ‘interpret5(true, _) --> !.’ is
expanded to ‘interpret5(true, _, Mode, Mode) :- !.’).

Extending the WAM with Procedure Box Debugging

28 of 40! Spratt, LFS-1

interpret5(Goal) :-
 clear_invocation,
 interpret5(Goal, [], trace, _).

interpret5(true, _) --> !.

interpret5((G1, G2), Anc) -->
 !,
 interpret5(G1, Anc),
 interpret5(G2, Anc).

interpret5(Goal, Anc) -->
 {increment_invocation(K)},
 trace5(Goal, Anc, K).

The trace5/5 predicate recursively
invokes the interpret5/4 predicate for
the body goals in a clause of Goal.

It calls the interact/5 predicate to tell the
user the current goal information, read
the user’s command (a single
character), and handle that command.

Extending the WAM with Procedure Box Debugging

29 of 40! Spratt, LFS-1

trace5(Goal, Anc, K, notrace, notrace) :-
 cls(Goal, Body),
 interpret5(Body,[Goal| Anc], notrace, notrace).
trace5(Goal, Anc, K, trace, NextMode) :-
 NewAnc = [Goal| Anc],
 interact(call, fail, NewAnc, K, InterimMode),
 cls(Goal, MoreGoals),
 interpret5(MoreGoals, NewAnc, InterimMode, _),
 interact(exit, redo, NewAnc, K, NextMode).

interact(Success, _, Stack,
 Inv, NextMode) :-
 interact_port(Success, Stack, Inv, NextMode).

interact(_, Failure, Stack, Inv, _) :-
 interact_port(Failure, Stack, Inv, _), !, fail.

interact_port(Port, Stack,
 Inv, NextMode) :-
 prompt(Port, Stack, Inv),
 read_and_execute(Port, Stack,
 Inv, NextMode).

prompt(Port, [Goal|Anc], Inv) :-
 length(Anc, Depth),
 write_list([Inv, Depth, Port, ‘:’, Goal, ‘?‘],
 ‘ ‘).

read_and_execute(Port, Stack, Inv, NextMode) :-
 repeat, get_char(Command),
 check_command(Command),
 !,
 execute(Command, Port, Stack, Inv, NextMode).

check_command(Command) :-
 member(Command, [c, s, f, r, g])
 ;
 writeln('Commands are: "c" (creep), "s" (skip),
"f" (fail), "r" (retry), or "g" (ancestors).'),
 fail.

execute(c, _, _, _, trace) :- !.
execute(s, call, _, _, notrace) :- !.
execute(s, _, _, _, notrace) :- !.
execute(f, _, _, _, _) :- !, fail.
execute(g, Port, [Goal|Anc], Inv, Mode) :-
 write(‘Ancestors: ‘),
 writenl(Anc),
 read_and_execute(Port, [Goal|Anc], Inv, Mode).

‘$traceR’/3: enhanced WAM trace
predicate with user interaction.

The enhanced ‘$traceR’/3 predicate
is analogous to the trace5/5
predicate. This mechanism supports
the creep, skip, fail, ancestors, retry
and abort commands. The
‘$trace_retry’ predicate creates a
choice-point and uses a special
builtin ‘$get_backtrack_frame’/1 to
get the address of the frame for that
choice-point. This choice-point is
passed through to the ‘$trace_cmd’/
6 clause for ‘r’ (retry) where the
body sets the backtrack frame
register to the retry choice-point
then fails. The failure makes the
WAM reset the state to the choice-
point frame and continue evaluation
in that frame (unwinding stacks and
freeing data as appropriate). The
evaluation continuation uses the
second clause of the invocation of
the ‘$trace_retry’/1 predicate that
created the choice-point. This
restarts the evaluation of Goal. The
user interaction depends on a
read_char/1 predicate that reads a
command character. The
implementation of this predicate
depends on the details of the Prolog
system.

Extending the WAM with Procedure Box Debugging

30 of 40! Spratt, LFS-1

'$traceR'(notrace, _, _) :-
 !,
 '$trace_set'(no_trace).

'$traceR'(Goal, Anc, ID) :-
 '$trace_set'(no_trace),
 '$trace_retry'(Bk),
 '$trace_interact'(call, fail, Goal, Anc, ID, Bk),
 call(Goal),
 '$trace_set'(no_trace),
 '$trace_set_info'(Anc),
 '$trace_interact'(exit, redo, Goal, Anc, ID, Bk).

'$trace_retry'(Bk) :- '$get_backtrack_frame'(Bk).
'$trace_retry'(Bk) :- '$trace_retry'(Bk).

'$trace_interact'(A, _B, G, Anc, ID, Bk) :-
 '$trace_interact'(A, G, Anc, ID, Bk).
'$trace_interact'(_A, B, G, Anc, ID, Bk) :-
 '$trace_interact'(B, G, Anc, ID, Bk), !, fail.

'$trace_interact'(P, G, Anc, ID, B) :-
 '$trace_prompt'(P, G, Anc, ID),
 '$trace_read_and_cmd'(P, G, Anc, ID, B).

'$trace_prompt'(Port, Goal, Ancestors, ID) :-
 '$trace_create_prompt'(K, Port, Goal, ID, Prompt),
 '$trace_set_prompt'(Prompt).

'$trace_create_prompt'(K, Goal, ID, Prompt) :-
 pad_number(ID, 7, PadID),
 pad_number(K, 5, PadK),
 concat_list([PadID, PadK, ' ', Goal], Prompt).
'$trace_create_prompt'(K, Port, Goal, ID, Prompt) :-
 pad_number(ID, 7, PadID),
 pad_number(K, 5, PadK),
 capitalize(Port, CapPort),
 concat_list([PadID, PadK, ' ',
 CapPort, ': ', Goal], Prompt).

'$trace_read_and_cmd'(P, G, Anc, ID, B) :-
 '$trace_check_command'(X),
 !,
 '$trace_cmd'(X, P, G, Anc, ID, B).

'$trace_check_command'(X) :-
 read_char(X),
 member(X, [c, s, f, r, g, a]),
 !.
'$trace_check_command'(X) :-
 writeln('Commands are: "c" (creep), "s" (skip),
"f" (fail), "r" (retry), "g" (ancestors),
“a” (abort).'),
 '$trace_check_command'(X).

The ‘$trace_cmd’/6 predicate
interprets the debug command. It
either displays information (the ‘g’
command), sets a trace flag (the
‘c’ and ‘s’ commands), forces
backtracking (the ‘r’ command), or
halts the WAM engine (the ‘a’
command).

WAM Modification Summary

There are no changes required in
the WAM to support the basic user
interactions. (This assumes that
the Prolog system based on the
WAM has sufficient features to
support the read_char/1
predicate.)

Extending the WAM with Procedure Box Debugging

31 of 40! Spratt, LFS-1

'$trace_cmd'(c, call, G, Anc, _, _) :-
 !,
 '$trace_push_info'(G, Anc),
 '$trace_set'(trace_next_jmp).
'$trace_cmd'(c, exit, _, _, _, _) :-
 !, '$trace_set'(trace).
'$trace_cmd'(c, _L, _, _, _, _) :- !.
'$trace_cmd'(s, call, _, _, _, _) :-
 !, '$trace_set'(no_trace).
'$trace_cmd'(s, _, _, _, _, _) :- !.
'$trace_cmd'(f, _, _, _, _, _) :- !, fail.
'$trace_cmd'(r, _, _, ID, _, Bk) :- % retry
 !,
 '$set_backtrack_frame'(Bk),
 fail.
'$trace_cmd'(a, _, _, _, _, _) :- !,halt.
'$trace_cmd'(g, P, G, Anc, ID, B) :- % ancestors
 !,
 write('Ancestors: '),
 '$trace_write_ancestors'(Anc),
 '$trace_read_and_cmd'(P, G, Anc, ID, B).

'$trace_write_ancestors'([]) :- !.
'$trace_write_ancestors'(Anc) :-
 reverse(Anc, RevAnc),
 writeln('Ancestors:'),
 ‘$trace_write_ancestors1'(RevAnc, 1).

'$trace_write_ancestors1'([],_).
'$trace_write_ancestors1'([ID-Goal|T], D) :-
 '$trace_create_prompt'(D, Goal, ID, Prompt),
 writeln(Prompt),
 DNext is D + 1,
 '$trace_write_ancestors1'(T, DNext).

‘$traceR’/3: extending WAM trace
predicate with ‘nodebug’
command.

This implementation is extended to
support the ‘nodebug’ command. A
new trace mode is introduced,
‘skip_trace’. The WAM instructions
that ‘backtrack’ the state.trace_call
do not reset the value if it is already
‘no_trace’. With this change
backtracking to a frame that was
tracing calls will not restore tracing if
the ‘nodebug’ command has been
used.

The changes to the $traceR
predicate and supporting predicates
are extensive. The
‘$trace_is_suspended’/0 and
‘$trace_suspend_if_active’/1
predicates are introduced to manage
the skip_trace mode. (These
predicates will be extended in the
next version.)

Extending the WAM with Procedure Box Debugging

32 of 40! Spratt, LFS-1

'$traceR'(notrace, _, _) :-
 !,
 '$trace_set'(no_trace).

'$traceR'(Goal, Anc, ID) :-
 '$trace_set'(skip_trace),
 '$trace_retry'(ID, B),
 '$trace_interact'(call, fail, Goal, Anc, ID, B),
 call(Goal),
 '$trace_suspend_if_active',
 ('$trace_is_suspended'
 -> '$trace_set_info'(Anc),
 '$trace_interact'(exit, redo, Goal,
 Anc, ID, B)
 ; true).

'$trace_retry'(ID, B) :- '$get_backtrack_frame'(B).
'$trace_retry'(ID, B) :-
 '$trace_retry_value'(ID),
 '$trace_set_retry'(none),
 '$trace_retry'(ID, B).

'$trace_is_suspended' :-
 '$trace_value'(Value),
 '$trace_is_suspended'(Value),
 !.
'$trace_is_suspended'(skip_trace).

'$trace_suspend_if_active' :-
 '$trace_value'(Value),
 '$trace_suspend_if_active'(Value),
 !.
'$trace_suspend_if_active'(trace) :-
 !,
 '$trace_set'(skip_trace).
'$trace_suspend_if_active'(_).

'$trace_interact'(A, _B, G, Anc, ID, Bk) :-
 '$trace_interact'(A, G, Anc, ID, Bk).
'$trace_interact'(_A, B, G, Anc, ID, Bk) :-
 \+ '$trace_value'(no_trace),
 '$trace_interact'(B, G, Anc, ID, Bk),
 !,
 fail.

'$trace_check_command'(X) :-
 read_char(X),
 member(X, [c, s, f, r, g, a, n]),
 !.
'$trace_check_command'(X) :-
 writeln('Commands are: "c" (creep), "s" (skip),
"f" (fail), "r" (retry), "g" (ancestors),
“a” (abort), “n” (nodebug).'),
 '$trace_check_command'(X).

The major changes to the
‘$trace_cmd’/6 predicate are the
implementations of the ‘s’ (skip),
‘n’ (no trace) and ‘r’ (retry)
commands. The skip command sets
the trace mode to
‘skip_trace’ (instead of ‘no_trace’ in
the previous version) and the no-
trace command sets the mode to
‘no_trace’.

In the new version of the retry
command the invocation ID is
recorded in the WAM state as the
retry ID. This recorded retry ID is
used by the ‘$trace_retry’/2
predicate to determine when the
current invocation is the target of a
retry backtrack.

WAM Modification Summary

No instructions are modified for the
‘nodebug’ feature. There are two
new procedures:
get_backtrack_frame and
set_backtrack_frame. The changed
procedures are: trace_set,
trace_value, backtrack_trace,
suspend_trace, and
comp_call_or_exec.

Extending the WAM with Procedure Box Debugging

33 of 40! Spratt, LFS-1

'$trace_cmd'(c, call, G, Anc, ID, _) :-
 !,
 '$trace_push_info'(ID, G, Anc),
 '$trace_set'(trace_next_jmp).
'$trace_cmd'(c, exit, _, _, _, _) :-
 !, '$trace_set'(trace).
'$trace_cmd'(c, _L, _, _, _, _) :- !.
'$trace_cmd'(s, call, _, _, _, _) :-
 !, '$trace_set'(skip_trace).
'$trace_cmd'(s, _, _, _, _, _) :- !.
'$trace_cmd'(n, _, _, _, _, _) :- % nodebug
 !, ‘$trace_set'(no_trace).
'$trace_cmd'(f, _, _, _, _, _) :- !, fail.
'$trace_cmd'(r, _, _, _, ID, B) :- % retry
 !,
 '$trace_set_retry'(ID),
 '$set_backtrack_frame'(B),
 fail.
'$trace_cmd'(a, _, _, _, _, _) :- !,halt.
'$trace_cmd'(g, P, G, Anc, ID, B) :- % ancestors
 !,
 write('Ancestors: '),
 '$trace_write_ancestors'(Anc),
 '$trace_read_and_cmd'(P, G, Anc, ID, B).

The backtrack frame procedures

There are two new builtins that use
two new procedures to access the B
register for the current backtrack
frame: get_backtrack_frame and
set_backtrack_frame.

The trace_set and trace_value
builtins

The instructions are changed to
handle the new skip_trace trace_call
mode. The TC register uses value 4
for skip_trace.

The backtrack_trace procedure

The backtrack_trace procedure is
extended to not restore trace
information if the TC register is set to
0 (no_trace). This handles the only
change needed to support the
retry_me_else, trust_me, retry, and
trust instructions. Also this change
adapts the backtrack procedure.

Extending the WAM with Procedure Box Debugging

34 of 40! Spratt, LFS-1

procedure get_backtrack_frame(BTerm:integer)
 returns boolean:
 begin
 return
 unify(BTerm, PL_integer_term(B));
 end;

procedure set_backtrack_frame(BTerm:integer)
 returns boolean:
 begin
 B = PL_integer(BTerm);
 return true;
 end;

procedure trace_set(modeTerm:integer)
 returns boolean;
 begin
 mode = PL_atom_chars(modeTerm);
 if (mode = ‘no_trace’) then TC <- 0
 else if (mode = ‘trace’) then TC <- 1
 else if (mode = ‘trace_next’) then TC <- 2
 else if (mode = ‘trace_next_jmp’) then TC <- 3
 else if (mode = ‘skip_trace’) then TC <- 4
 else ERROR;
 return true;
 end;

procedure trace_value(modeTerm:integer)
 returns boolean;
 begin
 if (TC = 0) then mode <- ‘no_trace’
 else if (TC = 1) then mode <- ‘trace’
 else if (TC = 2) then mode <- ‘trace_next’
 else if (TC = 3) then mode <- ‘trace_next_jmp’
 else if (TC = 4) then mode <- ‘skip_trace’
 else ERROR;
 return unify(modeTerm, PL_atom_lookup(mode));
 end;

procedure backtrack_trace(B, n):
 begin
 if(TC != 0)
 begin
 TC <- STACK[B + n + 8];
 TI <- STACK[B + n + 9];
 end;
 end;

The suspend_trace function for skip_trace

The suspend_trace function for skip_trace changes the trace
mode to skip_trace (4) instead of no_trace (0).

The comp_call_or_execute function for skip_trace

The comp_call_or_execute function implementation is
unchanged - it relies on the change to suspend_trace
function to handle the change to skip_trace.

Spy points
The remaining basic debugging feature is a spy facility: the
user specifies which predicates on which to spy. These are
like break points in a conventional debugger. The leap
command skips tracing until a spy predicate is encountered.
There are new trace commands related to leaping and
spying: “l” (leap), “+” (add a spypoint), and “-” (removed a
spypoint).

Spy points are defined in different ways in different systems.
In most systems there are both unconditional (or plain) spy
points and conditional spy points. In this note we only
address unconditional spy point. In GNU Prolog an
unconditional spy point is defined for a collection of one or
more predicates with the same functor. From p.34 of [Diaz,
2013]:
• Name: set a spy-point for any predicate whose name is

Name (whatever the arity).
• Name/Arity: set a spy-point for the predicate whose name

is Name and arity is Arity.
• Name/A1-A2: set a spy-point for the each predicate whose

name is Name and arity is between A1 and A2.
SWI-Prolog has a similar definition for spy points, where the
specification for a spy point is Name, Name/Arity, or Name//
Arity. (The Name//Arity specification is the same as Name/
Arity+2 and is convenient for specifying a predicate defined
using DCG rules.) SWI-Prolog does not use the Name/A1-
A2 form. SICStus Prolog supports Name and Name/Arity for
specifying unconditional spy points (p. 233 in [Carlsson et al,
2019]). The XSB system supports plain spy point
specifications of Name and Name/Arity (p. 327 in [Swift et al,
2013]).

Extending the WAM with Procedure Box Debugging

35 of 40! Spratt, LFS-1

procedure suspend_trace()
 begin
 if (TC = 1)
 then TC <- 4;
 end;

In this note we use a single
implementation for all spy points. A
full spy point specification ‘spy(P, G,
B)’ includes a port P, a goal G to
match the current trace goal, and a
prolog expression B. When the
expression B is something other than
‘true’ then B and the match goal
share one or more variables. Using
the ‘+’ command when at a trace
point for some goal G with functor F
and arity A creates a spy point of
‘spy(_, F(_, _, ...), true)’. The ‘-’
command retracts all spy points for
the functor and arity of the current
goal: retractall(spy(_, F(_, _, ...), _)).

The spy(Name) goal creates spy
facts for all known arities of
predicates with functor Name. E.g. if
p/0 and p/1 are both defined then
spy(p) creates spy(_, p, true) and
spy(_, p(_), true). The spy(Name/
Arity) goal creates the spy fact for a
single predicate. E.g. spy(p/1)
creates spy(_, p(_), true).

There are new trace modes to
support spy points and leaping:
leap_trace, suspend_leap_trace, and
leap_trace_next_jmp. The ‘leap’
mode cause $traceR to be invoked
the same as ‘trace’ mode, but it
causes tracing of ports and goals that
are not spied to not be displayed, the
same as ‘skip’ mode. The tracing
mechanism is active when leaping for
all goals to track the ancestors and to
check each port of each goal for a
spy point that is satisfied.

The ‘$traceR’ predicate is unchanged
from above. Several support
predicates are changed.

Extending the WAM with Procedure Box Debugging

36 of 40! Spratt, LFS-1

'$trace_is_suspended'(skip_trace).
'$trace_is_suspended'(suspend_leap_trace).

'$trace_suspend_if_active'(trace) :-
 !, '$trace_set'(skip_trace).
'$trace_suspend_if_active'(leap_trace) :-
 !, '$trace_set'(suspend_leap_trace).
'$trace_suspend_if_active'(_).

'$trace_interaction_enabled'(P, G) :-
 '$trace_spy_mode'(M),
 '$trace_interaction_enabled'(M, P, G).

'$trace_interaction_enabled'(all, _P, _G) :- !.
'$trace_interaction_enabled'(specified, P, G) :-
 !,
 % Following double-negative is used
 % to avoid persistent bindings
 % of variables in G (if any).
 \+ \+ (
 '$trace_spy_specification'(P, G, B),
 (B = true -> true ; call(B))
).

'$trace_spy_mode'(M) :-
 '$trace_value'(Value),
 '$trace_spy_mode1'(Value, M).

'$trace_spy_mode1'(trace, all).
'$trace_spy_mode1'(skip_trace, all).
'$trace_spy_mode1'(leap_trace, specified).
'$trace_spy_mode1'(suspend_leap_trace, specified).

'$trace_check_command'(X) :-
 read_char(X),
 member(X, [c, s, l, (+), (-), f, r, g, a, n]),
 !.

'$trace_check_command'(X) :-
 writeln('Commands are: "c" (creep), "s" (skip),
"l" (leap), "+" (spy this), "-" (nospy this),
"f" (fail), "r" (retry), "g" (ancestors),
"a" (abort), "n" (nodebug).'),
 '$trace_check_command'(X).

The ‘$trace_cmd’/6 predicate has the
same clauses as previously plus the
two additional clauses for ‘+’ to add a
spy point on a predicate and ‘-’ to
remove spy points for a predicate.

WAM Modification Summary

No instructions are changed.
Modified procedures are: trace_get,
trace_value, trace_call_or_exec,
suspend_trace, and
adv_next_trace_cond.

The trace_set and trace_value
builtins for leap_trace

The instructions are changed to
handle the new leap_trace trace_call
mode. The TC register uses value 5
for leap_trace, 6 for
suspend_leap_trace, and 7 for
leap_trace_next, and 8 for
leap_trace_next_jmp.

Extending the WAM with Procedure Box Debugging

37 of 40! Spratt, LFS-1

:- dynamic('$trace_spy_specification'/3).

(Other '$trace_cmd'/6 clauses as above)

'$trace_cmd'(+, P, G, Anc, ID, B) :-
 !,
 G =.. [F|As], length(As, L),
 length(Ts, L), GT =.. [F|Ts],
 assertz('$trace_spy_specification'(_, GT, true)),
 write('Spypoint placed on '), writeln(F / L),
 '$trace_read_and_cmd'(P, G, Anc, ID, B).

'$trace_cmd'(-, P, G, Anc, ID, B) :-
 !,
 G =.. [F|As], length(As, L),
 length(Ts, L), GT =.. [F|Ts],
 retractall('$trace_spy_specification'(_, GT, _)),
 write('Spypoint removed from '), writeln(F / L),
 '$trace_read_and_cmd'(P, G, Anc, ID, B).

procedure trace_set(modeTerm) returns boolean;
 begin
 mode = PL_atom_chars(modeTerm);
 if (mode = ‘no_trace’) then TC <- 0
 else if (mode = ‘trace’) then TC <- 1
 else if (mode = ‘trace_next’) then TC <- 2
 else if (mode = ‘trace_next_jmp’) then TC <- 3
 else if (mode = ‘skip_trace’) then TC <- 4
 else if (mode = ‘leap_trace’) then TC <- 5
 else if (mode = ‘suspend_leap_trace’)
 then TC <- 6
 else if (mode = ‘leap_trace_next’) then TC <- 7
 else if (mode = ‘leap_trace_next_jmp’)
 then TC <- 8
 else ERROR;
 return true;
 end;

procedure trace_value(modeTerm) returns boolean;
 begin
 if (TC = 0) then mode <- ‘no_trace’
 else if (TC = 1) then mode <- ‘trace’
 else if (TC = 2) then mode <- ‘trace_next’
 else if (TC = 3) then mode <- ‘trace_next_jmp’
 else if (TC = 4) then mode <- ‘skip_trace’
 else if (TC = 5) then mode <- ‘leap_trace’
 else if (TC = 6)
 then mode <- ‘suspend_leap_trace’
 else if (TC = 7) then mode <- ‘leap_trace_next’
 else if (TC = 8)
 then mode <- ‘leap_trace_next_jmp’
 else ERROR;
 return unify(modeTerm, PL_atom_lookup(mode));
 end;

The trace_call_or_exec function for leap_trace

The trace_or_call function returns true if the input predicate
P is traceable (e.g. not a special predicate such as ‘$trace’
or ‘true’) and if the TC register is 1:

The suspend_trace procedure for leap_trace

The suspend_trace procedure changes the trace mode to
that mode’s suspended version: trace -> no_trace.

The adv_next_trace_cond procedure for leap_trace

This procedure changes the mode from trace_next to trace
or leap_trace_next to leap_trace.

Extending the WAM with Procedure Box Debugging

38 of 40! Spratt, LFS-1

procedure trace_call_or_execute(
 P:predicate)
 returns boolean
 begin
 return
 (TC = 1 || TC = 5)
 && is_traceable(P);
 end;

procedure suspend_trace
 begin
 if (TC = 1)
 then TC <- 4
 else if (TC = 5)
 then TC <- 6
 end;

procedure adv_next_trace_cond
 begin
 if (TC = 2) then TC <- 1
 else if (TC = 7)
 then TC <- 5;
 end;

References
Aït-Kaci, 1999
Hassan Aït-Kaci. Warren's abstract machine: a tutorial reconstruction. 1999. Reprinted
from Cambridge, Mass: MIT Press edition. URL: http://wambook.sourceforge.net/
wambook.pdf.

Cabeza et al, 2018
Daniel Cabeza, Manual C. Rodriguez, Edison Mera, A. Ciepielewski (first version), Mats
Carlsson (first version), T. Chikayama (first version), K. Shen (first version). “Interactive
debugger” in “The Ciao System: A New Generation, Multi-Paradigm Programming
Language and Environment (Including a State-of-the-Art ISO-Prolog).” Technical Report
CLIP 3/97-1.18. Version 1.18 (2018/12/6, 11:25:8 CEST). Edited by: Francisco Bueno,
Manuel Carro, Manuel Hermenegildo, Pedro López, José F. Morales. The
Computational logic, Languages, Implementation, and Parallelism (CLIP) Lab, School of
CS, T. U. of Madrid (UPM), IMDEA Software Institute. https://web.archive.org/web/
20190309190405/https://ciao-lang.org/ciao/build/doc/ciao.html/debugger_doc.html

Byrd, 1980
Lawrence Byrd. “Understanding the control flow of Prolog programs.” Logic
Programming Workshop, 1980. (publisher unknown)

Carlsson et al, 2019
Mats Carlsson et al. SICStus Prolog User’s Manual. 2019. http://sicstus.sics.se/

Diaz, 2013
Daniel Diaz. GNU Prolog: A Native Prolog Compiler with Constraint Solving over Finite
Domains Edition 1.44, for GNU Prolog version 1.4.4. April 23, 2013. archive.org URL:
https://web.archive.org/web/20180516234545/http://gprolog.org/manual/gprolog.pdf.

Swift et al, 2013
Terrence Swift, David S. Warren, Konstantinos Sagonas, Juliana Freire, Prasad Rao,
Baoqiu Cui, Ernie Johnson, Luis de Castro, Rui F. Marques, Diptikalyan Saha, Steve
Dawson, and Michael Kifer. The XSB System, Version 3.3.x. Volume 1: Programmer’s
Manual. July 4, 2013. https://web.archive.org/web/20170531123709/http://
xsb.sourceforge.net/downloads/manual1.pdf

Warren, 2018
David S. Warren. “WAM for everyone: a virtual machine for logic programming.” In
Declarative Logic Programming. 2018. Michael Kifer and Yanhong Annie Liu (Eds.).
Association for Computing Machinery and Morgan & Claypool, New York, NY, USA
237-277. DOI: https://doi.org/10.1145/3191315.3191320

Wielemaker, 2019

Extending the WAM with Procedure Box Debugging

39 of 40! Spratt, LFS-1

https://web.archive.org/web/20190309190405/https://ciao-lang.org/ciao/build/doc/ciao.html/debugger_doc.html
https://web.archive.org/web/20190309190405/https://ciao-lang.org/ciao/build/doc/ciao.html/debugger_doc.html
https://web.archive.org/web/20190309190405/https://ciao-lang.org/ciao/build/doc/ciao.html/debugger_doc.html
https://web.archive.org/web/20190309190405/https://ciao-lang.org/ciao/build/doc/ciao.html/debugger_doc.html
http://sicstus.sics.se
http://sicstus.sics.se
https://web.archive.org/web/20180516234545/http://gprolog.org/manual/gprolog.pdf
https://web.archive.org/web/20180516234545/http://gprolog.org/manual/gprolog.pdf
https://web.archive.org/web/20170531123709/http://xsb.sourceforge.net/downloads/manual1.pdf
https://web.archive.org/web/20170531123709/http://xsb.sourceforge.net/downloads/manual1.pdf
https://web.archive.org/web/20170531123709/http://xsb.sourceforge.net/downloads/manual1.pdf
https://web.archive.org/web/20170531123709/http://xsb.sourceforge.net/downloads/manual1.pdf
https://doi.org/10.1145/3191315.3191320
https://doi.org/10.1145/3191315.3191320

Jan Wielemaker. SWI-Prolog Reference Manual (Updated for version 8.0-2). March,
2019. URL: http://www.swi-prolog.org/download/stable/doc/SWI-Prolog-8.0.2.pdf

Extending the WAM with Procedure Box Debugging

40 of 40! Spratt, LFS-1

http://www.swi-prolog.org/download/stable/doc/SWI-Prolog-8.0.2.pdf
http://www.swi-prolog.org/download/stable/doc/SWI-Prolog-8.0.2.pdf

