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Abstract

This dissertation studies the hypothesis that visual logic programming based on
sets with partitioning constraints provides a superior basis for exploratory program-
ming languages. Our research program is to design and implement such a program-
ming language with an integrated development environment, and to analyze this
implementation.

The programming language we have created is named SPARCL (Sets and
Partitioning Constraints in Logic). It has the four elements of the hypothesis: it is a
visual  language,  it is a logic programming language, it relies entirely on sets to orga-
nize data (which implies that programs are organized using sets, since programs can
be viewed as data in this language), and it supports partitioning constraints on the
contents of sets. In developing this language, we invented new visual language repre-
sentation techniques (the automatically laid out “smooth” hyperedge in two and three
dimensions) and a new kind of unification for logic programming (the partitioned set
unification algorithm).

We have evaluated SPARCL in three different ways. We examinee solutions in
SPARCL of several programming problems, and compared these to solutions in LISP

and PROLOG. We developed and applied software measurements for objectively ana-
lyzing these solutions across the three languages. Finally, we created a small experi-
ment (involving seven participants) for testing the usability of the language and ana-
lyzed the data gathered from this experiment.

Our results provide modest support for the usefulness of the approach to program-
ming language design that SPARCL embodies.
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Chapter 1
Introduction

This dissertation studies the hypothesis that visual logic programming based on
sets with partitioning constraints provides a superior basis for exploratory program-
ming languages. Our research program is to design and implement such a program-
ming language with an integrated development environment, and to analyze this
implementation. By “exploratory” programming we mean using the programming
process and the programs one creates as a tool in understanding a complex problem.

The programming language we have created is named SPARCL (Sets and
Partitioning Constraints in Logic). It has the four elements of the hypothesis: it is a
visual  language,  it is a logic programming language, it relies entirely on sets to orga-
nize data (which implies that programs are organized using sets, since programs can
be viewed as data in this language), and it supports partitioning constraints on the
contents of sets. It is a visual programming language in that the representation of the
language depends extensively on non-textual graphics and the programming environ-
ment is graphical. It is a logic programming language in that the underlying semantics
of the language is the resolution of clauses of a Horn-like subset of first order predi-
cate logic. It uses sets as the only method of combining terms to build complex terms.
Finally, it allows the structure of a set to be constrained by a partitioning of that set
into pairwise disjoint subsets, the union of which is equal to the whole set. The parti-
tioning constraint is a novel programming technique we developed for this thesis.

There are several reasons supporting the plausibility of the hypothesis. We con-
sider each of the four elements. Visual programming languages (VPLs) can be much
easier to understand than linear text-based programming languages: this greater felici-
ty of expression is due to the greater variety of expression available in VPLs and the
intrinsically unordered nature of a two-dimensional presentation. There is the addi-
tional “obvious” benefit of visual programming that to the extent that a programmer
tends to use pictures (particularly diagrams) to describe her problem, the representa-
tion of a program “visually” more closely mirrors the programmer’s way of thinking
than the textual representation does.

Logic programming is an approach to “declarative” programming. The ideal of
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this approach to programming is  to relieve the programmer of the necessity of con-
sidering how the program interpreter achieves the programmer’s goal—the program-
mer need only provide a problem and a logical description of the problem domain. It
is not yet possible to achieve this ideal, but strides in this direction have been made.

Sets are the simplest construct for specifying collections of data. A set does not
imply an order on its members (as do lists and records), and a term either is or is not a
member – a term isn’t a member to some degree (as in fuzzy sets) or a member some
number of times (as in multisets or bags).  Thus, sets allow a programmer to be
semantically precise and only include those constraints on data which are appropriate
to the problem at hand. More constrained representations of data can be built “on top”
of sets, as necessary. 

We speculate that sets are used frequently in the description of problems.  Thus,
the semantic precision of sets should often be useful, shortening the distance from the
original problem conception to the programmatic expression of that problem. This
“shorter distance” should make it easier for a person to work with their program (e.g.,
create, modify, debug).

Partitioning constraints are useful in abstractly specifying the structure of sets.
These constraints can be used to build common set operations such as union,
intersection, and difference.

We consider some of these plausibility arguments in more detail below.

Greater variety of expression. The greater variety of expression is two-fold. First,
the programming language elements can be arbitrary pictures, as opposed to a fairly
limited set of graphics from a character set. Second, the programming elements can
be related to each other “pictorially”, instead of simply by their proximity in a string.
The most common pictorial relationships are: a line drawn to connect elements, and
one element’s picture encompassing the picture of another element. Other possibili-
ties for expressing relationships include corresponding colors, shapes, and shape ele-
ments (such as line thickness or fill patterns). These last techniques are particularly
useful for identifying elements as having particular properties. With the great variety
of expressive techniques available, a VPL can be semantically very dense. A road
map is a common example of a semantically dense visual presentation of data.

Weakly ordered. The weakly ordered nature of a two dimensional presentation
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means that if one sees several pictures in a single display (which don’t happen to line
up in rows and columns), there’s no (culturally determined) order which the viewer

Figure 1. 1: Weak ordering examples.

assumes for these pictures. This is shown in Figure 1. 1. In contrast, when presented
with rows of strings of characters, one adopts the ordering which one’s culture uses
for writing text (e.g., left to right and top to bottom for languages in the Indo-Europe-
an family). Thus, when one has elements to present which are not meant to be or-
dered, a VPL provides a way to do this and a text-based language does not. In the
case of the text based language one needs to achieve the unordering of the elements
via the semantics of the language. A VPL can present orderings of elements (although
not as compactly as a text-based language) via an appropriate choice of pictorial con-
ventions (such as the use of connecting lines with arrow heads). 

Declarative programming. A programming language which allows one to declare
what a solution “looks like” (what properties a solution has) is potentially much easi-
er to use than one which requires that one specify the procedure necessary to go from
some initial state to a final solution state. The declarative approach to a programming
language is a fundamentally unordered presentation of properties. The procedural ap-
proach is a fundamentally ordered (via control flow) presentation of computational
steps. Thus, the declarative paradigm is better suited as the underlying semantics of a
VPL than is the procedural paradigm, since the declarative paradigm can take advan-
tage of the possibility of unordered displays but the procedural paradigm does not.
Some of the major declarative programming paradigms are logic programming, func-
tional programming, and data-flow programming. Logic and functional programming,
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viewed as declarative programming paradigms, are essentially mathematical/notation-
al variants of each other. Data-flow programming is substantially different in its orga-
nization from these other two. Of these paradigms, logic programming has not been
used as the underlying paradigm for a solely-visual programming language.

Nondeterminism is closely related to declarative programming. The sense of the
term “nondeterminism” is as follows: a logic program which can return multiple an-
swers is nondeterministic - its first answer can be “failed” causing the program to
“retry” and produce another answer. This is not the notion of nondeterminism com-
mon to formal language theory: A program is “strictly” nondeterministic if the output
(answer) from executing that program is not necessarily the same every time that pro-
gram is executed with the same inputs. If one considers executing a logic program
“from the top”, then logic programs are “strictly” deterministic - they give the same
results every time they are run with the same inputs. However, if one considers each
“retry” of a program as a separate “execution” of that program but with the same
input, then one can even say that a logic program can be “strictly” nondeterministic,
since it can produce different results with each such retry. Nondeterminism is not the
same thing as unpredictability - a program can be nondeterministic and yet be com-
pletely predictable.1 Michal Walicki and Sigurd Meldal identify a close relationship
between sets and nondeterminism:

“A feature shared by sets and nondeterministic operations is their natural capability of abstraction.
Sets abstract from the ordering inherent in the syntax of the language and in the most common
data structures. Nondeterminism abstracts from the procedural description of a (possibly de-
terministic) process and allows one to focus on the results produced.

The abstract character of a set makes it an essentially nondeterministic structure: the lack
of an ordering of its elements does not, typically, reflect the lack of such an ordering on the
concrete representations (implementations) of these elements, but merely the fact that any
concrete ordering is equally acceptable. On the other hand, nondeterministic operations are re-
lated to sets in that we think of them as capable of returning any element from some set of the
possible results. Also, the paradigmatic example of a nondeterministic operation is that of an
arbitrary choice among the elements of some set.”2

1. There is a use made of nondeterminism in formal language theory which does seem related to un-
predictability, though. A nondeterministic machine which has several next states from its current
state, all of which use the same transition symbol, can arbitrarily (nondeterministicly) choose to
which of these next states to move. When doing a complexity analysis, it may be interesting to as-
sume that the machine always chooses the next state which is most “efficient”.

2. p. 1 of [Walicki&Meldal 1993].
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Sets and partitions. There are two approaches to ways to collect together data. One
is an N-tuple and the other is a set. The N-tuple is present in almost all programming
languages in a variety of forms, common forms are records, lists, arrays, and struc-
tures (a functor plus arguments). An N-tuple is an ordered collection of elements. The
set approach is rarely used in programming languages, SETL adds a set data type to
an otherwise normal procedural/imperative style language and REFINE uses a set-
theoretic “top-level” as a specification language which the users then “refine” into a
C, COBOL, or LISP program (without sets). The data collection which needs an un-
ordered presentation is a set, making it an interesting candidate as the basic data orga-
nizing tool for a VPL. Semantically, one can still represent N-tuples as sets, so order-
ing can be expressed in a set-based language. The idea of partitioning a set is a useful
and natural way to constrain the structure of a set. This can be viewed as a generaliza-
tion of sorts of the ability in list-based languages to “abstractly” specify the first ele-
ment of a list and the rest of that list (e.g. ‘[H|T]’ in Prolog constrains H to be bound
to the first element of a list and T to be bound to the rest of that list).

N-Tuples and lists. It is often relevant to order data items. In most symbolic lan-
guages this is done via a list or “structure”. For instance, LISP uses only lists, PRO-
LOG generally implements lists via structures with structures being the more elemen-
tary construct, and many languages provide arrays and some kind of record structur-
ing. However, it is not necessary to have any additional mechanism beyond sets in
order to express ordering. Since the expression of ordering purely in terms of sets is
extremely cumbersome, a special representation for ordering of elements is provided
in SPARCL. This special representation is the N-tuple, where a sequence of n ele-

ments t1 through tn is written “〈t1, ..., tn〉”. From this general construction, any order-

dependent structure can be defined. A function of two arguments can be described as
a 3-tuple, with its first element the name of the function and the second and third ele-
ments of the 3-tuple corresponding to the first and second function arguments. 

A list can be described as being built up out of nested uses of an ordered pair (a 2-
tuple). Since n-tuples are recursive in their first argument, as defined above, and lists
are usually considered to be recursive in their second argument, the “order” of argu-
ments is exchanged between the list representation and the ordered-pair representa-
tion. The first argument of the ordered pair representing a list is another ordered pair
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(representing the “rest” of the list), or the empty list represented by the symbol ‘nil’
(indicating that the “rest” of the list is empty). A list “[a, b]” is defined as “〈〈nil, b〉,
a〉”, which can also be written as “〈nil, b, a〉”. Since a list always has a known (‘nil’)
first argument in its N-tuple representation, relations involving ordered collections of
data of indeterminate length are frequently more conveniently defined over lists in-
stead of arbitrary n-tuples. This is due to the terminating condition for a recursive def-
inition being easier to define for lists (since the end of the list is known to always be
‘nil’) than for n-tuples (where any term may be the “end” (actually first argument) of
an N-tuple).

Criticisms

Each of the three major techniques that we combine faces substantial criticisms.
In this section we briefly acknowledge some of these criticisms.

Visual programming languages. The graphical representations associated with
visual programming languages are characterized as uniformly harder to use than cor-
responding textual representations by Marian Petre in [Petre 1995]. The major sense
of “harder to use” here seems to be “slower to understand”. This work also identifies
“secondary notation”, informal aspects of program representation layout, as crucial to
improving the comprehensibility of graphical and textual programs. Jeffrey Nickerson
claims that graphical representations are less “informationally dense” than textual
ones in [Nickerson 1994a; Nickerson 1994b].

We believe that visual programming languages have potential for improved
understandability with respect to textual languages, contrary to Petre’s position. Rea-
sons for this include the greater variety of expression discussed earlier in this chapter
and the many situations in which diagrammatic representations, which are strictly
speaking only available to visual programming languages, are much more readily
understood than the corresponding linguistic representations. An example of this lat-
ter point is a genealogy: a diagram of familial relationships is much easier to under-
stand than several sentences of text describing these same relationships.

The informational density difference between graphical and textual representa-
tions is less dramatic than one might expect. We measure the sizes of various SPARCL

programs and corresponding programs in LISP and PROLOG in chapter 8 (“Objective
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Analysis”). The SPARCL programs turn out to be reasonably “dense” (although not as
dense as the other languages). In any event, we are unconvinced that this has an
important effect on the relative understandability of the two approaches.

Logic programming. Logic programming has been criticized as leading to programs
which are slower than corresponding programs in other languages. Another common
criticism is that logic programming languages are perceived as providing only a sin-
gle search technique (e.g. backtracking depth first in PROLOG), and that this is not
appropriate for many problems. Logic programming (and especially PROLOG) is criti-
cized as requiring the programmer to use “extra” variables, since it uses a “relational”
style of programming instead of “proper” functions (e.g. in PROLOG one must say
“sum(X, Y, Total), product(Total, Z, Result)” instead of “product(sum(X, Y), Z)”).

There are many implementations of logic programming languages that produce
very efficient programs. Creating such an implementation is a complex and difficult
task, but it can be and has been done. The single-search-technique criticism confuses
the behavior of a program and the behavior of the runtime package implementing the
language in which that program in written. There is no need for a PROLOG program to
use depth-first searching; the runtime that executes the PROLOG program may use
depth-first searching, but the program itself may implement a breadth-first search or a
hash-table. Relational programming does indeed use more variables when compared
with functional programming for certain problems, but this is more an issue of syntax
than underlying semantic model. Since the conversion from functional syntax to rela-
tional syntax is very easy, there are simple syntax preprocessors that accept functional
extensions to the basic relational syntax and automatically convert it. The conversion
the other direction is more complex, since only some uses of variables are “func-
tional”. Thus, to convert the other direction one needs to analyze a particular rela-
tional expression to determine which variables are “functional” (i.e. what the domain
and range of the one-to-one and onto mapping are). There may not even be a func-
tional re-expression of the relation. In any event, this analysis can be quite complex.
Thus, the relational expression is occasionally more awkward than a corresponding
functional expression, but is also more general.

Programming with partitioned sets. There are no criticisms of programming with
partitioned sets, as this is an approach first presented in this thesis. But there is a long
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history of work in (unpartitioned) sets. A criticism of sets is that they are too abstract,
and lead to performance problems in the implementation of set-based algorithms.

The abstract nature of sets is both a weakness and a strength. A weakness is that a
complex data object can be difficult to decipher when presented as many interrelated
elements among nested sets. A strength is that some very general relationships for
sets, and various special kinds of sets, can be programmed once and applied to many
different specific complex data structures represented using sets. We mitigate the
“weakness” by providing a variety of specialized representations of sets: when a pro-
grammer sees one of these specialized representations, she immediately knows some
of the constraints on the structure of the represented set (as implied by the specialized
representation). We maintain the “strength” by making the various representation spe-
cializations purely syntactic devices: they all are transformed into sets internally, pro-
viding a uniform data structure on which programs operate. There are performance
problems when working with sets, but these can be reduced by applying various opti-
mizations: unifications can be “pre-compiled” and program transformations can be
applied that use knowledge of the specialized representations.

In general. We do not claim that these three techniques are universally appropriate
for solving programming problems, individually or in combination. But, we do claim
that there are ways in which each approach is valuable, and that these three
approaches are particularly well-suited to being used in combination with each other.

Overview of the SPARCL Project.

The SPARCL research project is presented in this thesis in three parts: the hypothe-
sis of the project, the testing of the hypothesis, and conclusions. The testing of the
hypothesis has two sub-parts: creating SPARCL and evaluating SPARCL. The sections of
the thesis correspond to these parts: section 1, “Introducing the Project”, presents the
hypothesis (and related material); section 2, “Testing the Hypothesis: Creating
SPARCL”, and section 3, “Testing the Hypothesis: Evaluating SPARCL”, present the test-
ing of the hypothesis; and the conclusion is in section 4.

The research contributions of this project are found in both sections 2 and 3. They
include: a new unification problem and its solution, new two- and three-dimensional
visual programming language representations, new two- and three-dimensional repre-
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sentation techniques for connecting lines, a diagrammatic/linguistic programming
language representation evaluation technique, an analytic multi-paradigm program-
ming language comparison technique, and an approach to integrated usability testing.
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The Hypothesis.

The first major objective of this research is to determine the feasibility of the
SPARCL approach: Can one create a visual logic programming language based on
partitioned sets? What factors limit the feasibility of the approach? The answer to this
question is primarily a demonstration—show that such a language can be built by
doing so. The second major objective of the proposed research is to test the hypothe-
sis presented at the beginning of this chapter: In what way is a visual logic program-
ming language based on sets and partitioning a superior approach to programming? Is
there any  combination of a particular programming problem domain and another ap-
proach to programming for which SPARCL is the better tool in that problem domain?
There is no universally compelling method for answering such a question, and ulti-
mately the bulk of the answer are in the form of informal arguments and reasoning
from examples. A better form of the answer would be the result of testing of various
approaches to visual logic programming based on sets and partitioning with various
groups of potential users (e.g. professional software engineers,  scientists in and out
of computer science, students). However, the resources for such testing are not avail-
able. This project does do some user testing, but unfortunately not enough to be statis-
tically significant as predicting results for a large population. Achieving the first
objective allows us to approach the second one.

Feasibility. SPARCL feasibility requires effective syntax and semantics: a usable
representation and a system which interprets that representation and presents the
results of the interpretation to the user. The usability of a representation includes not
only its static properties such as understandability but also its dynamic properties
such as ease of program creation and maintainability. The representation of SPARCL

and its associated integrated development environment (IDE) are essential to the fea-
sibility question. They are also central to the assessment of the primary objective of
this research project, the value of visual logic programming with partitioned sets. The
interpretation of the representation requires an inference mechanism based on parti-
tioned set unification. The most difficult part of this interpreter is the algorithm for
unification of sets which honors the partitioning constraints. There is no existing solu-
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tion of this unification problem, although there are solutions for closely related prob-
lems. Thus one of the contributions of this research is the invention of this unification
problem and its solution. There are other aspects of the interpreter’s inference mecha-
nism which must be addressed. The inference mechanism uses Horn clause resolu-
tion. This approach is chosen because it is a relatively simple type of logic program-
ming semantics. Since our aim is to make the language as  declarative as possible, the
inference mechanism should not introduce any ordering in its execution on which the
programmer may rely. (This is in contrast to PROLOG, with its source-defined ordering
of goal execution and clause searching.)

Input/Output. The effective semantics of SPARCL as described above include limited
input and output capabilities: input in the form of the representation of programs and
output in the form of presenting results to the user. A “complete” programming lan-
guage provides input/output capabilities considerably greater than this, but extensive
input/output facilities for a visual programming language in general and SPARCL in
particular pose research problems beyond the scope of our primary research objec-
tives. The design of the handling of input and output is more complicated in a visual
programming languages than in linear text ones, and also the design of the semantics
of input and output is troublesome for logic programming languages. Thus, the design
of the handling of input and output in a visual logic programming language is doubly
difficult. I/O in a visual language can mean simple linear textual I/O (say to and from
an I/O stream), or it can mean reading and writing diagrams or even pictures (i.e. gen-
eral images). When linear textual languages read and write they are prepared to do
fairly sophisticated string parsing and generation. For instance, the read/1 predicate in
PROLOG parses the entire syntax of the PROLOG language. Thus, one can write an inter-
preter for PROLOG which reads PROLOG source files and prepares them for execution
simply by repeated uses of the read/1 predicate, each use reading the next clause in
the file, then adding the just-read clause to the PROLOG clause database by calling as-
sert/1 with the term just created/read by the read/1 predicate. Similarly, the writeq/1
predicate writes a term out to a file in a form which can be used as a source file. LISP

has similar capabilities for its I/O system. What does it mean for a visual language to
have a read primitive which “parses” a source file for that language? Should a visual
language have a write primitive which can be used to mimic saving a program in the
editing environment? We provide some initial solutions to these questions in the con-
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text of the implementation of SPARCL, but a great deal more work needs to be done in
this area to produce fully satisfying solutions.

Performance. For SPARCL to be feasible it must perform reasonably well. There are
two levels of performing “reasonably well” which we recognize for this research
project: adequate for the user testing, and adequate for applications. In addition to
there being two levels of performance, there are also two areas of performance, the
performance of the user interface for working with the representation (the IDE), and
the performance of the interpretation of that representation. For this project we
demonstrate performance feasibility at the level which is adequate for the user testing.
There are major performance obstacles to attaining any version of the second level for
the interpreter, and overcoming these obstacles will require substantial research and
development efforts. The performance of the IDE which is adequate for user testing is
also adequate for modest applications. The performance of the interpreter hinges on
the implementation of the unification algorithm. Approaches which could go a long
way toward achieving the second level of performance include compilation (with
emphasis on compiling “away” the unification) and partial evaluation. These are well-
researched topics in the constraint logic programming field and we expect eventually
to apply this research to SPARCL.
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Chapter 2
Related Work

The work related to developing a visual, partitioned-set, logic programming lan-
guage is discussed below. There are several major areas: visual languages, human
computer interaction, programming language design, sets in programming languages,
logic programming, and programming environments. The visual languages section
primarily surveys visual programming languages, organizing them by their underly-
ing semantic model. Visual language grammar formalisms are also surveyed in this
section. Human computer interaction is discussed briefly as a central issue in the de-
sign of any visual programming language. The section on sets in programming lan-
guages surveys this topic, especially sets in logic programming languages. The logic
programming section discusses: a history of logic programming, logic programming
languages, unification (especially set unification), logic program compilation with an
emphasis on the Warren Abstract Machine, and the special execution control tech-
nique of delayed evaluation. The programming environment section focuses mostly
on approaches to debugging.

Visual Languages.

In [Chang 1987], there are four categories of visual languages given:
1. Languages that support visual interaction.
2. Visual programming languages.
3. Visual information processing languages.
4. Iconic visual information processing languages.

The language proposed here is of the second category, a visual programming lan-
guage. These four categories are derived from the combinations of two values each in
two dimensions. In one dimension, the objects dealt with by a visual language can be
inherently visual, or inherently nonvisual but with imposed visual representation.
Along the other dimension, the programming language constructs can be visual or lin-
ear. In the case of a visual programming language, the objects dealt with are inherent-
ly nonvisual with an imposed visual representation and the programming language
constructs are visual. The research being proposed has to do with “category 2” visual
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languages only: visual programming languages.
A generalized icon is defined by [Chang 1987] as either a process or object icon.

An object icon is a two part representation of an object, the logical part (the meaning)
and the physical part (the image). An object may lack one or the other parts. A pro-
cess icon represents an action or a computational process. In this terminology, SPARCL

uses only object icons. The inference engine of SPARCL provides the implicit computa-
tion model.

Another way to categorize visual languages is by the kind of representation tech-
nique they employ. Two major approaches are box-and-line (making a graph or net-
work) and box-only representations. The box-only representations rely on contain-
ment and relative position to convey relationships between the things represented by
the boxes. The box-and-line representations rely additionally on connections made by
lines to show relationships. SPARCL is a box-and-line, diagrammatic, visual language.

Visual programming languages can also be categorized according to the kind of
underlying programming semantics they employ. These semantic “paradigms” can be
broadly divided into procedural and declarative paradigms. The procedural paradigms
include the traditional imperative programming  languages (such as FORTRAN,
COBOL, PL/I, ALGOL, PASCAL, and C), symbolic imperative programming lan-
guages (such as LISP), and the object-oriented programming paradigm languages
(such as CLOS, SMALLTALK, and C++). The declarative paradigms include data-
flow programming, functional programming,  logic programming, and constraint pro-
gramming (closely related to logic programming). The following section is an over-
view of the development of visual programming languages organized by these kinds
of the programming paradigm of the underlying semantics. The procedural visual pro-
gramming languages are not immediately relevant to SPARCL. The declarative ones are
more relevant, and the visual logic programming languages are the most relevant of
all.

Visual Programming Languages. For a survey of the history of the field of visual
languages, there is [Ambler&Burnett 1989].  The history of visual programming lan-
guages begins with SKETCHPAD [Sutherland 1963]. However, SKETCHPAD was
an iconic visual information processing language, not a visual programming lan-
guage. 

14



Procedural Languages. Most of the initial general purpose visual programming lan-
guages were visual extensions of preexisting linear languages. These languages were
control-flow-charting systems for working with imperative-paradigm languages. Grail
[Ellis et al. 1969]1 compiled from a flow chart, with machine language statements in
the boxes of the flow chart. GAL (or GRASE) [Albizuri-Romero 1984] is another
control-flow-chart based language. It was represented using Nassi-Shneiderman box
diagrams [Nassi&Shneiderman 1973] instead of boxes-and-lines, and was “compiled”
to Pascal. PIGS [Pong&Ng 1983] uses Nassi-Shneiderman  flowcharts and Pict
[Glinert&Tanimoto 1984] uses box-and-line flowcharts. A visual programming lan-
guage based on state transition diagrams is presented in [Jacob 1985].

Object oriented programming. Programming-by-demonstration is a more recently
developed approach to specifying what a program means; the programmer “demon-
strates” what the program is to do and the program development environment “ob-
serves” the demonstration, making some kind of recording of it as the program. The
systems of this kind which have been developed so far have an underlying object-ori-
ented semantics. The Rehearsal World [Finzer&Gould 1984] language is one of the
most unusual visual languages. It adopts a “theater” as its metaphor for programming,
with troupes of performers acting on stages according to cues. PLAY
[Tanimoto&Runyan 1986] is another theater-metaphor, demonstration-oriented sys-
tem. It is particularly for introducing children to programming. Another unusual pro-
gramming metaphor is employed by PT (Pictorial Transformations)
[Hsia&Ambler 1988], making a film (movie). In this language the programmer “dem-
onstrates” a film - which is a sequence of pictorial transformations. ARK
[Smith 1987] uses a physical-world metaphor with an underlying object-oriented exe-
cution model. It is oriented toward simulating the physical world. A strictly object-
oriented language (an extension of Smalltalk) with the theater metaphor interface is
Molière [Borne 1993].

A non-demonstration object oriented system is ObjectWorld [Penz 1991].

Declarative Languages. A remarkable exception to the early interest in procedural
(and specifically control-flow-charting) visual languages was AMBIT/G
[Christensen 1968] and AMBIT/L [Christensen 1971]. These languages represented

1. Cited in [Myers 1986]. p. 35 of [Glinert 1990].
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both data and programs as directed graphs and used pattern matching and transforma-
tions on graphs as their operational methods. Many elements of these languages as
described by [Rovner&Henderson 1969] would not become widely applied in visual
programming environments until much later. 

Constraint Languages. ThingLab [Borning 1981; Borning 1986;
[Borning et al. 1987] had a constraint-based semantics. It was a conceptual descen-
dant of SKETCHPAD. ThinkPad [Rubin et al. 1985] was a programming-by-demon-
stration system with a constraint-based semantics which was heavily influenced by
ThingLab. It compiled into PROLOG, and debugging and output was done textually
(in PROLOG).

Dataflow Languages. PROGRAPH [Pietrzykowski et al. 1983] was an early visual
dataflow language.2 Other dataflow languages include: Show and Tell
[Kimura et al. 1986; Kimura et al. 1990], HI-VISUAL [Hirakawa et al. 1986], Lab-
VIEW [Vose&Williams 1986],  Petri Net-like Transaction Nets [Kimura 1988], apE
[Ohio Supercomputer Center 1989] for supercomputer network management, Khoros
[Williams&Rasure 1990], VIVA [Tanimoto 1990], VPL [Lau-Kee et al. 1991], Hy-
perflow [Kimura 1992], and PHF [Fukunaga et al. 1993a; Fukunaga et al. 1993b].

A special class of the dataflow languages are the spreadsheet-based “forms” lan-
guages. These include: Forms [Ambler 1987; Ambler 1990], NoPumpG
[Wilde&Lewis 1990; Lewis 1990], and WYSWIC spreadsheets [Wilde 1993].

Functional Languages. Functional programming is the basis of the FFP based
VisaVis [Poswig et al. 1992], and the FP based languages of [Raeder 1984] and
[Borges 1990].

Logic Languages. Visual programming languages that have logic programming para-
digm semantics include: “Predicates and Pixels” [Ringwood 1989], CUBE
[Najork&Kaplan 1991], Pictorial Janus [Kahn&Saraswat 1990], VLP
[Ladret&Rueher 1991], VPP [Pau&Olason 1991], Mpl [Yeung 1988] (which is actu-
ally a constraint logic language, based on CLP(R) [Heintze, et. al. 1992]), picture

2.  PROGRAPH is still under active development and is now a successful commercial development
system available on the Apple Macintosh computer.
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logic programming [Meyer 1992], Visual Logic [Puigsegur et al. 1996], and Pro-
logSpace [Yazdani&Ford 1996]

Of the various kinds of visual languages, the visual logic languages are the most
directly interesting to the SPARCL project. They differ importantly from SPARCL in that
only one of these make use of sets (Visual Logic) and none use partitions of sets.
Also, they have very limited or nonexistent meta-programming capabilities. Visual
Logic is basically a notational system, presented in [Puigsegur et al. 1996] as a “front-
end” for pure PROLOG. Only CUBE and Pictorial Janus are completely visual environ-
ments, the others rely on linear textual presentations of code in certain situations. Mpl
is a combination of a straight linear textual PROLOG plus a two-dimensional presen-
tation of matrices, intermingled in the linear presentation. Mpl introduces novel pat-
tern matching techniques for matrices which may be incorporated into SPARCL in the
future.

There has been some work in visualizing logic programs, which is distinct from a
visual programming language. The Transparent Logic Machine (TLM)
[Eisenstadt&Brayshaw 1988] and the AND/OR graph-based system of Senay and
Lazzeri [Senay&Lazzeri 1991] are examples of this. TLM offers another approach to
representing logic graphically which may be useful to SPARCL.

In a somewhat different vein, Peirce presented a diagrammatic representation of
logic. He proposed this as an alternative to linear textual representation of first order
logic. John Sowa proposed a diagrammatic representation for higher order logic, con-
ceptual graphs, in [Sowa 1984]. There is an effort currently under way to implement a
system which uses Peirce’s diagrammatic logic in conjunction with Sowa’s. This sys-
tem is more of a theorem proving environment than a programming language envi-
ronment.

Production Rule Languages. There are a few visual languages which use production
rules. These include ChemTrains [Bell&Lewis 1993] and BITPICT [Furnas 1991].
Bell and Lewis note that ChemTrains was strongly influenced by the OPS family of
production languages [Newell 1973; Forgy 1981], these being the origin of linear-tex-
tual production rule languages. This approach is not sufficiently logic-based to be of
much use to the SPARCL project.

Visual language grammar There has been some work in formal grammar systems
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for specifying the syntax of visual programming languages. [Helm&Marriott 1991] is
the most formal. Other works are relation grammars [Crimi et al. 1991], unification
based grammars [Wittenburg et al. 1991], picture layout grammars [Golin 1991;
[Golin&Magliery 1993], visual grammars [Lakin 1987], Positional Grammars
[Costagliola et al. 1991; Costagliola et al. 1993], Fringe Relational Grammars
[Wittenburg 1992], Conditional Set Rewrite Systems [Najork&Kaplan 1993], and
Constraint Hypergraph Grammars [Minas&Viehstaedt 1993; Viehstaedt 1995]. The
VAMPIRE system by McIntyre and Glinert [McIntyre&Glinert 1992] is a system for
implementing iconic visual language environments, providing both syntax specifica-
tion and semantics implementation tools.

We have not produced a formal grammar for SPARCL. All of the grammar formal-
isms for visual languages contain major textual portions, and are difficult to use in
ways that express the concrete representation adopted for SPARCL in either its two or
three-dimensional version.

However, we plan to pursue formal specification as an area of future work. This is
an important step in presenting a formal semantics of SPARCL. Also, grammars and
parsing may be useful techniques in handling visual input to a visual language. Final-
ly, a simple formal grammar approach can be a very powerful method of program-
mer-specified extensions of the language representation. An example of this is the use
of programmer-specified operator precedence grammars for Edinburgh-style PRO-
LOG programs [Clocksin&Mellish 1992].

The Value of Visual Representations. There is a substantial literature on assessing
visual representations versus textual ones, particularly with respect to programming
languages.

Some of these assessments largely deprecate the value of a visual representation.
The graphical representations associated with visual programming languages are
characterized as uniformly harder to use than corresponding textual representations
by Marian Petre in [Petre 1995]. The major sense of “harder to use” here seems to be
“slower to understand”. Jeffrey Nickerson claims that graphical representations are
less “informationally dense” than textual ones in [Nickerson 1994a] and
[Nickerson 1994b].

The idea of “secondary notation”, informal aspects of program representation lay-
out, is presented in [Petre 1995] as crucial to improving the comprehensibility of
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graphical and textual programs. This seems to blur the distinction between a graphi-
cal and textual representation, since the secondary notation is generally graphical (e.g.
indentation and newlines).

Shin makes a clear distinction between diagrammatic and linguistic representa-
tions in [Shin 1994], where diagrammatic representations use spatial relationships
(adjacency, containment, linking) to represent semantic relationships. In Shin’s
approach, the use of icons is generally a linguistic representational technique, while
Petre views this a graphical representation technique (using the example of programs
written in LabView). Petre is vague about what a graphical representation is, but it is
different from Shin’s notion of a diagrammatic representation. Petre notes that “text is
essentially graphics with a very limited vocabulary.”3 So, in Petre’s terms graphics
includes text. This is in strong contrast with Shin’s dichotomy of diagrammatic and
linguistic representations. Petre occasionally uses the phrase “analog mapping” in
ways that are similar to Shin’s use of “diagrammatic representation.”

Graphical and diagrammatic representations are either two-dimensional or three-
dimensional. Much less work has been done on three-dimensional representations,
much less comparing them with two-dimensional ones. One such work is
[Ware&Franck 1994], which demonstrates empirically that three-dimensional repre-
sentations of graphs can be much easier to understand than two-dimensional ones.

Human Interface Design. 

A concern for good quality human-computer interface design is the driving force
behind visual languages. The subject is defined by a particular approach (“visual”) to
human-computer interfaces. The Art of Human-Computer Interface Design.
[Laurel 1990] is a collection of papers which discuss every aspect of this issue. 

Don Norman emphasizes that one must involve the (potential) users from the in-
ception of a programming project, rather than building a system and then trying it out
on them afterwards.4 If one has a well-defined group of prospective users, members
of this group can be brought into the design process. Another approach is to involve
people who as a group are presumed to be typical of the eventual actual user group.
The involvement of these people can be in different ways, including as formal mem-

3. p. 42 in [Petre 1995]
4. p. 8 in Rheingold???.
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bers of the design team and as members of test-groups. Norman advocates user test-
ing at every stage of the design process. Kathleen Gomoll sketches techniques for
user testing in [Gomoll 1990]. Unfortunately, this good advice on the involvement of
users is difficult to act on when one has few resources with which to work.

There is some work which explicitly deals with user interface issues in visual pro-
gramming. Mouse/palette-based diagram editing versus pen/gesture-based diagram
editing is discussed by [Citrin 1993] and [Apte&Kimura 1993]. Matrix manipulation
in a visual language versus linear text language is discussed by
[Pandey&Burnett 1993].

Programming language design.

There are many issues in programming language design. The focus in this work is
on the ease of use of the language, with assumption that it is worth making the com-
puter work harder (e.g., run slower, use more storage), and to make the programming
language environment implementor work harder, in order that the programmer may
work less hard. 

The arguments for declarative programming instead of procedural programming
are arguments about the superior usability of declarative programming — that pro-
grams written in declarative programming languages are easier to write, understand,
and maintain than those written in procedural programming languages, although they
might run more slowly and use more storage. 

How a programming language addresses mental representations is central to the
usability of that language, according to [Fix et al. 1993]. In their work, they compare
the performance of novices and experts on various mental-representation-oriented
measures and find that the experts have a “stronger” mental representation (with re-
gard to these measures; hierarchically structured representation, explicit mappings,
recurring basic patterns, well connected representation, and well grounded). Their
work is closely tied to a procedural language (Pascal), so it is difficult to directly
apply to the work here. However, it seems to imply that a language which makes it
easy to have high marks in these measures will be easier to use than one which does
not lend itself to readily achieving such high marks.

Sets in programming languages. 
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The use of sets and multisets in general-purpose programming languages can be
divided into logic programming languages using sets and all other kinds of languages
using sets. There are relatively few non-logic programming languages which use sets.
SETL [Snyder 1990] adds a set data type to an otherwise normal procedural/impera-
tive paradigm language.  STARSET [Gilula 1993] is a SETL-like language which Gi-
lula notes allows the programmer to work with “‘pure’ sets, unlike, say, the SETL
language.” REFINE [Smith et al. 1985] uses a set-theoretic “top-level” as a specifica-
tion language which the users then “refine” into a C or LISP program (without sets).
Higraphs are introduced in [Harel 1988] as a visual language technique for handling
sets (and graphs).

Sets in logic programming languages. {Log} (read “set log”) [Dovier et al. 1991]
adds sets to PROLOG. LDL [Beeri et al. 1991] is a database-query oriented logic pro-
gramming language similar to PROLOG which has sets as “first class objects”.
GÖDEL [Hill&Lloyd 1992] is a logic programming language that includes a set pro-
cessing capability as an “add on” module. There is an unnamed language by
[Jayaraman&Nair 1988] which combines subset processing in an equational logic
programming system.

There are several approaches to extending CLP for sets:  a CLP extension by
Gervet [Gervet 1993], CLPS [Legeard&Legros 1992; Legeard et al. 1993],  CLP(∑ *)
[Walinsky 1989], and an unnamed extension by [Bruscoli et al. 1993].

Multisets are used by some logic programming languages: GAMMA
[Banâtre&Métayer 1993] and the language of Hölldobler and Thielscher
[Hölldobler&Thielscher 1993].

The above approaches to sets in logic programming are all based on axiomatic ap-
proaches to set theory: extend classical logic with set axioms. George Tsiknis identi-
fies the “logistic approach” which introduces set abstraction terms into arguments by
“simple” rules of deduction [Tsiknis 1993]. He presents SetLog, a logic programming
language with set abstraction based on NaDSet* (which [Tsiknis 1993] says is de-
rived from Gilmore’s NaDSet).

Comparison with SPARCL. In contrast with SPARCL, these systems do not rely on sets
as the central method of organizing data, and they do not use sets in the metalan-
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guages in which these systems are described. This leads these languages to have syn-
tax and semantics that are quite different from those of SPARCL. None of these systems
use partitioning as a basic programming mechanism. Also, none of these systems pro-
vide a visual language environment (except for HiGraphs).

Logic Programming.

The logic programming paradigm complements many approaches to program-
ming. Of particular interest here are constraints, functional programming,  and paral-
lelism. There are many logic programming languages, some of which combine logic
programming with some of these complementary approaches.

The main approach in logic programming languages for “implementing” logic is
to base the language on a clausal form of first order predicate calculus, Horn Clauses.
John Lloyd provides an excellent overview of the genesis of logic programming in
[Lloyd 1987b]. He identifies [Herbrand 1930] as being the deep origins of the auto-
mated theorem proving work represented by [Prawitz 1960],  [Gilmore 1960], and
[Davis&Putnam 1960]. Chin-Liang Chang and Richard Char-Tung Lee in
[Chang&Lee 1973] describe the development of automated theorem proving, the
“ambition to find a general decision procedure to prove theorems”5,  as originating
with Leibniz then being revived by Peano (circa 1900) and Hilbert’s “school” (circa
1920). Herbrand’s paper ([Herbrand 1930]) proposed a mechanical proof procedure,
which was implemented by Gilmore ([Gilmore 1960]). Gilmore’s approach was im-
proved by Davis and Putnam ([Davis&Putnam 1960]). 

J. Alan Robinson presented the crucial discovery of the resolution  principle in
[Robinson 1965]. This is a single inference rule which is both efficient and easy to
implement. The early work in logic programming was largely based on resolution
theorem proving. Lloyd points out that the idea of using logic as a programming lan-
guage was presented by several people: Cordell Green ([Green 1969]), Patrick Hayes
([Hayes 1973]), Alain Colmerauer, H. Kanoui, P. Roussel, and R. Pasero
([Colmerauer et al. 1973]), and Robert Kowalski ([Kowalski 1974]). The PLANNER
language of Carl Hewitt ([Hewitt 1972]) is a conceptual precursor to PROLOG in
certain respects6. The work of Colmerauer (and associates) and Kowalski led directly

5. page xi in [Chang&Lee 1973].
6. PLANNER was never implemented. A restricted version, micro-PLANNER, was implemented.
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to Prolog.  Roussel, an associate of Colmerauer, wrote the first PROLOG interpreter
in ALGOL-W at Marseille in 1972. The Marseille group wrote an improved version
in FORTRAN in 1973 ([Battani&Meloni 1973; Roussel 1975]). The first widely used
and reasonably efficient implementation of a compiling PROLOG was the DEC10
PROLOG by David H. D. Warren [Warren 1977].

There are non-resolution-based approaches to logic programming, as well as the
many resolution-based approaches. Lloyd mentions the work of Kenneth Bowen in
full first order logic ([Bowen 1982]), Hansson, Haridi, and Tärnlund in various logics
([Hansson et al. 1982]), and Haridi and Sahlin in natural deduction
([Haridi&Sahlin 1983]) as examples. O’Donnell uses equational logic
[O'Donnell 1985].

There has been some work in logic programming languages which use some logic
other than first-order predicate calculus, particularly as restricted to Horn clauses. A
major area of this has been work in “disjunctive” logic programming
[Lobo, et. al. 1992]. This is primarily distinguished from the Horn clause languages
by a more sophisticated treatment of negation. Since “pure” PROLOG relies on nega-
tion-as-failure [Clark 1978] and the Closed World Assumption [Reiter 1978], it is ac-
tually implementing a non-monotonic logic rather than classical first order predicate
calculus. The disjunctive logic programming languages pursue this notion of non-
monotonic logic more thoroughly.

PROLOG is the most widely used and extensively studied logic programming
language. For a good presentation of the logic programming paradigm and the PRO-
LOG language there is [Sterling&Shapiro 1986]. The formal semantics of logic pro-
gramming (with an emphasis on PROLOG) are set forth in  [Lloyd 1987b]. There are
many varieties of PROLOG. The PROLOG as described in [Clocksin&Mellish 1992]
is the de facto standard syntax and semantics, sometimes referred to as “Edinburgh”
PROLOG since it closely follows the DEC10 PROLOG implemented at the Universi-
ty of Edinburgh by David H. D. Warren [Warren 1977]. Major PROLOG implemen-
tations include Quintus PROLOG [Bowen et al. 1985], SICSTUS PROLOG
[Carlsson&Widen 1988], NU-PROLOG[Naish 1985], and XSB PROLOG by David
S. Warren at Stony Brook, SUNY.

There are many languages which are resolution-based, but not quite PROLOG.
There are several concurrent execution-oriented logic programming languages (what
Lloyd calls “system” languages). There are languages which are a mixture of con-
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straint satisfaction and logic programming. There are languages which are a mixture
of functional programming and logic programming. Some of these are: Gödel
[Hill&Lloyd 1992], PARLOG [Clark&Gregory 1986], LDL [Beeri et al. 1987;
[Beeri et al. 1991], Datalog, CLP(R) [Jaffar&Lassez 1987], CHIP
[Van Hentenryck 1989], GHC [Ueda 1986], CP [Shapiro 1983], FCP
[Codognet et. al. 1990], {log} [Dovier et al. 1991], subset-logic programming
[Jayaraman&Nair 1988; Jayaraman&Plaisted 1989], logic programming with sets
[Kuper 1987], VLP [Ladret&Rueher 1991], VPP [Pau&Olason 1991], Mpl
[Yeung 1988], and CUBE [Najork&Kaplan 1991].

Unification. There are many different approaches to and uses of unification. An ex-
tensive survey of unification is given in [Knight 1989]. Unification is a central tech-
nique in most approaches to logic programming. The basic idea of unification is to
find a substitution which makes two terms equivalent. Although Herbrand presented
an algorithm for unification in his 1930 doctoral thesis [Herbrand 1930], the modern
work in unification largely stems from J. Alan Robinson. In [Robinson 1965], he pre-
sented unification as a central part of a new approach to automated theorem proving
based on the resolution inference rule. This laid the foundations on which logic pro-
gramming was later built by Colmerauer, Kowalski, and others (as described above).

A more precise statement of the unification problem is: given a term s and another
term t, find a substitution σ for the variables in s and the variables in  t such that the
substituted version of s is equivalent to the substituted version of t. This is written as
σ(s) = σ(t). A substitution is a function which maps variables into terms. The applica-
tion of a substitution σ to a term s is written σ(s), as though σ is a function which
maps terms into something. The meaning of application is: If the argument is a vari-
able, then the application returns the mapping of that variable defined by σ.  If the ar-
gument is a term which has no subterms and is not a variable, then the application re-
turns the term. If the argument is a term which has subterms, then the application re-
turns the term with each of its subterms “replaced” by the application of the substitu-
tion function σ to that subterm.

The notion of term has many different possible definitions. The definition of term
most interesting in this thesis uses sets, constants (the empty set and ur elements (ar-
bitrary “named” constants, including numbers)), and variables. The most common
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definitions use functions, constants, and variables. Unification is closely related to
equation solving, where finding a substitution for two terms is equivalent to solving
for the variables in two equations.

A substitution which makes two terms equivalent is a unifier for those two terms.
A central problem in using unification is to find a most general unifier (MGU). The
unifier σ of two terms s and t is an MGU for those terms if for any other unifier θ
there exists a substitution τ such that τσ = θ. An MGU for two terms is the “simplest”
unifier of those terms. For unification of normal first-order logic terms (i.e. not sets)
there is always a unique MGU. However, for set unification there may be many dis-
tinct MGU’s. In this case one is interested in a set of MGU’s such that they are all
mutually “independent” (i.e. for any two of the substitutions in the MGU set σ and θ
there does not exist a substitution τ such that τσ = θ or σ = τθ) and such that the set is
“complete” (i.e. for any unifier θ  of s and t  there exists a substitution σ in the MGU
set for s and t  such that there exists a substitution τ such that τσ = θ).

The major papers in unification algorithms consider sound algorithms, ones which
only return true if the terms being unified actually have a unifier. Robinson’s original
paper was such an algorithm. Other important work in these sound algorithms are
given by [Boyer&Moore 1972; Venturini-Zilli 1975; Huet 1976;
[Paterson&Wegman 1976; de Champeaux 1986; Martelli&Montanari 1976;
[Martelli&Montanari 1982; Corbin&Bidoit 1983]. These algorithms are various at-
tempts to improve the speed or space-efficiency or both with respect to
[Robinson 1965].

The performance of unification-based logic programming languages is heavily in-
fluenced by the implementation of the unification algorithm. Due to this influence,
there has been a lot of attention to improving the performance of unification. The ap-
proaches to improving the performance of unification have focused on three areas:
finding better algorithms (this primarily has involved finding better data structures),
weakening the requirements for unification, and using partial evaluation as part of
compiling a logic program. The search for better algorithms is described in the previ-
ous paragraph. The notion of a “better” algorithm has largely focussed on reducing
the worst case complexity of the algorithm, with little attention being paid to the size
of the constant factor. Unfortunately, the linear complexity algorithms all have large
constant factors which make them unattractive in practice since most uses of unifica-
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tion are simple.
The weakening of the requirements for unification has been achieved by remov-

ing the “occurs check” from the algorithm. Removing the occurs check means that the
algorithm is no longer sound, but it is unsound in a way which a careful programmer
can avoid by properly structuring her programs. The gain in performance is potential-
ly quite large—a unification algorithm of quadratic complexity can be reduced to a
linear algorithm, without an increase in the constant factor. 

Compiling Logic Programs - The Warren Abstract Machine (WAM) D. H. D.
Warren’s “discovery” of a way to compile PROLOG programs (and logic programs
in general) was the crucial step in making PROLOG implementations which are suffi-
ciently efficient to be used for general purpose programming. The central element of
the compilation technique is an abstract machine called the WAM (Warren Abstract
Machine) which provides an instruction set tailored to the needs of executing PRO-
LOG, but which is a fairly normal sequential, imperative language. The initial expla-
nation of the compilation technique is given in [Warren 1977]. A somewhat refined
version of the WAM is explained in [Warren 1983]. Hassan Aït-Kaci provides a gen-
tler, yet complete, presentation of the WAM in [Aït-Kaci 1991]. One of the efficien-
cies of compilation of PROLOG is in the ability to “compile away” invocation of ful-
ly-general unification.7 The general unification algorithm of the WAM is
UNION/FIND method of [Aho et al. 1974]. The “compiling away” is done by partial-
ly evaluating the unification algorithm at compile-time for each argument in the head
of each clause in the program, instead of waiting to run the general unification at run-
time. This also makes it possible to use clause-indexing when the clauses have mutu-
ally exclusive patterns in their head arguments. Typically, clause-indexing is only
done for the first argument of the predicate, and the only exclusivity which is recog-
nized is if the clauses contain different atoms in their first arguments.

There have been many extensions of the basic WAM. The ANLWAM (Argonne
National Laboratory WAM) [Butler et al. 1986] which provided and-parallelism, or-
parallelism, occurs-check, compiling units on the fly, and indexing to handle large
sets of units. The Aquarius PROLOG system is an effort to produce a very high per-
formance WAM, the Berkeley Abstract Machine (BAM) [Van Roy&Despain 1992].

7. Other efficiencies are the elimination of search of the clause base in certain circumstances and the
elegant handling of storage.
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Micha Meier in [Meier 1993] mentioned that his group had actually found that
they got better performance implementing their logic programming language in PRO-
LOG, rather than implementing their own (modified) WAM. His reasoning was that
by using PROLOG as their target language, they benefited from ongoing research to
improve the performance of PROLOG without making any changes in the implemen-
tation of their language. When they built their own WAM they did not benefit from
the research of others on WAM technology, unless they made design changes to their
implementation of the WAM. Thus, he advocated implementing logic programming
languages in PROLOG, rather than building special purpose versions of the WAM.

Certainly to start with, the implementation of SPARCL will (continue to) be in
PROLOG. Meier’s comments indicate that a very compelling analysis should be done
prior to implementing a WAM.

Set Unification A summary of the literature on the unification of sets (“associative-
commutative-idempotent-identity matching” or “ACI”) is found in [Siekmann 1984]. 
Huet discusses the mathematically related problem of generating the basis of solu-
tions to homogeneous linear diophantine equations in [Huet 1978]. Unification for as-
sociative-commutative functions is presented in [Stickel 1975]. An algorithm for gen-
eral set unification is presented in PROLOG in [Stolzenburg 1993]. This algorithm
has a worst case exponential complexity. Stolzenburg mentions work in ACI unifica-
tion in [Baader&Büttner 1988] and [Kapur&Narendran 1993], and AC unification in
[Lincoln&Christian 1988] and [Kapur&Narendran 1992]. Eric Domenjoud analyzes
the minimal number of unifiers of an interesting special case of AC unification in
[Domenjoud 1992].

There is another approach to set theory which eliminates the Axiom of Founda-
tion - that uses an Anti-foundation Axiom. Peter Aczel presents such a theory in
[Aczel 1988]. A unification algorithm for such sets is discussed in [Aliffi et al. 1993].

Stolzenburg’s algorithm for set unification did not prove useful as a basis for the
unification algorithm for SPARCL. Although it is relatively fast and concise, the perfor-
mance cost of doing the analysis for the special case where it could be applied more
than consumed the performance advantage it offered for the special case of “simple
set unification”. The set theory of SPARCL is that of von Neumann, Bernays, and
Gödel (NBG) plus the Axiom of Choice as presented in [Mendelson 1964], but there
are some intriguing possibilities in working with Aczel’s non-well-founded sets
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(which allow a finite representation of a certain class of infinite sets).

Delayed evaluation/Coroutining. The technique of delaying evaluation of some
predicates according to a delay or wait declaration can greatly increase performance
over the simple source-ordering of goals, and is essential with an inference engine
which does not recognize any programmer-specified ordering of goals. Lee Naish
presents the wait mechanism for MU-Prolog in [Naish 1985]. The main thrust of
Naish’s paper is the automation of adding “wait” declarations to a program, so as to
increase its efficiency and termination. Since the wait declarations are automatically
added to the program, the programmer does not have to be aware of this mechanism,
much less understand the rationale for when these wait declarations should be used.

Programming Development Environments

There are many aspects of developing programs which are collectively the pro-
gramming development environment. These aspects can be divided into the static and
dynamic aspects. Primary among the static aspects is the presentation of the program
being developed. Dynamic aspects include everything having to do with the running
of the program under development, such as handling input and output and debugging.
The presentation of the program is an essential part of this research effort - diagram-
matic (visual) representation of a program. Some of the issues around visual program-
ming languages are touched on in the “Visual Languages” section above. 

Debugging Debugging in logic programming languages is done in various ways. The
major two approaches are execution-model oriented debugging and abstract algorith-
mic debugging. In PROLOG, the most common approach to debugging is an execu-
tion-model oriented debugger known as an interactive stepper. The interactive stepper
implemented within the Edinburgh DEC10 PROLOG [Bowen et al. 1982] “has
formed the basis for all subsequent PROLOG environments.”8 This interactive step-
per is based on the Byrd box model of PROLOG execution as presented by Lawrence
Byrd in [Byrd 1980].  Dave Plummer extends this box model with Coda (Clause
Oriented Debugging Aid) in [Plummer 1988]. An early alternative to the interactive
stepper box model was part of the Transparent Prolog Machine of

8. p. 497 of [Plummer 1988]
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[Eisenstadt&Brayshaw 1986; Eisenstadt&Brayshaw 1988]. Plummer claims that
Coda is a more declarative debugger than the Byrd box model because the program
trace is presented at the level of the clause being executed instead of the goal being
proved. The TPM provides a completely declarative debugger by modeling the execu-
tion of a PROLOG program as “a search for a proof by growing a search tree”9 and
the debugger displays this tree (at user-controlled level of detail).

Execution tracing in non-dataflow declarative visual languages (described as
“term rewriting languages” by [Poswig et al. 1993]) is done for the logical Pictorial
Janus [Kahn&Saraswat 1990] and functional VisaVis [Poswig et al. 1993] with a “re-
play” or post-runtime approach. Execution tracing in dataflow and control flow visual
languages:

...are very fond of live animation. To depict dataflow they use highlighting of the currently execut-
ed functions or the connections between functions. They pop up new windows or modify sub-
structures to show control flow.10

Poswig et alii insist that live animation is inappropriate for concurrently executing
languages. Their reasons for this belief seem related to the fact that systems which
use live animation highlight a single part (the currently executing part) at a time, and
contrary to this belief it seems that a system can highlight multiple parts of a running
program nearly as easily as it can highlight a single element (thus displaying concur-
rent execution of the multiple highlighted elements).

Ehud Shapiro introduced abstract algorithmic debugging in [Shapiro 1982]. This
is defined as:

Algorithmic Debugging is a theory of debugging that uses queries on the compositional semantics
of a program in order to localize bugs. It uses the following principle: if a computation of a
program’s component gives an incorrect result, while all the subcomputations it invokes com-
pute correct results, then the code of this component is erroneous.11

This work was applied to (sequential) PROLOG, as were several subsequent works
([Plaisted 1986; Pereira 1986; Sterling&Shapiro 1986; Dershowitz&Lee 1987;
[Lloyd 1987a]). There are also several works applying abstract algorithmic debugging
to concurrent languages (Flat Guarded Horn Clauses (FGHC)
[Lloyd&Takeuchi 1986; Takeuchi 1986], PARLOG [Huntbach 1987], Flat Concur-
rent Prolog (FCP) [Lichtenstein&Shapiro 1988a; Lichtenstein&Shapiro 1988b]). The
work in [Lichtenstein&Shapiro 1988b] is applicable to concurrent languages in the
functional programming paradigm as well as the logic programming paradigm.

9. p. 504 of [Plummer 1988].
10. p.181 in [Poswig et al. 1993].
11. p. 513 of [Lichtenstein&Shapiro 1988b].
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Chapter 3
Design Elements

This chapter presents a definitions of the syntax and semantics of the SPARCL lan-
guage and relates the various aspects of the design of the SPARCL language to the basic
principles presented in the hypothesis of the research project. A detailed tutorial intro-
duction to SPARCL is presented in appendix 1 (“Tutorial Introduction to SPARCL”).

Definition of SPARCL.

We present informal definitions of the syntax and semantics of SPARCL. More for-
mal definitions of the semantics are presented in chapter 6 (“Implementation”), where
we give the procedural semantics as implemented by the interpreter, and chapter 4
(“Partitioned Structured Unification”), where we give a formal definition and analysis
of the unification algorithm.

Diagrammatic Grammar. The diagrammatic grammar for SPARCL shows the ele-
ments of the language and the approximate layout of these elements in two-dimen-
sions. This is basically a BNF-style grammar with diagrams on what would be the
right-hand-side of the BNF productions. It is an adaptation of the Hyperedge Replace-
ment Grammar (HRG) formalism presented in [Viehstaedt 1995]. The name of the
nonterminal of the grammar that the production defines is in bold in the upper left
hand corner of the “production box.” The rest of the production box (the “body”)
shows the concrete graphical elements used to represent the nonterminal being
defined, as well as showing the layout of other nonterminals with respect to those
graphical elements. A nonterminal in the body of a production is represented with a
box with concave sides containing the name of the nonterminal in italics. There is a
special body symbol, an empty concave box, that represents the “empty” production.

Fact tables, clauses, arguments, literals, and terms. The first portions of the gram-
mar define the “programmatic” portions: program elements and fact tables in
Figure 3. 1, clauses and arguments in Figure 3. 2, and literals in Figure 3. 3.

The fact_table production shows a fact table as having a name, at least one fact,
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and zero, one, or more addi-
tional facts. The facts are
arranged vertically, in a
“stack”. The fact table has a
single line box around it.

The args production shows
that the arguments of a clause
or literal “stack”. The arg
production shows the argument
box with possibly empty con-
tents. The literals production
shows the literals being laid out
such that they are in columns
of three literals, except for the
last column which may be one,
two, or three literals. A literal
is shown as being a name and
some arguments on a special
background. Of the nontermi-
nals mentioned so far, three
have backgrounds: clause, arg, and literal. The clause and arg backgrounds differ in
that the coloration of their outer edges are reversed. The literal background differs
from the two others in that it is darker. Also, its edges are thicker. These various dis-
tinctions are easily observed in the example clause shown in Figure 3. 4.

The next portion of the grammar presents terms. The term production is shown in
Figure 3. 5. The four basic term types are variable, ur, empty_set, and parti-
tioned_set. The other three types being special forms of sets: ntuple, table, and
intensional set. The productions for these term types are in Figure 3. 6. 

Partitioned sets. The partitioned-set-related productions are parts, part, and
part_term.  The parts and part productions are in  Figure 3. 6 and the part_term
production is shown in Figure 3. 7. The partitioned_set and part productions intro-
duce two more background graphics: a solid-colored and shadowed rectangle for the
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Figure 3. 1: Grammar productions for
“program_element”, “fact_table”, “fact”, and
“arg_row_items”.
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set being partitioned, and a dot-
ted line “open” rectangle for
each part of the partitioning.
The parts productions show
that parts in a partitioned set
stack one above the other in the
same fashion as arguments. The
part_terms productions show
that a part may have many
terms as contents, and that
these terms are laid out in the
same three-to-a-column fashion
as for literals in the body of a
clause. This is a simplification
of the layout algorithm used by
SPARCL. The actual layout algo-
rithms are discussed in 6
(“Implementation”).

N-tuples. The productions for N-tuples are shown in Figure 3. 8. These productions
are ntuple,
ntuple_items, ntu-
ple_item, and ntu-
ple_divider. The
ntuple production
requires that an N-tu-
ple have at least two
terms. The rightmost
nonterminal, term, is
one of these terms.
The middle
nonterminal, ntu-
ple_item, is defined
as a term and an ntu-
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Figure 3. 2: Grammar productions for “clause”,
“args”, “arg”, and “contents”.

 

  
Figure 3. 3: Grammar productions for “literals” and “literal”.
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ple_divider. This gives the second term. The leftmost nonterminal, ntuple_items, is a
possibly empty construction of ntuple_item. Thus, it may not contribute anything to
the ntuple production. The ntuple_item production is used to insert an ntu-
ple_divider (a right arrow) between adjacent elements of an N-tuple.

Tables. The next term-type we define is
table. The top-level productions for
tables are shown in Figure 3. 9: table,
table_body, direct_table_body, and
function_table_body. The last two of
these productions introduce a new
“graphic”, a shadowed rectangle. This
shadowed rectangle is nearly white,
making it easy to distinguish from the
other graphic elements.

There are two types of tables,
“direct” tables and “function” tables.
These two types differ in the syntax of
the table_body. The direct table body is
rows of items. There are some addi-
tional syntactic constraints on tables
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Figure 3.4: Clause and Literal Representations in SPARCL.

 

 

 

Figure 3. 5: Grammar productions for
“term”.
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that are not shown in the
grammar productions.
The rows in a table must
all have the same num-
ber of items and all of
the items in a column
must have the same
width. We have not
shown these constraints
because they can not be
described formally with-
out significantly compli-
cating the grammar for-
malism.

Productions for the
rows and columns of tables are in Figure 3. 10: term_rows, term_row_items,
term_row, and function_table_header. These productions show that term rows are
stacked (similarly to arguments and parts) and that a term row is a horizontal
sequence of contents items. 

Two new graphic elements are introduced in these productions, a horizontal line
and a vertical line. The term rows that are the body of a table are separated by hori-
zontal lines. This is shown in the term_rows production by a horizontal line above
the term_row nonterminal. Similarly, the columns in a table are separated by vertical
lines and this is
shown in the
term_row_items pro-
duction by a vertical
line on the right of the
contents nonterminal.
The top row of the
function_table_body
is the header that con-
tains the “names” of
the columns. This
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Figure 3. 6: Grammar productions for “empty_set”,
“variable”, “ur”, “name”, “partitioned_set”, “parts”, and
“part”.

 

 
Figure 3. 7: Grammar productions for part_terms.
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row is set off from the
rest of the table by a
double line. This is
indicated in the com-
bination of the func-
tion_table_header
and term_rows
productions: the func-
tion_table_header is
a term_row with a
horizontal line under
it, and term_rows has
a horizontal line
above each term_row
in it.

Figure 3. 11 shows
the prefix, root, col-
umn_order_flag, and
row_order_flag
productions. These
define the nontermi-
nals that surround the
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Figure 3. 8: Grammar productions for “ntuple”,
“ntuple_items”, “ntuple_item”, and “ntuple_divider”.

 
Figure 3. 9: Grammar productions for “table”, “table_body”,
“direct_table_body”, and “function_table_body”.
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table_body in the
table production.
The prefix nontermi-
nal holds a term that
is the common “pre-
fix” of all of the
rows of the table.
This prefix may be
an K-tuple, in which
the elements of this
K-tuple are the first
K columns of each
row of the table.
The root nontermi-
nal holds a term that
precedes the rows of
the table. There can
only be a root if the
rows are ordered (i.e. they form an N-tuple, where the root becomes the leftmost or
first element). The column_order_flag indicates if the columns of the table are
ordered (i.e. if each row of the table makes an N-tuple). The row_order_flag indicates
if the rows are ordered (i.e. if the table
is an N-tuple of its rows).

Intensional sets. The last term-type we
define is intensional_set. This type of
term defines a set or multiset of ele-
ments where these elements are all of
the terms that have some “property” in
common. The idea of having a prop-
erty in common is expressed by speci-
fying a set of literals that must all be
true.

The intensional_set and inten-
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Figure 3. 10: Grammar productions for “func-
tion_table_header”, “term_rows”, “term_row_items”, and
“term_row”.

Figure 3. 11: Grammar productions for
“prefix”, “root”, “column_order_flag”, and
“row_order_flag”.

row_order_flag

row_order_flag

column_order_flag

column_order_flag

root

contents

prefix

contents

function_table_header

term_row

term_row

contents
term_
row_
items

term_row_items

contents
term_
row_
items

term_row_items

term_rows

term_row

term_rows

term_rows



sional_set_tem-
plate productions
are shown in
Figure 3. 12. These
productions intro-
duce a new graphic:
a light-gray solid-
colored shadowed
rectangle with
rounded corners for
the inten-
sional_set; two line
segments making a dark gray “corner” for the intensional_set_template for a basic
intensional set; and, a bold italicized multiset and four line segments making two
nested dark gray corners for the intensional_set_template for an intensional multiset.

The literals defining the common property of the intensional set are in the
intenset_literal_terms nonterminal. There are several productions used to define
intenset_literal_terms, but the basic idea is very similar to the part_terms
nonterminal. The difference is that each intenset_literal_term must be a term of a spe-
cial form, instead of any term as is the case in part_terms. The several productions
related to intenset_literal_terms are needed to specify this special form.

The intenset_literal_terms productions are shown in Figure 3. 13. These layout a
collection of intenset_literal_term nonterminals in columns of three, from left to
right. This is the same pattern used to layout literals and part_terms.

The intenset_literal_term and literal_term productions are shown in
Figure 3. 14.  These productions specify the subset of terms that can serve as
intenset_literal_terms: a variable or a literal_term, where a literal_term is either an
ur or a literal_ntuple. Of these term types, only the literal_ntuple is new.

The literal_ntuple, literal_ntuple_items, and final_literal_ntuple_item produc-
tions are shown in Figure 3. 15. These productions define a literal_ntuple in nearly the
same fashion as an ntuple. The difference is that the last element of a literal_ntuple,
i.e. the element furthest to the left, is limited to being an ur or a variable, where the
last element of an ntuple is a term.
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Figure 3. 12: Grammar productions for “intensional_set” and
“intenset_literal_terms”
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Coreference
links. This gram-
mar does not
define the corefer-
ence links. A
coreference link
connects two or
more “linkable
items” by a hyper-
edge. A linkable
item is a term or a
part. In this one
respect a part has
the same status in
the syntax of
SPARCL as a term.
This allows a
SPARCL program to
place coreference
restrictions on subsets (parts). 

Design Elements

The design of SPARCL is based on three major
aspects: visual programming, logic program-
ming, and sets with partitioning. The various
parts of the design derive from one or more of
these aspects. We discuss the design elements
grouped according to this derivation.
Figure 3.16 shows this grouping.

1. Visual & Logic Design Elements.
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Figure 3. 13: Grammar productions for “intenset_literal_terms”.

Figure 3. 14: Grammar productions
for “intenset_literal_term” and “lit-
eral_term”.
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The visual and
logic design
elements are the
visual representa-
tion of the logic
programming
semantics of
SPARCL. Both the
two-dimensional
and the three-di-
mensional visual
representation must
make clear the vari-
ous relationships of
the semantics of a
program. There are
four basic ways to
do this that are
diagrammatic (as
opposed to linguistic): spatial containment, adjoinment/adjacency, connecting lines,
and similar appearance. This distinction between diagrammatic and linguistic repre-
sentations is one which Shin makes in The Logical Status of Diagrams [Shin 1994].
Spatial containment is used in the representation
of SPARCL for all of the containment relations in
a program such as: name of a predicate con-
tained in the representation of a clause for that
predicate, literals in the body of a clause con-
tained in the representation of that clause, and
elements of a part of a partitioned set contained
in the representation of that part. Adjoinment is
used for the arguments of a clause or literal: they
are placed next to each other (one above the
next) to form a sequence where the first one is at
the top. Adjoinment is also used for the elements
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Figure 3. 15: Grammar productions for “literal_ntuple”, “lit-
eral_ntuple_items”, and “final_literal_ntuple_item”.

Figure 3.16: Derivation of Design
Elements from Major Design
Aspects.
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of an N-tuple: they are placed next to each other (one to the left of the next) to form a
sequence where the first one is at the left end. Connecting lines are used to represent
coreference hyperedges. Similar appearances are used to indicate term types. For
example, all of the variables are small circles and all of the partitioned sets are solid
rectangles with a dashed rectangle just inside and a background of a certain color. We
discuss the distinction between diagrammatic and linguistic representations further in
chapter 8 (“Objective Analysis”), where we analyze the extent to which SPARCL takes
advantage of the opportunity to be diagrammatic.

Program elements. The basic program elements of a SPARCL program are derived
from its logic programming aspect: program, clause, and literal. A program is a set of
clauses. It is represented by a window in the programming environment (which is
stored in a single document or file). The parts of the clause and literal are shown in
Figure 3.4. The outermost light gray rectangle at the top of the figure encloses a
clause. In the upper left corner is the “clause name” and on the left hand side of the
clause rectangle are two clause argument rectangles. The clause name and number of
arguments identifies the predicate to which the clause belongs, in this case that is the
predicate ‘Example 1’/2. The arguments of the clause are ordered, the first argument
is at the top, the second argument is below that, and so on. The darker gray rectangle
on the right side of the clause rectangle encloses the representation of a literal. The
“literal name” is in the upper left corner of the literal rectangle, and the literal
argument rectangles are on the left hand side of the literal rectangle. The literal name
and the number of its arguments identify the predicate whose defining clauses are to
be used in solving the literal. In this case, this is a literal of the ‘Example 2’/3 predi-
cate. Literal arguments are ordered in the same way as for clause arguments, with the
first argument at the top, the second argument immediately below the first, and so
forth.

The argument rectangles for the clause and literal contain terms to be unified. In
this figure, the terms are all variables.

Coreference links. Terms in a SPARCL clause may be specified as referring to the
same “underlying” term. Such terms are said to “corefer”. This common underlying
term may be identical to one of the terms as represented, or it may have some nonva-
riable elements in places where one or both of the coreferring terms have variables.
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Technically, coreferring terms are unified as part of interpreting the
clause which contains these terms. Coreference of terms is shown
by curved lines that connect those terms. In Figure 3. 4, the variable
in the first argument of the clause corefers with the variables in the
first and second arguments of the literal, and the second argument
of the clause corefers with the third argument of the literal. This
example shows how SPARCL uses coreference links instead of vari-
able names to identify term instances in the representation of a pro-
gram which corefer. Coreference links provide more than the facility of variable
names because any kind of linkable items may be linked, not just variables. This is
shown in Figure 3.17. In this figure there is a link between three items and another link
between two items. The three-way link links two variables and a part of a partitioned
set. The other link links a variable and the other part of a partitioned set. The choice
of explicit linking to express coreference instead of names is taking advantage of the
diagrammatic possibilities of a visual representation in representing the logical con-
cept of coreference (implemented as unification).

This approach to coreference provides a facility with some of the expressiveness
of feature structures. Feature structures are a technique used in some grammar
formalisms which allow arbitrary substructures to be identified (usually by an integer)
and any two substructures which have the same identifier must “unify”, essentially
they are to be considered as being the same substructure. This allows the representa-
tion of containment relationships between parts of feature structures to be a graph
instead of a tree. Since arbitrary terms in SPARCL may be made to corefer, the repre-
sentation of containment relationships between terms in SPARCL may also be a graph
instead of a tree. Feature structures are not completely supported by SPARCL because it
does not support the special kind of unification needed for feature-structures. In fea-
ture structure unification, the result of unifying two feature structures is a feature
structure that contains all of the features in both of the structures being unified, and
where the same-named feature appears in both of these structures, their values must
feature-structure-unify. Thus, feature structure unification is a mixture of set unifica-
tion and set union.

Delay specification. Figure 3. 18 shows a ‘*DELAY*’/2 clause. Clauses of this form
are used to specify to the SPARCL interpreter when to delay the interpretation of a lit-
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Figure 3.17:
Example of two
coreference
links in SPARCL.



eral. Before SPARCL interprets a literal, it
checks to see if there is a delay clause that
matches that literal. If so, that literal will
not be considered for interpretation until
some other literal has been interpreted, i.e.
the literal’s interpretation is “delayed”.
The example in the figure delays the inter-
pretation of an ‘Example 1’/2 literal that
has an unbound variable as its first argu-
ment. The interpretation of delay
specifications is discussed in more detail in section 6, “Logic Programming Design
Elements.”

Since delay specifications are very stylized kinds of clauses, a special representa-
tion for them can probably be devised that is much more concise than using a regular
clause with arguments and N-tuples. We have not attempted such a design since this
one was sufficient to allow delays to be specified and required no additional develop-
ment work in the editing system of SPARCL. However, we found in our analysis of
SPARCL programs that the delay specifications are significant part of the size of a
SPARCL program. This is discussed in chapter 8 (“Objective Analysis”). For this rea-
son, we expect to redesign the representation of delay specifications in the future.

Built-in predicates. The bottom right corner of Figure 3. 4 shows a list of the built-in
predicates defined for SPARCL. These have interpretations built in to the SPARCL

interpreter.

2. Visual & Sets Design Elements.

There are several different representations of sets in SPARCL. These representa-
tions are of two types, basic and specialized. The basic representation is semantically
complete. Anything which can be expressed using sets in SPARCL can be expressed
using only the basic representation. However, the basic representation is awkward for
representing some common special forms of sets. These special forms are of three
types, N-tuples, tables, and intensional sets. The N-tuple is the basic representation
for ordered collections of terms, for sequences. A list is a special kind of N-tuple. A
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Figure 3. 18: ‘*DELAY*’/2 clause for the
‘Example 1’/2 clause of Figure 3. 4.



table is a set or N-tuple of collections. The elements
of a table, the rows, are either N-tuples (all of the
same length) or functions (all of the same domain).
An intensional set is a specification of a set by giving
the property which all of the members of that set
must have, rather than explicitly giving the elements
of the set (an extensional set, which is the basic rep-
resentation of a set).

Basic set representation. The representation of sets
is visual. More precisely it is diagrammatic rather
than linguistic. There are two forms of the basic set
representation, the empty set and the partitioned set. These are shown in Figure 3.19.
The parts of a partitioned set represent subsets of the set being partitioned. The ele-
ments in a part of a partitioned set have no particular order. The layout mechanism
places them so as to keep the representation fairly compact (within a “minimal” rect-
angle). The layout has no ordering implications. As discussed earlier, this lack of
ordering is easier to convey in a nonlinear representation than in a linear one. The
parts of a partitioned set are simply “stacked” vertically by the layout mechanism.
Again, there is no particular order to the parts. The
stacking is less than ideal in this case since a viewer
might infer some order (top to bottom or vice versa)
where none is intended. However, the stacking has
the virtue of being easy to layout in a readable fash-
ion. It is unusual to have partitioned sets of more
than two parts, and very unusual to have more than
three parts. A part which is shown with nothing in it
is considered to be a variable part, one with unspec-
ified contents, rather than an empty part1. There is
generally no need to explicitly represent an empty
part, one can simply omit an empty part from the
representation altogether. If an explicitly empty part
is needed, then one can create a hollow part and

1. This representation of a variable part is an aspect of SPARCL’S representation being diagrammatic
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Figure 3.19: Example SPARCL
Basic Sets.
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Figure 8.4.)
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create an
empty set
elsewhere in
the clause
(using a

‘*TERM*’/1 literal to hold the
empty set, if there is no other
logical place to put it), and
make the hollow part and the
empty set corefer. An example
of this is shown in Figure 3. 20.
The top part of the partitioned set in the first argument of the ‘Red Unicorns 1’/2
clause corefers with the top part of the partitioned set in one of the ‘*TERM*’/1 liter-
als and with the empty set in the other ‘*TERM*’/1 literal. (This example is taken
from a larger example presented in Figure 8.4.)

Specialized set representation for N-tuples. The N-tuple is an ordered set of 2 or
more terms. An example with two elements is shown in Figure 3.21. Some reductions
of N-tuples are shown in Figure 3.22. The first line of the table in Figure 3.22 shows
the reduction of an ordered pair (a 2-tuple) to a set containing two sets. The top con-
tained set contains one element, the first element of the ordered pair. The bottom con-
tained set contains two elements, the first and second elements of the ordered pair.

The second line of the table of Figure 3.22 shows the reduction of an ordered triple
(a 3-tuple) to an ordered pair. The ordered pair has an ordered pair as its first element,
and its second element is the same as the third element of the ordered triple. The
ordered pair of the reduction ordered pair’s first element consists of the first two ele-
ments of the ordered triple.

The third line of the table of Figure 3.22 shows the reduction of a 4-tuple to an
ordered pair. The first three elements of the 4-tuple map into an ordered triple which
is the first element of the reduction ordered pair. The last element of the 4-tuple maps
into the second element of the reduction ordered pair.

Other ordered collections such as lists and matrices can be built using N-tuples.

instead of linguistic. 
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Figure 3.21:
N-tuple of two
elements in
SPARCL.

Figure 3.22: N-tuple reductions.
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Special representations for these other ordered collections would be useful in SPARCL,
in addition to the N-tuple representation, but these have not been designed or imple-
mented yet.

Mappings, functions, and multisets. A mapping is a set of ordered pairs, where the
first elements of the ordered pairs are the domain of the function, and the second ele-
ments of the ordered pairs are the range. A function is a mapping where no two
ordered pairs have the same domain element.

A multiset is a function that has the positive integers as its range. The intensional
set representation can be specified to be an intensional multiset, and the arithmetic
operators ‘+’ (plus) and ‘*’ (times) as used by the is/2 built-in predicate both accept
multisets (with numbers as their domain).

Specialized set representation for tables. A term table represents a set or an N-tuple
of rows, where each row is an N-tuple or a function. If the rows of the term table are
N-tuples, then they must all be of the same length. If the rows of the term table are
functions, then they must all have the same domain.

Examples of tables of N-tuples are shown in Figure 3.23. The left-hand side of the
double-arrow at the top of the figure shows a table of two rows and two columns. The
horizontal half-arrow at the top of the table indicates that the columns are ordered.
The lack of any “decoration” (a vertical half-arrow) on the side of the table indicates
that the rows are unordered. This table on the left-hand side of the double arrow is
interpreted by SPARCL as though it were the term represented on the right-hand side of
the double arrow. Thus, these two
terms are equivalent; they unify.
The term to the right-hand side of
the double arrow is a set of two N-
tuples: {(a=>1), (b=>2)}. 

The bottom of Figure 3.23 shows
a table on the left-hand side of the
double arrow with half arrows on its
top and side. These half arrows
indicate that the columns are
ordered and that the rows are
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Figure 3.23: Set and N-tuple representation of
tables of N-tuples. (The  means “is a repre-
sentation of”).
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ordered. The interpreted version of this term is shown on the right-hand side. It is an
N-tuple of N-tuples: ((a=>1)=>(b=>2)).

There are some additional styles of representing tables not shown in the figure. If
the term table is an N-tuple of rows, then there may be a “root” element (a “0-th
row”) that may be any term. If the value for such a prefix is ‘empty_list’ (this being
the “root” element of an N-tuple that represents a list), then the term table a list of
rows. Also, there may be a common “factor” extracted from each of the rows and
placed next to the table. If the table is a collection of N-tuples, then the common fac-
tor is a prefix for each of the rows of the table. If the table is a collection of functions
(see below), then the common factor is a set of domain value/range value pairs com-
mon to each of the rows. This factoring can significantly reduce the number of col-
umns of a table.

Examples of tables of functions are shown in Figure 3.24. The left-hand side of the
top pair of terms shows a function table with unordered rows. The names of the col-
umns are “a” and “1”. This is the domain of the functions that this table represents.
The range values into which the domain values are mapped are in the bottom two
rows of the table. The right-hand side shows an equivalent term, a set of two N-tuple
tables. Each of these N-tuple tables corresponds to one of the functions specified by
the bottom two rows of the function table. For the first range row, the corresponding
function is {(a=>b), (1=>2)}. The function for the second row is {(a=>c), (1=>3)}.
The left-hand side of the bottom pair of
terms in Figure 3.24 shows a function
table with ordered rows. The corre-
sponding right-hand side term is an N-
tuple of the two functions for the bottom
two rows of the left-hand side. A func-
tion table can be considered as repre-
senting a “relation”. For instance, one
can represent a phone book “relation”
where the domain values are “name”,
“phone number”, and “address”. The
rows of this function table are the
entries in  a phone book.
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Figure 3.24: Set and N-tuple representa-
tion of tables of N-tuples.
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Specialized set representation for
intensional sets. Intensional sets in
SPARCL are a shorthand notation for the
use of the “setof” built-in predicate.
Beyond simply providing a compact
representation of a “setof” literal, this
representation also allows one to han-
dle the entire “setof” expression as a
term, nesting it in other terms and
placing it in argument positions. An
example of an intensional set is shown
in Figure 3.25.

Figure 3.25 shows two semantically
equivalent forms of a clause for the
‘bar’/1 predicate. The upper form uses
an intensional set term in the single
argument of the clause. This set is the
set of all terms such that these terms
are solutions of the argument for the
‘foo’/1 predicate. Suppose the ‘foo’/1
predicate is true only for the even numbers between 1 and 9 (i.e. 2, 4, 6, and 8). This
makes the value of the intensional set ‘{2, 4, 6, 8}’.

The lower form of the ‘bar’/1 clause uses the ‘setof’/3 built-in meta-predicate.
The ‘setof’/3 predicate has an interpretation related to the intensional set term. The
first argument of the ‘setof’/3 predicate is the form or pattern of terms to be collected
into a set, just as the term in the upper left corner of the intensional set box is the pat-
tern of terms in the intensional set. The second argument of the ‘setof’/3 predicate is
the set of literals that when satisfied provide bindings for one or more variables in the
set element pattern of the first argument. This set of literals is found in the “body” of
the corresponding intensional set box. The third argument is the set produced by all of
the values of the pattern of the first argument from all of the solutions of the literal set
of the second argument. This set is the term that the intensional set term represents.
Thus the lower form of the ‘bar’/1 clause in Figure 3.25 has the same solution as the
upper form, the set ‘{2, 4, 6, 8}’.
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Figure 3.25: Set and literal representation of
an intensional set (in an argument of a
clause).
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Using the intensional set term frequently allows one to use fewer coreference
links, as is the case in the example in Figure 3.25. Nesting intensional set terms
extends this benefit, as well as being substantially more compact. The nesting occurs
when one needs to express something like “the set of all pairs (X, Y) such that p(X)
and Y is the set of all B such that q(X, B)”. In this example the nested intensional set
is “Y is the set of all B such that q(X, B)”. If p/1 is “p(a); p(b); p(c)” and q/2 is
“q(a,1); q(a,2); q(b,3); q(c,4);q(c,5)”, then this example would yield the set: ‘{(a,
{1,2}), (b, {3}), (c, {4,5})}’. We used a form of this kind of nesting in our SPARCL

solution of the Classify Examples sub-problem of the ID3 problem, discussed in sec-
tions 1 and 2 of chapter 7 (“Subjective Analysis”).

3. Logic & Set Design Elements.

The combination of sets with partitioning constraints and logic programming
leads to several design elements of SPARCL. Sets are the fundamental organizational
tool of SPARCL programs, instead of structures as in PROLOG or lists as in LISP. Ordered
collections of terms, N-tuples, are handled as special organizations of sets, as indi-
cated above. The unification algorithm and inference mechanism are specialized in
SPARCL to handle partitioned sets and their associated constraints. Unification is opti-
mized to recognize N-tuples and handle them directly when possible instead of
always converting them to their pure set representation. The partitioned set unifica-
tion algorithm is defined and analyzed in chapter 4 (“Partitioned Structured Unifica-
tion”). The implementation is discussed in chapter 6 (“Implementation”).

Clause and literal ordering. Programs are sets of clauses in SPARCL and therefore
unordered; they are usually ordered in other logic programming languages. Similarly,
he body of a clause is a set of literals and is also therefore unordered. Since SPARCL is
a programming language and not a theorem prover, we have accepted some limita-
tions on SPARCL’s ability to “solve” collections of Horn clauses. Also, we want to pro-
vide the programmer some ability to direct the interpreter’s actions, for improved per-
formance. These are perhaps the central distinctions between logic programming and
theorem proving. We have provided the “delay” mechanism to mitigate the unor-
deredness of literals in a clause. This mechanism allows the programmer to specify
certain conditions on the state of the interpretation under which interpreting a particu-
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lar literal should not be attempted. These conditions involve the presence of unbound
variables in one or more arguments of the literal in question. This is a non-sequential-
ordering mechanism; one can specify (in effect) that literal B can’t be solved until lit-
eral A has been. For example, suppose literals A and B have coreferring variables in
an argument of each and literal B has a delay specification requiring that literal B be
delayed if the argument with the variable coreferring with the variable in A is non-
ground. Then solving A such that the variable of interest is grounded is the only way
to make the delay specification of B fail to apply, thus making B available for inter-
pretation. This is a non-sequential ordering in that literal A is required to be solve
before literal B, but it need not be solved immediately before solving B. The solution
of other literals could be done between solving A and B. More complex ordering rela-
tionships are possible. For instance, a literal Z could be delayed until either literal X
or literal Y has been solved, with the ordering of X and Y unspecified.

The ordering of choices among clauses (as opposed to the ordering of choices
among literals) is also sometimes necessary. Since SPARCL views a predicate defini-
tion as a set of clauses, this ordering would normally be unavailable to the program-
mer. This poses a serious problem when the programmer wants to implement a spe-
cific algorithm for solving a problem (as opposed to developing an algorithm “native”
to SPARCL). We encountered this difficulty in implementing a solution for the WARP-
LAN problem presented in chapter 7 (“Subjective Analysis”). SPARCL provides clause-
ordering via two built-in meta-predicates, ordered_disjunction/2 and if/3. Declara-
tively, the ordered_disjunction/2 predicate is true if either of the (sets of literals) in its
first argument or in its second argument is true. Procedurally, ordered_disjunction/2
tries its first argument first and when it backtracks it tries its second argument. The
if/3 predicate takes three sets of literals, the “condition”, “then”, and “else” sets.
Declaratively, the if/3 predicate is true if either the condition set is true and the “then”
set is true, or if the condition set is false and the “else” set is true. Procedurally, the
if/3 predicate solves the condition first. It “remembers” if any solution to the condi-
tion was found. If the condition was true, it then solves the “then” set of literals. On
backtracking it will find other solutions of the condition and “then” sets of literals, if
any. It will not backtrack into the “else” set of literals if any solution of the condition
set was found. The if/3 predicate only attempts to solve the “else” set of literals if no
solution to the condition set was found.
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Multisets. Multisets are introduced in the “Mappings, functions, and multisets” sub-
section of section 2 (“Visual & Sets Design Elements”) above. Multisets are present
in SPARCL as a response to the desire to use intensional sets in “counting” situations,
particularly as operands to arithmetic operators. This comes up naturally in many sit-
uations: one frequently wants the sum or product of all of the values such that some
predicate holds for each value. For instance, one might want the sum of all of the
daily revenue of a business to determine the revenue for the week (the predicate these
values have in common is “being the daily revenue of the business”). Normally, one
finds that statements of the form “all of the values such that some predicate holds for
each value” are correctly interpreted as “the set of all X such that p(X).” This, in turn,
is represented concisely in SPARCL as an intensional set with X as the template vari-
able and p(X) as the body literal. However, in the example given, this statement
should be interpreted as “the multiset of all X such that p(X).” If the revenue of two
different days happened to be the same, then that value should appear twice in the
sum. However, a value only “appears” once in a set so a sum over the set of values
for the week would miss a day’s revenue (the duplicated value). In the multiset of
these revenues the duplicated value has a count of 2 (where the nonduplicated values
have counts of 1). A properly constructed sum over this multiset produces the correct
result by multiplying each value by its count.

4. Visual Programming Design Elements.

The visual representation of SPARCL embodies many design elements. There are two
distinct representations of SPARCL, a two-dimensional one and a three-dimensional
one. The two-dimensional representation is fully developed and was used for most of
the research on which this dissertation reports. The three-dimensional representation
is incomplete in various ways, but it is interesting even in this partial implementation.
Both the two-dimensional and three-dimensional representations are constructed from
the same internal canonical representation. This is feasible because SPARCL relies
almost entirely on automated layout to arrange the visual details of the concrete repre-
sentation, be it two- or three-dimensional. Automated layout in SPARCL supports a
variety of concrete representations and it also supports a “semantically-oriented”
structured editing environment. Various techniques are used to visually differentiate
elements of the representation in a coordinated and principled way: straight lines for
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terms versus smoothly curved lines for coreference links; greys and light pastels for
terms versus strong colors for links. The different kinds of spatial relationships (con-
tainment, adjoinment, linking) are each used in visually consistent way: Elements that
abstractly contain other elements are represented by rectangular shapes with the rep-
resentations of the abstractly contained elements concretely nested within the shape;
ordering is represented by adjoinment (vertical or horizontal), sometimes including an
appropriate decoration (such as an arrow); and coreference (a kind of equivalence) is
represented by connecting lines.

The three-dimensional representation has only a static version, there is no direct
user editing of the representation. The user can interactively view the representation.
Also the three-dimensional representation is partial in that not all of the syntax of
SPARCL can be represented three-dimensionally.

Program editing approaches. A problem common to visual programming languages
is the need to display and edit relationships among elements within pictures or
"scenes" that are the visual representation of some part of a program. Using nonlinear
representations, the programmer may edit scenes in four ways: 

(1) the programmer may draw the program representation “free hand” and have the
system infer what the intended program is; 

(2) the programmer may draw the program representation using system-provided
elements (box, circle, line, text, etc.) and have the system infer what the
intended program is;

(3) the programmer may draw the program representation using system-provided
semantically-specific elements (statement boxes, variable ovals, etc.),
positioning them and sizing them explicitly; or,

(4) the programmer may indicate the program representation by specifying
semantic modifications (“add a statement”, “change variable reference”,
“reference a function”) with automatic layout, an extreme version of a syntax-
directed editor.

SPARCL uses the fourth approach, a “semantic modification” editing environment.
Examples of this approach are given in chapter 3 (“Tutorial Introduction to SPARCL”).
This approach is most strongly motivated by the desire to simplify the editing of a
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two- or three-dimensional representation. It also has the advantage of elimination syn-
tactic programming errors, since the program representation is syntactically correct at
all times. The primary disadvantage is that the automated layout system is not as good
at creating an easily understood layout as the programmer is. However, a counteract-
ing advantage is that the layout style of programs does not vary among programmer’s,
making it easier to understand other programmer’s code. Within the context of auto-
mated layout, one can offer parametric control of the layout algorithm so that each
programmer can tailor the appearance of programs to their taste. This tailoring is not
arbitrary, it is limited by the layout algorithm’s capabilities. Thus, although programs
are entirely automatically laid out, the way in which a particular program looks can
be different for different programmers.

The need to simplify the editing task is discussed in the following sub-sections.

Representing relationships. There are several reasons that a layout may be
incomprehensible. A common problem is simply fitting all of the program elements
of interest on the screen. If a program is sufficiently complex such that it has many
“tightly” interacting elements, there just may not be room to show all of the elements
and their interactions at one time. Another common problem is showing relationships
among elements.

These two problems are related. A representation which must show that two items
are related has relatively few general purpose options. The major ones are connecting
related items with a line of some type, having the representation of one item visually
contained within the representation of another item, and using same appearance for
the same visual or textural appearance for related items (e.g., same color, same shape,
same text). All of these options have their problems.

Connecting lines create a graph layout problem. Line crossings are inevitable
unless only planar graphs are allowed and even then the need for a representation that
is flexible about the relative positioning of the “nodes” is a problem. Directed planar
graphs can be laid out without line crossings, but the directed nature of the graph is
generally obscured by such a layout. 

Simple containment (for representing “tree” relationships) is easy to layout if
screen space is not an issue. However, it uses up screen space faster than connecting
lines. This is in part due to the necessity of leaving part of a container blank when a
regular layout of that container’s contents don’t use up the available space in the
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container. For readability one wants to make containers of the same kind be obviously
similar in appearance (making it easy to “read” the similarity of kind), thus they
should have very similar shapes. This pushes one to avoid changing the shape of a
container simply to more efficiently use screen space. Generalized containment al-
lows overlapping containers, which can represent directed-acyclic-graphs instead of
only trees. Generalized containment is much harder to layout; it is much like the
graph layout problem and it consumes screen space more rapidly than do connecting
lines.

The “same appearance” approach requires that relations between items have the
same appearance. It is limited to representations of equivalence classes with relatively
few classifications of items and relatively few items overall, wherein each
classification is readily distinguished from all of the other classifications. The
relatively few classifications requirement springs from the difficulty of distinguishing
very many different “appearances”. Also, there should be relatively few items overall
as the viewer must search through all representations to locate all of the items having
the same appearance. If there are many items and/or the distinguishing aspect of the
appearance is difficult to see (e.g. very small shapes, small variation in color), then
this search becomes tedious.

Many representations use all three of the techniques for different aspects of the
programming language. In PHF [Fukunaga et al. 1993a], “same text” and “same
icon” is used to classify particular operators such as “plus” or “times”, containment
shows “subroutine” relationships, and connecting lines show data flows. For the
editing environment, the programmer draws program elements using system-
provided, semantically-tagged shapes, explicitly positioning and sizing them.

Overall, the attractiveness of lines is that:
(1) they don't require searching as does "same appearance",
(2) they are more flexible for displaying various relations than is

containment, and
(3 they don't use up screen space as rapidly as does containment.

Thus, using lines to show relatedness is clearly an interesting approach in spite of
the difficulty of generating a layout which avoids line crossings. This provides one of
the motivations for developing a 3D representation of SPARCL. Since the main
objection to lines is their crossings, and the main problem with crossings is the visual
confusion created by a lack of depth in 2D representations, a 3D representation may
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reduce or eliminate this visual confusion.

Requirements for a 3D Line Representation. Since crossing lines are inevitable in
many representations, some technique to make them less confusing is needed. We
propose to use a 3D representation that will clearly delineate line crossings, thereby
removing the visual confusion associated with 2D representations of lines.

One of the challenges of providing such a 3D representation is providing the
programmer with a convenient way to edit scenes. With 3D representation, scenes can
be enormously complex to define, even when there are relatively few (10 or 20)
elements. For 3D representation, either the scenes must be extremely simple, or the
system must provide substantial aid in generating them. A “semantic-modification”
environment, which does all of the layout, provides the most such aid. This approach
is feasible if there is an appropriate modification scheme. A modification scheme is
“appropriate” if it is usable, and if at any distinguished part in a representation there
are only a “small” number of modifications possible, and if this scheme can be used
to create all valid programs. Not all programming language representations lend
themselves to such a modification scheme.

Fully automated layout is feasible if an algorithm can be implemented which can
find a comprehensible layout for most valid programs in a reasonable amount of time
and space. For those valid programs which the algorithm cannot find a
comprehensible layout there must be an alternative program which achieves the same
ends as the difficult program and for which the algorithm can find a comprehensible
layout. This last condition allows the system to “require” the programmer to use some
kind of modularization to achieve a readable program representation. The “most valid
programs” phrase means “most of the valid programs a programmer is likely to
write”. This means that the modularization requirement of the layout algorithm
should at most infrequently force a programmer to divide something into modules
only to aid in layout comprehensibility.

This provides several design elements for the representation of SPARCL: three-di-
mensional representation,  “semantic-modification” structured editing, a modification
scheme “appropriate” in the above sense to “semantic-modification” structured edit-
ing, and fully automated layout (which requires a representation which supports a lay-
out algorithm which can find a comprehensible layout for most valid programs in a
reasonable amount of time and space). A more detailed discussion of the issues
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addressed in SPARCL in three-dimensional representation are
presented in chapter 5 (“Three-dimensional Representa-
tion”).

5. Sets With Partitioning Design Elements.

The decision to use sets with partitioning as the basic
organization of data leads to several other design elements of
SPARCL. Sets are unordered and this is convenient for those
situations where one has unordered data. But, some way of
expressing order is also useful and for this SPARCL uses N-tu-
ples. The representation of N-tuples in SPARCL is shown in
Figure 3.21 and Figure 3. 22. N-tuples are defined in SPARCL in terms of sets. An N-tu-
ple (N > 1) is built recursively from the definition of an ordered pair2:

A 1-tuple has the “degenerate” definition: 
.

The N-tuple is defined as:

Partitioning provides the necessary expressivity for all of the common set opera-
tions such as union, intersection, and difference. The SPARCL ‘Union’/3 predicate
demonstrates this. This example is discussed in appendix 1 (“Tutorial Introduction to
SPARCL”). We reproduce that discussion here.

The SPARCL predicate for Union/3 is shown in Figure 3. 26. The single clause of
this predicate uses the set partitioning mechanism to impose constraints such that the
first two arguments are sets whose union is the third set. This predicate can be used at

2. This definition is from  [Mendelson 1964], page 162. Mendelson credits Kuratowski with discover-
ing this definition of an ordered pair in terms of sets. He notes that it 
“does not have any intrinsic intuitive meaning. It is just a convenient way ... to define ordered pairs
so that one can prove the characteristic property of ordered pairs... (x)(y)(u)(v)(<x,y>=<u,v> ->
x=u and y=v).”
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Figure 3.26: SPARCL
Union/3 program.
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any point in the evaluation process, and any or none of the three arguments may be
instantiated at the time this predicate is instantiated. It relies on the partitioned-set
semantics to specify the union:

The three sets , ,  and  taken together are a partitioning of
 in that they are pairwise disjoint and their union is . The differences are

specified via partitionings also:

The two sets  and  taken together are a partitioning of  in that
they are pairwise disjoint and their union is . Similarly,  and  are a
partitioning of .

One can reason about how Union/3 specifies that C = A U B as follows: Let the
two parts of A be sets X and Y, the two parts of B be sets Y and Z, and the three parts
of C by X, Y, and Z. Since  X and Y form a partitioning of A, everything in A is in
one or the other of them and they have no elements in common. Similarly for Y and Z
with respect to B and X, Y, and Z with respect to C.

We can show that Y must be the intersection of A and B by contradiction. The
two possible cases are that there is an element in the intersection which is not in Y, or
that there is an element in Y which is not in the intersection. Suppose that there is
some element E which is in the intersection of A and B but is not in Y.  Because E is
in A and B, then E must be in A. Because X and Y cover A, E is in A, and E is not in
Y, then E must be in X. A similar line of reasoning shows that E must be in Z. Thus,
the intersection of X and Z contains E. However, this contradicts the given fact that
X, Y and Z are pairwise disjoint, i.e. that X and Z have an empty intersection. Thus,
there can not be an element of the intersection of A and B which is not in Y.

Having handled the first case, suppose that there is a element F which is in Y but
which is not in the intersection of A and B. Since Y is part of the cover of A, F must
be in A. Similarly, F must be in B. Since F is in A and B, it must be in the intersection
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of A and B, but this contradicts our assumption. Thus, there can not be an element of
Y which is not in the intersection of A and B. This completes our proof that Y is the
intersection of A and B.

Since X and Y disjointly cover A, then X must be A minus Y. Since Y is the
intersection of A and B, it contains all of B which is in A, so A minus Y = A minus
B. Thus, X is A minus B. Similarly, Z is B minus A. This gives the desired equation:

In summary, the SPARCL Union/3 clause asserts:

The only solution of these three equations is:

.

Thus  (the set in the third argument) is the union of  and  (the first and sec-
ond argument sets), as desired.

6. Logic Programming Design Elements.

The logic programming aspect of SPARCL leads to several design elements. SPARCL

relies on Horn clauses (based on sets) in which to express the logic of problem solu-
tions. The interpretation of a query and a set of clauses uses resolution theorem
proving with a depth-first backtracking search (with delaying of literals). The resolu-
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tion theorem proving relies on unification and logic variables. The coreference mech-
anism described in section 1, “Visual & Logic Design Elements”, is not part of the
interpreter. The coreference links for a clause are translated into unification literals
which are added to the body of that clause before being passed to the interpreter.

It uses negation as failure and the Closed World Assumption to express negation.
The inference engine is a resolution theorem prover extended with constraint han-
dling for the partitioning constraints and delay handling to support delaying the reso-
lution of dynamically selected literals.

The delay mechanism is the major explicit ordering of execution which the
SPARCL programmer can specify. The programmer provides delay specifications (dis-
cussed in section 1, “Visual & Logic Design Elements”) which the interpreter/infer-
ence engine uses to determine whether to delay evaluating/resolving a particular lit-
eral. The delay specification for a predicate P/K has the name P of the predicate in its
first argument and a K-tuple of term-binding types in its second argument. a term-
binding type for each argument of the predicate. These can be “variable”, “non-
ground”, “ignore”, or “subgoal”. The argument of a literal always matches the speci-
fication for that argument if the specified binding type is “ignore”. If the literal
argument’s term is an unbound variable, then it matches all four types. A term is non-
ground if it is an unbound variable or if it is a set which contains a nonground term. If
the literal argument’s term is nonground, then it matches “nonground” and “ignore”
(but not “variable”). The “subgoal” type can be used with meta-predicates in one or
more of their literal-containing arguments (e.g. “*DELAY*=>fails=>subgoal” delays
a ‘fails’/1 literal that has a sub-literal that must be delayed). If the type is “subgoal”,
then the literal term T matches if it is a variable. If T is not a variable, then it is con-
sidered as an N-tuple specifying a literal. The first element of T is the predicate name
of this “sub-literal”, and N-1 is the arity of the sub-literal. If the sub-literal is delayed
(applying the same process recursively), then the argument containing the sub-literal
matches the “subgoal” type. There are many examples of the use of the delay mecha-
nism in the ID3, WARPLAN, and Self Interpreter programs in chapter 7 (“Subjective
Analysis”).

The other execution-ordering mechanisms are two built-in (meta)predicates ‘if’/3
and ordered_disjunction/2. The ‘if’/3 predicate evaluates the Test literal first, then it
evaluates the Then or Else literals as appropriate. The ‘ordered_disjunction’/2 predi-
cate evaluates its first argument first. On failure of the first argument, then the second
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argument is evalu-
ated. There are uses
of these predicates
in the WARPLAN
example in chapter
7.

The Interpretation
Procedure. The
interpreter for
SPARCL defines the
procedural meaning
of SPARCL programs.
The interpreter is a
procedure for
executing a set of
goals with respect to
a given program. To
“execute goals” means try to satisfy them. We present here the discussion of the inter-
pretation procedure given in section 2.4 of the tutorial (Appendix 1 (“Tutorial Intro-
duction to SPARCL”)).

Let us call this procedure “execute set”. The inputs are a program, a goal set, and
a set of partitioning constraints. The outputs are a success/failure indicator and an
instantiation of variables. The success/failure indicator is “yes” if the goals are
satisfiable and “no” otherwise. We say that “yes” signals a successful termination and
“no” a failure. An instantiation of variables is only produced in the case of a
successful termination; in the case of failure there is no instantiation. A discursive
version of the procedure is shown in Figure 3. 27. This procedure can be written in a
Pascal-like notation as shown in Figure 3. 28.

Several additional remarks are in order here regarding the procedures
"execute_set" and “execute_list” as presented. First, we don’t explicitly describe how
the final resulting instantiation of variables is produced. It is the instantiation S which
led to a successful terminate, and was possibly further refined by additional
instantiations that were done in the nested recursive calls to "execute_list".
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To execute a set of goals {G1, ..., Gm} with partitioning constraints P the
procedure “execute” does the following:

• Order the goal set to create a list {G1', ..., Gm'}
• invoke "execute list".

To execute a LIST of goals [G1', ..., Gm'] with partitioning constraints P
the procedure "execute list" does the following:

• If the goal list is empty then if the delayed goals list is empty terminate with
"success", else terminate with "failure".

• If the goal list is not empty then divide the list into the first goal, G1', and
the OtherGoals.

• If G1' is the special "marker" goal 'end_body', then replace it with the
DelayedGoalsList ([DG1, ..., DGk]) to create [DG1, ..., DGk, G2', ..., Gm']
and recursively invoke execute_list with this new goal list and an empty
delayed goals list. The result of the recursive invocation is the result of this
invocation.

• Else, if G1' is a goal which should be delayed according to the *DELAY*
definitions in the program then add G1' to the DelayedGoals and
recursively invoke execute_list with the OtherGoals ([G2', ..., Gm']) and
the extended DelayedGoals. The result of the recursive invocation is the
result of this invocation.

• Otherwise (i.e. if GoalList is not empty, G1' is not 'end_body', and G1'
does not need to be delayed) continue with (the following) operation called
"SCANNING".

Figure 3. 27 (part 1 of 2): Interpreter procedure, discursive
presentation.



Whenever the recursive call within SCANNING to "execute_list" fails, the execution
returns to SCANNING, continuing at the program that had been last used before. As
the application of the clause C did not lead to a successful termination SPARCL has to
try an alternative clause to proceed. What effectively happens is that SPARCL abandons
this whole part of the unsuccessful execution and backtracks to the point (clause C)
where this failed branch of the execution was started. When the procedure backtracks
to a certain point, all of the variable instantiations that were done after that point are
undone. This ensures that SPARCL systematically examines all of the possible
alternative paths of execution until one is found that eventually succeeds, or until all
of them have been shown to fail.

The implementation of the interpreter used in SPARCL adds many refinements to
the execute procedures in Figure 3. 27 or Figure 3. 28. One of these refinements reduces
the amount of scanning through the program clauses so SPARCL will only examine the
clauses about the relation in the current goal. We discuss the implementation of the
interpreter and unification in chapter 6 (“Implementation”).
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• SCANNING: Scan through the clauses in the program in any order until a clause, C, is found such
that the head of C matches the first goal G1' without violating the current partitioning constraints P. If there
is no such clause then terminate with "failure".

If there is such a clause C with head H and body goals {B1, ..., Bn}, then replace the variables of
C with new variables (essentially, rename the variables of C) to obtain a variable C' of C, such that C'
and the list G1', ..., Gm' have no common variables. Let C' have head H' and body {B1', ..., Bn'}. Let
G1' match H'; let the resulting instantiation of variables be S and extend partitioning constraints P to
be P'.

Order the goal set {B1', ..., Bn'} to create the goal list
[B1'', ..., Bn''].

In the goal list [G1', ..., Gm'], replace G1' with the list [B1'', ..., Bn''], obtaining a new list
[B1'',...,Bn'',G2', ..., Gm']. 

(Note that if C is a fact then n = 0 and the new goal list is shorter than the original one; such shrinking
of the goal list may eventually lead to the empty list and thereby a successful termination.)

Substitute the variables in this new goal list with new values as specified in the instantiation S,
obtaining another goal list

[B1''', ..., Bn''', G2'', ..., Gm'']

• Execute (recursively with procedure "execute list") this new goal list. If the execution of this new goal
list terminates with success then terminate the execution of the original goal list also with success. If
the execution of the new goal list is not successful then abandon this new goal list and go back to
SCANNING through the program. Continue the scanning with any untried clause and try to find a
successful termination using some other clause.

Figure 3. 27 (part 2 of 2): Interpreter procedure, discursive presentation.



7. Visual Programming, Logic Programming, and Set Design Ele-
ments.

The design of the han-
dling of input and output for
SPARCL is derived from all
three basic principles. The
constraints we have adopted
for SPARCL’S IO are:  the con-
crete representation that is
written or read must be non-
linear, reading and writing
must be backtrackable, and
what is read or written is a
set of terms. That the con-
crete representation that is
written or read must be non-
linear  derives from visual
programming, that reading
and writing must be back-
trackable derives from logic
programming, and that what
is read or written is a set of
terms derives from the fun-
damental nature of sets in SPARCL.  Our design and implementation of this aspect of
SPARCL is not complete.

 The basic concepts for SPARCL’s IO are the “persistent term” and “term sets”. A
persistent term  is a SPARCL term that “persists” across invocations of SPARCL. We
store persistent terms in persistent term sets (or simply “term sets”). A term set has an
identifier that allows SPARCL to find it. In this view, a SPARCL program is simply a spe-
cial kind of persistent term set, a set of N-tuples that is viewed by the SPARCL system
as defining a set of clauses. The name of the program is the term set identifier.

Persistent terms are referenced during interpretation of a query by the persis-
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procedure execute_set (Program, GoalSet, Constraints, Success)
begin
  OrderedGoalsList := order_goal_set(GoalSet);
  execute_list(Program, OrderedGoalList, [], Constraints, Success);
end;

procedure execute_list (Program, GoalList, DelayedGoals,
                        Constraints, Success)
begin
  if empty(GoalList) then
    begin
      if empty(DelayedGoals) then
        Success := true
      else Success := false
    end
  else
    begin
      Goal := head(GoalList);
      OtherGoals := tail(GoalList);
      if Goal = end_body then
        begin
          NewGoals := append(DelayedGoals, OtherGoals);
          execute_list(Program, NewGoals, [], Constraints, Success);
        end
      else if delay(Goal, Program) then
        begin
          NewDelayedGoals := append(DelayedGoals, [Goal]);
          execute_list(Program, OtherGoals, NewDelayedGoals,
                       Constraints, Success);
        end
      else
        begin
          Satisfied := false;
          while not Satisfied and "more clauses in program" do
            begin
              Let next clause in Program be
                head H and body {B1, ..., Bn}.
              Construct a variant of this clause
                head H' and body {B1', ..., Bn'}.
              match(Goal, H', Constraints, MatchOK, Instant,
                    MatchConstraints);
              if MatchOK then
                begin
                  OrderedBodyGoals := order_goal_set({B1', ..., Bn'});
                  ExtendedBodyGoals := append(OrderedBodyGoals,
                                              [end_body]);
                  NewGoals := append(ExtendedBodyGoals, OtherGoals);
                  NewGoals := substitute(Instant, NewGoals);
                  execute_list(Program, NewGoals, MatchConstraints,
                               Satisfied);
                end
            end;
          Success := Satisfied
        end
    end

end;

Figure 3. 28: execute_set and execute_list proce-
dures.



tent_term/2 built-in. If a persistent term with the given identifier has already been ref-
erenced in the current query processing, then the second argument of persis-
tent_term/2 must unify with that already referenced term. If the given identifier has
not been used in the current query processing, then a new entry is added to the persis-
tent term table (kept internally by the interpreter). If there is a term set program in the
SPARCL environment with the given identifier, then the contents of that program
become the “value” of the persistent term in the table, otherwise the initial value is an
unbound variable. In either event, the value of the new entry is unified with the sec-
ond argument of persistent_term/2. When the query processing terminates success-
fully, persistent terms in the persistent term table are written to term set programs in
the SPARCL environment. If a term set program’s contents were modified by the query,
then that term set program is replaced by the new value. If there isn’t already a term
set program corresponding to a persistent term’s identifier in the persistent term table
of the query, then one is created with that persistent term’s corresponding value. The
term set programs may be saved or discarded at the user’s discretion. The result of a
query (the head of the clause being queried as bound by successful termination of the
query) is written to a term set program with an identifier that is built from the name of
the program containing the clause being queried.

The construction of the persistent term table is backtrackable, so the construction
of a persistent term only reflects the successful proof path used by the query and none
of the unsuccessful branches. The construction of persistent terms across queries is
not backtrackable. This is analogous to delayed output in transaction processing,
where no output is made visible until the transaction commits.As in the transaction
case, this kind of output is not always useful. For instance, one cannot see “progress
reports” that give the user an idea where the interpreter is in the process of solving a
complex query. To deal with this latter case, we implemented two textual writing
predicates in SPARCL, write/1 and grounded_write/1. We need two predicates because
of the nature of ordering of execution in SPARCL. A write/1 literal will execute when-
ever the interpreter selects it.  If one wants to write out some interim result, the
grounded_write/1 predicate might be more appropriate. It has a built-in delay specifi-
cation the prevents a grounded_write/1 literal from being interpreted until its argu-
ment is ground. Thus, it won’t write anything out until it has a fully grounded term to
write. In either case, they write a readable linear representation of the argument fol-
lowed by a newline to the ‘*Output*’ window of the SPARCL environment.
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We have no solution for reading terms interactively during the interpretation of a
query. Thus, the basic interactive cycle of prompting the user for some input, reading
the input, processing it, reporting the result, and starting the cycle over, is not possible
in interpreting a single SPARCL query. This is an area we hope to address in the future.
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Programming in SPARCL

This section is an introduction to programming in
SPARCL.3 Several key concepts are introduced in this sec-
tion: clauses, facts, rules and running queries.

Facts. Consider the ‘Parent’/2 predicate defined by the six
clauses in Figure 3. 29. This is a simple "database"-style

program in that all of the clause
are facts about the ‘Parent’
relationship: Pam is
Bob’s parent, Tom is
Liz’s parent, Bob is
Pat’s parent, and so
forth.

We use this program
by “querying” it. A
query is written in
SPARCL as a clause,
generally with one or
more literals in it. One
such query is shown in
Figure 3. 30. This query
poses the question

“Who is Pam’s child?”. This ‘Parent Query’/1 clause is true if the ‘Parent’/2 predicate
is true with a first argument of ‘Pam’. The interpreter for SPARCL not only determines
that ‘Parent’/2 is true, but also keeps track of the set of variable bindings used to
make that determination. When it succeeds with the ‘Parent Query’/1 clause of
Figure 3. 30 as its query, then it displays an N-tuple of ‘Parent Query’/1 with the
appropriate bindings. The interaction to request SPARCL to evaluate a clause as a query
is shown in Figure 3. 31. The user has selected the “Query:Brief” option (to suppress
trace information). The result of this query is displayed by SPARCL in a special

3. This material is discussed in greater detail in the Appendix 1 (“Tutorial Introduction to SPARCL”).
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Figure 3. 29: ‘Parent’/2
predicate definition. 

Figure 3. 30: ‘Parent
Query’/1 clause: “Who
is Pam’s child?”

Figure 3. 31: Interaction to
query SPARCL “Who is Pam’s
child?”
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window. It is the ordered pair
(2-tuple) shown in
Figure 3. 32. If there were
several possible answers to
this query, SPARCL would

only report the first one it encountered. To get a result
that shows all of the possible answers, one needs to con-
struct a query using a ‘setof’/3 predicate or an inten-
sional set. The clause for the query “Who is Liz’s par-
ent” and the result N-tuple are shown in Figure 3. 33.
This clause is very similar in structure to the previous example, and interpreter
answers that ‘Tom’ is a parent of ‘Liz’.

A more complex example query, “Who is the grandparent of Jim?”, is shown in
Figure 3. 34. This query asks for Jim's grandparent "X". Since our program does not
directly know the "Grandparent" predicate, this query has to be broken down into two
parts: 

(1) Who is a parent of Jim? Assume that this is some Y.
(2) Who is a parent of Y? Assume that this is some X.
We ask a query of two parts by putting a literal for each part in the body of the

same query clause and connecting the variables of these literals appropriately. 
Some major points from the preceding discussion:

• It is easy in SPARCL to define a predicate, such as the ‘Parent’/2 predicate, by
stating the N-tuples of objects that satisfy the predicate.

• The user can easily query the SPARCL system about predicates defined in the
program.

• A SPARCL program consists of 'clauses'.
• The arguments of predicates can (among other things) be: concrete objects (such

as "Tom" and "Ann"), or general objects which are represented by small circles.
Objects of the first kind are called "atoms" and objects of the second kind are
called "variables".

• Questions to the system consist of a clause, which may contain any number of
'literals'. Several literals in the body of a single clause means that clause is true
when the conjunction of the literals is true.

• An answer can be either positive or negative: for a positive answer we say that
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Figure 3. 32: Query
result for “Who  is
Pam’s child?”

 
Figure 3. 33: Query clause
and result N-tuple for
“Who is Liz’s parent?”
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the query was
"satisfiable" and
it "succeeded";
for a negative
answer we say
that the query
was
"unsatisfiable"
and it "failed".

• If a query has
several possible
answers then
SPARCL will find one of them.

Rules. The "Parents" program can be extended in many
interesting ways. Let us first add the information on the sex
of the people that occur in the ‘Parent’/2 predicate. This
information has already been entered and saved in a program
file, so we can simply open that program.

Definitions for the ‘Male’/1 and ‘Female’/1 predicates are
shown in Figure 3. 35. These predicates are unary (or one-
place) predicates. A binary predicate like ‘Parent’/2 defines a predicate between
*pairs* of objects; on the other hand, unary predicates can be used to declare simple
yes/no properties of objects.

These ‘Female’/1 and ‘Male’/1 predicates can be displayed in a different, more
compact, way. This alternative representation uses SPARCL's "fact tables". Figure 3. 36

has "fact table" versions of the ‘Female’/1 and ‘Male’/1 predicates. These tables have
the same meaning as the collection of shown the in Figure 3. 35. The fact table has the
predicate name for all of the facts of the table placed in the upper left-hand corner of
the table. Each row of the table is a single "fact" - a clause with an empty "body".

The ‘Offspring’/2 predicate is the inverse of the ‘Parent’/2 predicate. We could
define ‘Offspring’/2 in a similar way as the ‘Parent’/2 predicate; that is, by simply
providing a list of simple facts about the ‘Offspring’/2 predicate, each fact

67

Figure 3. 34: Query clause
and result for “Who is the
grandparent of Jim?”

 

  

  
Figure 3. 35: Definitions for the
‘Female’/1 and ‘Male’/1 predicates.
Separate clauses version.

 
Figure 3. 36:
‘Female’/1 and
‘Male’/1 predicates.
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mentioning one pair of
people such that one is an
offspring of the other.

However, the offspring
predicate can be defined
much more elegantly
making use of the fact that
it is the inverse of
‘Parent’/2, and that
‘Parent’/2 has already been
defined. This alternative
way can be based on the
following logical
statement: "For all X and Y, Y is an offspring of X if X is a
parent of Y." The clause in Figure 3. 37 represents the
preceding "logical statement". This kind of clause is called a
"rule".

There is an important difference between facts and rules.
A fact like those shown in the ‘Parent’/2 clauses is something
that is always, unconditionally, true. On the other hand, rules
specify things that are true if some condition is satisfied.
Therefore we say rules have:

• a condition part (the right-hand side of the clause)
• a conclusion part (the predicate name and arguments on the left-hand side of the

clause).
The conclusion part is also called the "head" of a clause and the condition part the
"body" of the clause.

How rules are actually used by SPARCL is illustrated by the following example. Let
us ask our program whether Liz is an offspring of Tom. The "query" clause in
Figure 3. 38 represents our question.

There is no fact about offsprings in the program, therefore the only way to
consider this question is to apply the rule about offsprings. The rule is general in the
sense that it is applicable to any two objects; therefore it can also be applied to such
particular objects as "Liz" and "Tom". We say that the variables become instantiated.
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Figure 3. 37: Clause with labeled parts defining the
‘Offspring’/2 predicate.

Figure 3. 38: Clause
for the query “Is Liz
an offspring of
Tom?”
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Figure 3. 39 is
the special case of
the Offspring rule
clause after
instantiation of the
general rule in
Figure 3. 37 in sat-
isfying the query
literal from

Figure 3. 38.
The single literal of the "Offspring

*INSTANCE*" body becomes the new goal for SPARCL to solve. It is trivial to solve
as it can be found as a fact in the ‘Parent’/2 program. This means that the conclusion
part of the rule is also true, and SPARCL will succeed in executing the original query.

In Figure 3. 40 there are two similar clauses defining two different predicates. The
"Mother" clause, which defines the ‘Mother’/2 predicate, shows a rule with two
literals in its body, ‘Parent’/2 and ‘Female’/2. The "Grandparent" clause, which
defines the ‘Grandparent’/2 predicate, shows a rule which uses the same predicate,
‘Parent’/2, twice in the literals of its body.

The "Sister (sort of)" clause in Figure 3. 41 defines the
relationship of someone as
the sister of someone if these
two people have the same
parent. This clause actually is
slightly flawed - it allows for
someone to be sister to
herself. The "Sister" clause in
Figure 3. 42 fixes this using
the ‘Different’/2 predicate.

The ‘Different’/2 predi-
cate, shown in Figure 3. 43,
relies on a partitioned set con-
straint to specify the the terms
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Figure 3. 39: Instantiation of
Offspring rule clause. Cre-
ated in response to the
query literal of Figure 3. 38.  

Figure 3. 40: The clauses defin-
ing the ‘Mother’/2 and
‘Grandparent’/2 predicates.

Figure 3. 41: Clause
defining the ‘Sister
(sort of)’/2 predicate.

Figure 3. 42: Clause defin-
ing ‘Sister’/2 predicate.
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in its two arguments are different. The ‘*TERM*’/1 predicate is
a built-in predicate of the SPARCL system. It is always true. It is
used here to introduce the partitioned set constraint. Since the
two "sisters" are in different parts of a partition, they must be
different (since parts of a partition are disjoint sets). This is a
kind of "not equal" constraint. We will discuss partitioned sets in
more detail in a later section.

The ‘Predecessor’/2 predicate is defined by the two
‘Predecessor’/2 clauses and a ‘*DELAY*’/2 clause, as shown in
Figure 3. 44. This predicate is an example of
recursion, multiple clauses to defining a single
predicate, and specifying a delay condition. A
recursive definition of a predicate uses the
predicate being defined in the body of one or
more of the defining clauses of that predicate.
Some person X is the Predecessor of some
other person Z if X is a Parent of Z (this is one
of the clauses), OR if X is the parent of some
person Y, and Y is a predecessor of Z (this is
the other one of the clauses).

The ‘*DELAY*’/2 predicate is used by the
SPARCL interpreter in deciding when to
evaluate goal literals. This ‘*DELAY*’/2
clause instructs the interpreter to “delay” the
evaluation of a ‘Predecessor’/2 goal if the first
argument is a variable (i.e. an unbound variable term). This is necessary in the case of
the ‘Predecessor’/2 predicate to prevent the interpreter from trying to solve the
‘Predecessor’/2 literal before it has solved the ‘Parent’/2 literal. This prevents the
interpreter from recursing forever. Unfortunately, this is too restrictive. This restricts
us to using the ‘Predecessor’/2 predicate to ask the question "Who is X the
predecessor of?". We would like to also be able to use ‘Predecessor’/2 to answer the
question "Who is X's predecessor?".

Another version of the ‘Predecessor’/2 program is shown in Figure 3. 45 that
allows us to ask both of these questions. This version of the ‘Predecessor’/2 program
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Figure 3. 43:
‘Different’/2 predi-
cate definition.

 

Figure 3. 44: Clauses defining the
not-quite-satisfactory version of the
‘Predecessor’/2 predicate.
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allows us to ask both of the
questions mentioned before.
The difference between this
version and the earlier
version small: There is a new
predicate, "Predecessor
Recursion" which is simply a
"wrapper" for
‘Predecessor’/2; this
predicate is used in the
recursive clause of
‘Predecessor’/2; and the
‘*DELAY*’/2 clause now
refers to this new predicate
‘Predecessor Recursion’/2
instead of the ‘Predecessor’/2
predicate. Now, the inter-
preter will attempt to solve a ‘Predecessor’/2 goal which has an unbound variable first
argument (which would have been delayed in the definition in Figure 3. 44), but it will
not recurse infinitely in the attempt since the ‘Predecessor Recursion’/2 literal will be
delayed when its first argument is an unbound variable.

The ‘*DELAY*’/2 clauses are the primary method the SPARCL programmer has to
control the order in which the SPARCL interpreter attempts to solve goals. This is a
particularly important facility when writing recursive predicates to ensure that the
recursion terminates.

Important points of this section are:
• SPARCL programs can be extended by simply adding new clauses.
• SPARCL clauses are of three types: facts, rules, and questions.
• Facts declare things that are always, unconditionally true.
• Rules declare things that are true depending on a given condition.
• By means of questions the user can ask the program what things are true.
• SPARCL clauses consist of the "head" and the "body". The head is the name of the

predicate and the arguments placed on the left side of the clause. The body is a
set of "literals". These literals are understood to be joined by conjunctions.
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Figure 3. 45: Clauses defining the correct version of
the ‘Predecessor’/2 predicate.
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• Facts are clauses that have a head and the empty body. Rules have the head and
the (non-empty) body. A question is a "rule" clause which the programmer
chooses to query.

• In the course of computation, a variable can be substituted by another object. We
say that a variable becomes "instantiated".

• Variables are assumed to be universally quantified and are read as "for all".
Alternative readings are, however, possible for variables that appear only in the
body. These can be read as "some" (existential) variables.

• Recursion may be used in defining SPARCL predicates.
• The "*DELAY*" clause may be used to control the order in which the SPARCL

interpreter attempts to solve goals.
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How SPARCL works.4 A question to SPARCL is always a set of one or more goal
literals. To answer a question, SPARCL tries to satisfy all of the goals. What does it
mean to satisfy a goal? To satisfy a goal means to demonstrate that the goal is true,
assuming that the predicates in the program are true. In other words, to satisfy a goal
means to demonstrate that the goal logically follows from the facts and rules in the
program. If the question contains variables, SPARCL also has to find what are the
particular objects (in place of variables) for which the goals are satisfied. The
particular instantiation of variables to these objects is displayed to the user. If SPARCL

cannot demonstrate for some instantiation of variables that the goals logically follow
from the program, then SPARCL's answer to the question will be "no".

An appropriate view of the interpretation of a SPARCL program in mathematical
terms is then as follows: SPARCL accepts facts and rules as a set of axioms, and the
user's question as a conjectured theorem; then it tries to prove this theorem—that is,
to demonstrate that it can be logically derived from the axioms.

We will illustrate this view by a classical example. Let the axioms be:
All men are fallible.
Socrates is a man.

A theorem that logically follows from these two axioms
is:

Socrates is fallible.
The first axiom above can be rewritten as:

For all X, if X is a man the X is fallible.

The example can be translated into SPARCL as shown in
Figure 3. 46.

Now we ask SPARCL the question of Socrates' fallibility by querying the ‘Fallible
Socrates Query’/0 clause in Figure 3. 47, which suc-
ceeds.

To discuss how SPARCL works, we use the concept
of a proof sequence. Given some program (a set of
clauses), a sequence of facts can be constructed
starting with any fact in the program, then successively

4.  The text of this section is adapted for SPARCL from section 1.4 of Ivan Bratko's "Prolog
Programming for Artificial Intelligence", 2nd edition.
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Figure 3. 46: ‘Fallible’/1
and ‘Man’/1 predicates
definitions.

Figure 3. 47: Query clause
for “Is Socrates fallible?”
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adding other facts from the program or any fact
derived using a rule of the program and any facts
already in the sequence. A goal (or ‘literal’) is satisfied
if such a sequence of facts can be found which ends
with that goal. Let us call such a sequence of facts a
proof sequence. SPARCL finds an appropriate proof
sequence to satisfy a query.

SPARCL searches for a proof sequence satisfying a
given goal by starting with that goal and working
“backward” to facts of the program. Instead of starting
with simple facts given in the program, SPARCL starts with the
given goals and, using rules, substitutes the current goals with
new goals, until new goals happen to be simple facts (or unify
with program facts). Let’s look at an example using
‘Predecessor’/2 and ‘Parent’/2 programs.

How does SPARCL “solve” the query asking if Tom is Pat's
predecessor? We start with the initial query shown in
Figure 3. 48. This initial query clause provides a single goal
literal, “Predecessor(Tom, Pat)”. There are two rule clauses
which have heads (consequents) which unify with this goal lit-
eral. These rules are labeled "Predecessor clause 1" and "Predecessor clause 2".
SPARCL may try either of these clauses first—let’s suppose SPARCL tries the rule of
"Predecessor clause 2". It unifies the goal literal with the head of the rule, which
binds the variables in the head. Since these variables corefer with variables in the
body (antecedent) of the rule, these coreferring variables are also bound. This instan-
tiates the rule clause as shown in Figure 3. 49.

For this instantiation of ‘Predecessor’/2 clause 2 to be applicable in building a
proof sequence, the literal in its body must precede the application of this rule in the
proof sequence. Thus, SPARCL determines that it must find a proof sequence for this
literal. This yields the "query 2" version of the initial query shown in Figure 3. 50. The
original goal of "Is Tom Pat's predecessor?" has been replaced by the goal of "Is Tom
Pat's parent?".

There is no clause (fact or rule) with a head that matches the ‘Parent’/2 literal in
the body of query 2 in Figure 3. 50, so SPARCL fails to solve this goal and it backtracks
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Figure 3. 48: Query clause
for “Is Tom Pat’s prede-
cessor?”

Figure 3. 49: First
instantiation of
‘Predecessor’/2
clause 2.
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to try an alternative
way to derive the
top goal ("Is Tom
Pat's
predecessor?").
There were origi-
nally two ways to
solve this top goal,
and having failed to
solve it using the
rule “Predecessor
clause 2” SPARCL

now tries rule "Predecessor clause 1". As was done
when using “Predecessor clause 2”, SPARCL unifies the

goal literal with the head of the rule (“Predecessor clause 1”), which binds the vari-
ables in the head. Again, since these variables corefer with variables in the body
(antecedent) of the rule, these coreferring variables are also bound. This instantiates
the rule clause as shown in Figure 3. 51.

Substituting the body of instantiation 1 of “Prede-
cessor clause 1” for the literal of the original query
yields the new version of the query (query 3) shown
in Figure 3. 52. The goal literals, in query 3, share an
uninstantiated variable.

SPARCL must now solve the two literals in the
body of this revised query. SPARCL is free  to satisfy
them in any order. Suppose SPARCL tries the
‘Predecessor Recursion’/2 literal first. It checks the
*DELAY* clauses and finds that ‘Predecessor
Recursion’/2 is to be delayed if the first argument is
an unbound variable. This is the case in query 3, so
SPARCL delays solving the ‘Predecessor Recursion’/2
literal and tries the ‘Parent’/2 literal. This one is
easily satisfied by matching the fact that "Tom is
Bob's parent." This matching binds the shared
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Figure 3. 50: Revised ver-
sion of ‘Predecessor
Query’/0 (Figure 3. 48)
based on substituting the
body of instantiation 1 of
‘Predecessor’/2 clause 2 (
Figure 3. 49) for the literal
in the body of the original
‘Predecessor Query’/0.

Figure 3. 51: First instantiation
of ‘Predecessor’/2 clause 1.

Figure 3. 52: Revised version
of ‘Predecessor Query’/0 (
Figure 3. 50) based on sub-
stituting the body of instanti-
ation 1 of ‘Predecessor’/2
clause 1 (Figure 3. 51) for the
literal in the body of the origi-
nal ‘Predecessor Query’/0.
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Pat

Predecessor Recursion

Tom

Parent

Predecessor Query 3

Instantiation 1 of Predecessor clause 1.

Pat

Predecessor Recursion

Tom

Parent
Pat

Tom

Predecessor

Query 2, substituting body of 
instantiation 1 of "Predecessor clause 2" 
into the "initial" query. This query 
FAILS since there is no corresponding 
Parent clause.

Pat

Tom

Parent

Predecessor Query 2



variable to be
"Bob". Removing
the "solved" literal
"Tom is Bob's
parent" from query
3 leaves us with
query 4 (
Figure 3. 53).

SPARCL solves
the literal of query 4 by instantiating ‘Predecessor
Recursion’/2 as shown in Figure 3. 54. It had

"delayed" attempting the solution of this literal earlier because the goal had a variable
first argument and there is a *DELAY* clause which specifies this situation as
requiring such a goal to be delayed. However, the goal literal no longer has a variable
first argument, it is now "Bob". So, SPARCL need not delay solving this literal.

Query 5 in Figure 3. 55 is created by substituting the instantiation of ‘Predecessor
Recursion’/2 in Figure 3. 54 into query 4 in Figure 3. 53.

SPARCL solves the literal of query 5 by instantiating "Predecessor clause 2" in
Figure 3. 56, similar to the first attempt at solving the initial query in Figure 3. 49.

Query 6 in Figure 3. 57 is created by substituting instantiation 2 of ‘Predecessor’/2
clause 2 in Figure 3. 56 into query 5. The ‘Parent’/2
literal of query 6 matches a ‘Parent’/2 fact, and thus is
true.

This completes the search for a proof sequence.
The sequence being: the literal
of query 6 and instance 2 of
Predecessor clause 2 derives
the literal of query 5; the literal
of query 5 and instance 1 of
"Predecessor Recursion"
derives the literal of query 4;
the literal of query 4 and fact
"Tom is Bob's parent" derive
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Figure 3. 53: Revised version
of ‘Predecessor Query 3’/0 (
Figure 3. 52) based on remov-
ing the solved literal and
replacing the remaining vari-
able with its binding (“Bob”).

Figure 3. 54: Instantiation 1 of
‘Predecessor Recursion’/2.

Figure 3. 55: Revised ver-
sion of ‘Predecessor Query
4’/0 (Figure 3. 53)  based on
substituting the body of
instantiation 1 of
‘Predecessor Recursion’/2
clause (Figure 3. 54) for the
literal in the body of
‘Predecessor Query 4’/0.

Figure 3. 56: Sec-
ond instantiation of
‘Predecessor’/2
clause 2.

Instantiation 2 of 
Predecessor clause 2

Pat

Bob

Parent
Pat

Bob

Predecessor
Query 5 is created by substituting the 
body of instantiation 1 of Predecessor 
Recursion clause 1 into the body of query 
4.

Pat

Bob

Predecessor

Predecessor Query 5

Instantiation 1 of Predecessor Recursion 
clause.

Pat

Bob

Predecessor
Pat

Bob

Predecessor Recursion

Query 4 is created by removing the solved goal 
literal for "Parent" from query 3.

Pat

Bob

Predecessor Recursion

Predecessor Query 4



the literals of query 3; the literals of query 3 and
instance 1 of "Predecessor clause 1" derive the the lit-
eral of initial query.

The trace of the execution of SPARCL can be pic-
tured as a "tree". The nodes of the tree correspond to
goal literals, or lists of goal literals, that are to be
satisfied. The arcs between the nodes correspond to the
application of (alternative) program clauses that trans-
form the goals at one node into the goals at another
node. The top goal is satisfied when a path is found
from the root node (top goal) to a leaf node labelled
"success". A leaf is labelled "success" if it is a simple
fact. The execution of SPARCL programs is the
searching for such paths. During the search SPARCL

may enter an unsuccessful branch. When SPARCL discovers that a branch fails it
automatically backtracks to the previous node and tries to apply an alternative clause
at that node.

What SPARCL programs mean. There are two different ways to think about the
meaning of SPARCL programs.5 In the examples so far it has always been possible to
understand the results of the program without exactly knowing *how* the system
actually found the results. It therefore makes sense to distinguish between two levels
of meaning of SPARCL programs; namely,

• the declarative meaning and
• the procedural meaning.
The declarative meaning is concerned only with the predicates defined by the

program. The declarative meaning thus determines what will be the output of the
program. On the other hand, the procedural meaning also determines how this output
is obtained; that is, how are the predicates actually evaluated by the SPARCL system.

The ability of SPARCL to work out many procedural details on its own is
considered to be one of its specific advantages. It encourages the programmer to
consider the declarative meaning of programs relatively independently of their

5.  The text of this section is largely drawn from section 1.5 of Ivan Bratko's "Prolog Programming
for Artificial Intelligence", 2nd edition.
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Figure 3. 57: Revised ver-
sion of ‘Predecessor Query
5’/0 (Figure 3. 55)  based
on substituting the body of
instantiation 2 of
‘Predecessor’/2 clause (
Figure 3. 56) for the literal
in the body of
‘Predecessor Query 5’/0.

Query 6 is created by substituting the 
body of instantiation 2 of Predecessor 
clause 1 into the body of query 5.
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procedural meaning. Since the results of the program are, in principle, determined by
its declarative meaning, this should be (in principle) sufficient for writing programs.
This is of practical importance because the declarative aspects of programs are
usually easier to understand than the procedural details. To take full advantage of this,
the programmer should concentrate mainly on the declarative meaning and, whenever
possible, avoid being distracted by the executional details. These should be left to the
greatest possible extent to the SPARCL system itself.

This declarative approach indeed often makes programming in SPARCL easier than
in typical procedurally oriented programming languages such as Pascal. Unfortu-
nately, however, the declarative approach is not always sufficient. It will later become
clear that, especially in large programs, the procedural aspects cannot be completely
ignored by the programmer for practical reasons of executional efficiency.
Nevertheless, the declarative style of thinking about SPARCL programs should be
encouraged and the procedural aspects ignored to the extent that is permitted by
practical constraints.

Summary of facts and rules section:
• SPARCL programming consists of defining predicates and querying about predi-

cates.
• A program consists of clauses. These are of two types: facts and rules. A clause

can be used to ask a question.
• A predicate can be specified by facts, simply stating the N-tuples of objects that

satisfy the predicate, or by stating rules about the predicate.
• A procedure (also called a “predicate”) is a set of clauses about the same predi-

cate.
• Querying about predicates, by means of questions, resembles querying a database.

SPARCL's answer to a question consists of a set of objects that satisfy the question.
• In SPARCL, to establish whether an object satisfies a query is often a complicated

process that involves logical inference, exploring among alternatives and possibly
backtracking. All this is done automatically by the SPARCL system and is, in
principle, hidden from the user.

• Two types of meaning of SPARCL programs are distinguished: declarative and
procedural. The declarative view is advantageous from the programming point of
view. Nevertheless, the procedural details often have to be considered by the
programmer as well.
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• The following concepts have been introduced in this section: clause, fact, rule,
question; the head of a clause, the body of a clause; recursive rule, recursive
definition; procedure; constant, variable; instantiation of a variable; goal (literal);
goal is satisfiable, goal succeeds; goal is unsatisfiable, goal fails; backtracking;
declarative meaning, procedural meaning.

Programming with N-tuples.

In this section of our introduction to programming with
SPARCL we look at  programming with N-tuples. We dis-
cussed the N-tuples above using Figure 3. 21 and
Figure 3. 22. Here we discuss some simple uses of N-tu-
ples.

Simple geometry representation. The two
most widely used set representations are
partitioned sets and N-tuples. We can use
these to conveniently represent many different
kinds of structures. In this section we see how
some simple geometric objects can be
represented.

The two 3-tuples in Figure 3. 58 show a
way to represent geometric points, one with X = 1 and Y = 1 and the other with X = 2
and Y = 3. An N-tuple is used here to provide a concise “naming” via element
position to distinguish the X and the Y value.

The ordered pair (2-tuple) in Figure 3. 59 represents a line segment with endpoints
at (1,1) and (2,3). The 2-tuple is used here to “name” the endpoint data (telling us it
defines a “segment”). The endpoint data is placed in a set, rather than in more
elements of a N-tuple. This reflects the fact that there is no distinction between the
two endpoints (this isn't a directed line).

The ordered pair in Figure 3. 60 represents a triangle with three “corners” at (4,2),
(6,4), and (7,1). The ordered pair is used to “name” the collection of points as
describing a “triangle”. The points are in a set since no ordering of the points is
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Figure 3. 58: Two triples
representing the points
(1,1) and (2,3).

Figure 3. 59: An ordered pair repre-
senting a line segment with end
points at (1,1) and (2,3).
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needed.

Term matching. The most
important operation on
terms is matching. A
special kind of matching is
used in SPARCL called unifi-
cation. Matching alone can produce
some interesting computation.

Given two terms, we say they match
if:

(1) they are identical
(2) the variables in both terms can

be instantiated to objects in such a way
that after the substitution of variables
by these objects the terms become
identical, and these instantiations
don't violate any "current"
partitioning constraints.

Using example predicates which
define properties of line segments,
we illustrate how matching alone can
be used for interesting computation.
Let us return to the simple geometric objects of the previous example and define a
piece of program for recognizing horizontal and vertical line segments. The
‘Vertical’/1 predicate in Figure 3. 61 is a property of segments, so it can be formalized
in SPARCL as a unary relation. A segment is vertical if the x-coordinates of its end-
points are equal, otherwise there is no other restriction on the segment. The property
‘Horizontal’/1 is similarly formulated in Figure 3. 62, with only the x and y inter-
changed.

The query in Figure 3. 63 asks for the y value of a point such that there is a
horizontal segment from (1,1) to that point with x = 2. The result in Figure 3. 64 shows
the desired y value to be 1.
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Figure 3. 60: An ordered pair representing a triangle
with corners at (4,2), (7,1), and (6,4).

Figure 3. 61: Clause defining the ‘Vertical’/1
predicate.

Figure 3. 62: Clause defining the
‘Horizontal’/1 predicate.
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Programming with Intensional Sets.

Next we discuss the ‘Column Sum’/3 predicate shown in Figure 3. 65. It finds the
sum of the values in a column of a
table. This predicate uses an inten-
sional multiset to express its central
idea: gathering together a multiset of
column values. Abstractly, it takes a
function term table and a domain
value and produces the sum of all of
the range values for that domain
value in the function term table. This
is analogous to finding the sum of
the values of a given column of a
spreadsheet. This predicate’s implementation demonstrates
the use of several aspects of SPARCL including: term tables,
intensional sets, multisets, and arithmetic.

The ‘Column Sum’/3 predicate. This predicate has three
arguments. The single clause in its definition has descriptive
comments for each argument: the first argument is a “Function Table”; the second
argument is the “Domain Value Identifying Range Values to Sum”; the third argu-
ment is the “Sum of Identified Range Values.” Each of the predicate argument terms
is a variable.

The body of this predicate’s defining clause contains a single literal. This literal
refers to the ‘is’/2 predicate. The ‘is’/2 predicate is the general arithmetic evaluation
predicate. It takes an arithmetic expression as its second argument and unifies the
evaluation of this expression with its first argument. In this case, it does the arithmetic
to determine the sum. Expressions are represented as N-tuples where the first (left-
most) argument is the operator and the other arguments are the operands. There are
both unary and binary operators; an expression using a unary operator is represented
using an ordered pair and an expression using a binary operator is represented using
an ordered triple. The expression in the ‘Column Sum’/3 clause is the unary ‘+’ with
a single operand of the multiset of values of the desired column. The unary ‘+’ with a
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Figure 3. 63: Clause for posing the query
“What is the value of Y such that there is a
horizontal segment from (1,1) to (2,Y).”

Figure 3. 64: Result
of querying the
clause in
Figure 3. 63.
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set or multiset argument returns the summation of that set. A multiset is represented
in SPARCL as a finite function with an integer range. The range of the function gives
the “repetition count” for each domain element. A function is represented in SPARCL

as a set of ordered pairs where no two ordered pairs have the same first element. The
multiset in this ‘is’/2 literal is not specified explicitly by showing a particular multi-
set, but is instead specified using an intensional multiset term.

An intensional set is a term that specifies the set of all terms that have the given
property. The type of the intensional set may be either "set" or "multiset". A multiset
intensional set (or intensional multiset) is the multiset of all terms which have the
given property. The representation of an intensional (multi)set has two parts, the
template and the body. The body is a set of literals. The template contains a term
(which almost always contains at least one variable) that is instantiated once for every
solution SPARCL finds for the conjunction of the literals of the body of the intensional
set. The “result” of the intensional (multi)set is the (multi)set of all of these
instantiations of the template. We are using the intensional multiset to collect together
all of the values of the given domain of the given function table. Since we want to
sum all of these values, we want to keep the duplicates. Thus, we want the result type
of the intensional set to be “multiset.” The representation of the intensional set indi-
cates that it has a multiset result by having the double gray lines around the template
(instead of the single gray line) and the presence of the bold italic word multiset.
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Figure 3. 65: Complete clause defining the ‘Column Sum’/3 predicate.
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Although the first argument of the clause is a function table, there is no function
table representation in this clause. There is instead a partitioned set term (inside the
second argument of the literal of the clause) that is used to access each of the values
of interest in this first argument.  A brief review of function tables will help explain
this situation. A function table is a table with column headings that represents a set of
same-finite-domain functions. The column headings are the values of this common
finite domain. Each row of the function table represents one of the finite-domain
functions. The value in a column of a row is the range value of that row’s correspond-
ing function for the domain value in the header of that column. In this clause we need
to deal with a part of the table, so we use the partitioned set representation directly,
instead of the function table representation. Thus, the absence of the function table
representation from the clause defining ‘Column Sum’/3 is an example of this limita-
tion of the table representations: there is no way to work with a table of indefinite size
using the table representation, we must use the partitioned set representation instead.
Thus, predicates that work with tables of indefinite size (e.g. the predicate works with
tables of one row and one column, or two rows and one column, or one row and two
columns, etc.) must use the partitioned set representation. This limitation could be
removed with appropriate modification of the table representation syntax and seman-
tics.

The structure of the intensional set term has two parts, the template and the body.
The template in this case is a single variable. This variable (by suitable coreference)
identifies the value of a row of the given function table in the column with the given
“name”. Collecting all possible such values gives the desired multiset.

The body contains a single literal which refers to the built-in ‘unify’/2 predicate.
This literal is true for any unification between its first argument, which corefers with
the given function table, and its second argument. The construction of the second
argument is such that it unifies in as many different ways with the first argument as
there are rows in the table (or functions in the set). One might expect that the variable
of the function table argument of the clause would be made to corefer with the func-
tion table construct of the intensional multiset, instead of indirectly connecting them
through a ‘unify’/2 literal. The coreference approach does not have the desired result
since it is implemented (in the program transformation that creates the internal form)
by unifying all of the coreferring terms in the outermost scope. In this case, the outer-
most scope is that of the clause. This would effectively move the nested set term out
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of the intensional multiset, allowing it to be bound only once per evaluation of the
clause, instead of potentially many times (to “create” the multiset).

The second argument of the ‘unify’/2 literal is a partitioned set of two parts,
where the upper part contains another partitioned set and the lower part is hollow.
This “outer” partitioned set unifies with the given table (a set) by partitioning that set
into two subsets, one a set of one element of the given set and the other a set of the
other elements of the given set. The “inner” partitioned set unifies with the element of
the singleton subset. This element is a function of the given table, thus the element is
a set. The unification of the inner partitioned set divides this function into two sub-
sets, a set of one element of the function set and a set of the rest of the function set.
Finally, the ordered pair in the upper part of the inner partitioned set unifies with the
element of the singleton subset of the function set. There are many possible unifica-
tions of the inner partitioned set, one for each pair of the function. However, since the
first element of the ordered pair of the inner partitioned set corefers with the given
domain name, only one such unification succeeds: the one that selects the ordered
pair with the first element matching the given domain name. Thus, for each different
way in which the outer partitioned set is unified with the given table, there is only one
way in which the inner partitioned set and its ordered pair can be unified. The outer
partitioned set can be unified with the table to select each of the rows of the table. So,
the range value of the ordered pair of the inner partitioned set can be unified once to
each row’s value in the given column. Since the template term is a variable that core-
fers with the range value of the ordered pair of the inner partitioned set, this gives the
desired multiset of values.

The ‘Column Sum Query’/1 predicate. The single clause of the ‘Column Sum
Query’/3 predicate shown in Figure 3. 66 is used to query the ‘Column Sum’/3 predi-
cate. The result of this query is shown in Figure 3. 67. The term in the argument of the
query clause gives shape to the result of the query. The query clause provides a table
of data and the name of a column to be summed in that table.

The result of the query (in the argument of the clause) is a table of two rows: one
row shows the test data and the other row shows the name of the column being
summed and the sum for that column. We ensure that the “data” row of the result
table is displayed before (above) the “total” row by making the result table an ordered
table—one which is an N-tuple of rows instead of a set of rows. The first column of
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this table is used to
label the parts of the
answer.

The first row of
the result table holds
the test table. The
label in the first col-
umn is “data” and the
variable in the second
column corefers with
the test data table in
the first argument of
the ‘Column Sum’/3
literal.  The calcula-
tion from the ‘Column
Sum’/3 predicate is
shown in the second
row of the result table. The label of this row (in its first column) is “Calculation”. The
second column “formats” the sum using a function term table with the column titles
from the input data. This function table has one row with the first column being the ur
constant “Total” and the second column being the calculated total. 

The test data table is in the first argument of the ‘Column Sum’/3 literal. It has
two columns titled “Item” and “Value”. There are two rows of values: item “Arm
Chair & Stool” with value “75.00”, and item “Sheet Music” with value “25.00”. The
other two arguments of the ‘Column Sum’/3 literal contain variables.

Various ground terms are made to corefer with variables in this clause: the entire
test data table is linked to a variable in the result table; the “Item” constant heading
the first column of the test data table is linked to a variable in the header of the func-
tion table in the result table; and, the “Value” constant heading the second column of
the test data table is linked to two other variables, one in the header of the function
table in the result table and the other in the second argument of the ‘Column Sum’/3
literal (giving the name of the column to be summed). This technique avoids duplicat-
ing ground terms within a clause, making the relationship among various parts of the
clause more immediately clear than if the ground terms were duplicated. Also, this
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Figure 3. 66: Clause defining ‘Column Sum Query’/1 predi-
cate, with interaction to query it.
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eases modification of these
ground terms since to change a
ground term only requires modi-
fying the one instance of it,
instead of modifying multiple
copies. To achieve these same
advantages in languages where
variables corefer by having the
same name generally involves
some additional complications. Minimally, one must add a statement associating the
variable with the ground term. Further, if the language is procedural instead of declar-
ative, then one must be sure to add this additional statement before any of the “uses”
of the variable name. If one modifies such a procedural program by adding another
use of this common variable, then one must check to be sure that the new use occurs
after the “definition” of the variable’s value.

The result of evaluating the query of Figure 3. 67 shows the sum of the items in the
test data is 100. The various items are filled in to show the “input” data.

Discussion

In this chapter we have presented a formal syntax of SPARCL, the various aspects
of SPARCL in terms of how those aspects relate to the principles in the hypothesis of
chapter 1 (“Introduction”), and an introduction to programming in SPARCL. In the for-
mal syntax we presented a diagrammatic grammar that describes the two-dimensional
representation of SPARCL. In discussing the design elements of SPARCL, we have
shown how many of the elements of the design of the representation, semantics, and
development environment spring from these basic ideas. Finally, in the introduction
to programming in SPARCL we presented several programs of increasing complexity
and explained their design and use.

Formal syntax. The grammar formalism we used to present the syntax of SPARCL is a
simplified version of the Hyperedge Replacement Grammar (HRG). This grammar
provides productions for the two aspects of SPARCL: programmatic elements and data
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Figure 3. 67: Result of the query of the clause for
‘Column Sum Query’/1.
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elements. It does not represent coreference links. Except for the coreference links, all
of the concrete graphical elements of the two-dimensional representation of SPARCL

are present in the productions of the grammar. The programmatic elements of SPARCL

include: clauses, literals, names, and arguments. The data elements are the linkable
elements: terms and parts (of partitioned sets).  The linkable elements are those ele-
ments of the syntax that can be linked to by a coreference link. The terms are:
variable, ur, empty set,  partitioned set, N-tuple, table, and intensional set. The last
four of these terms are those that can contain other terms.

Design elements. Section 1 on design elements based on visual programming and
logic programming presents several aspects of SPARCL. These elements are those that
take advantage of the diagrammatic possibilities of a visual representation to repre-
sent the various relationships among the logic programming concepts. These dia-
grammatic possibilities include: spatial containment, which is used in the representa-
tion of relationships such as: name of a predicate a clause for that predicate, a clause’s
body’s literals in  that clause, and a partitioned set’s part’s elements in that part;
adjoinment, which is used for the ordering of arguments of a clause or literal and the
ordering of the elements of an N-tuple; connecting lines, which are used to represent
coreference hyperedges; and similar appearances, which are used to indicate term
types.

Using explicit linking to express coreference instead of using naming is taking
advantage of the diagrammatic possibilities of a visual representation in representing
the logical concept of coreference (implemented as unification). Variable naming is
more of a linguistic representation technique (although it could be considered a “simi-
lar appearance” diagrammatic technique). This design choice allowed us to separate
the ideas of variables and coreference that are so often combined (conflated) in pro-
gramming languages. Separating these ideas allows us to specify arbitrary terms as
coreferring, not just variables. This in turn simplifies some programs. As we note in
chapter 9 (“Usability Testing”), using links instead of variable naming for coreference
was one of the things that the participants of the usability study specifically
commented on as being an attractive aspect of SPARCL and an improvement on other
languages with which they were familiar (such as PROLOG and LISP).

The design of the delay specifications was based on a “minimal effort” approach:
the representation is sufficient to allow delays to be specified and requires no addi-
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tional development work in the editing system of SPARCL since it represents delay
specifications by clauses. However we discovered in our later analysis of SPARCL pro-
grams that the delay specifications are a major contributor to their size. Thus it now
appears that a greater effort on representing delay specifications would be rewarded
by smaller and more comprehensible programs.

In section 2, “Visual & Sets Design Elements”, we show how the variety of repre-
sentations of sets made possible by the nonlinear/diagrammatic nature of visual
programming allows us to provide more compact representations that are at the same
time more informative. This is an area that we have only begun to exploit. We pro-
vide special representations of N-tuples and various forms of term tables. These rep-
resentations are directly editable in SPARCL. One can see from the examples (
Figure 3. 21, Figure 3. 22, Figure 3. 23, and Figure 3. 24) that these representations are
much more compact than the corresponding partitioned set representations. As we
mentioned in the “Specialized set representation for N-tuples” section, we would like
to provide specialized representations for lists (a special kind of N-tuple) and matrices
(lists of same-length lists). Matrices can also be considered as a special kind of
ordered table of N-tuples, with “empty_list” as the zeroth row and a common prefix
(first element) of “empty_list” for all of the other rows.

Graphs are another style of representing sets that we have not explored yet. A
mapping-type set where the domain and range have a nonempty intersection can be
represented as a directed graph where the nodes are the domain and range values and
there is an edge between two nodes if and only if those two node values are in an
ordered pair of the set. A special representation of the directed graph could be used
when it was found to acyclic, or a tree. A set of properly constructed ordered triples
could be interpreted as a labeled directed graph, where two of the elements of the 3-
tuple (say the 2nd and 3rd) are the “source” and “target” node values and the 1st ele-
ment of the 3-tuple is the label of the edge. If there are a “small” number of different
labels in the graph, then a legend could be provided as part of the representation of
the graph where the labels are mapped onto different appearances of the edges (e.g.,
different colors or different thicknesses). All of these graph representations would be
directly editable, just as tables are now. Also, as we mentioned in chapter 1 (“Intro-
duction”), we are interested in providing a programmer-adaptable representation in
the manner of the programmer-specified operator-precedence grammar of Edinburgh
syntax PROLOG. These programmer-defined representations would be built on the
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mechanisms used to implement the partitioned set, N-tuple, table, matrix, and graph
representations.

Intensional set terms were also presented in section 2. The intensional set term is
more compact than the semantically equivalent construction using ‘setof’/3 literals,
and it allows one to use fewer coreference links, as is the case in the example in
Figure 3.25. Since they are terms, they can be nested (literals are not so conveniently
nested). Also, using intensional set terms increases the number of clauses that are
“facts”, thus increasing the opportunities to use the fact table representation. This fur-
ther decreases the size of the overall representation of a predicate.

In section 3 we presented the design elements derived from both logic program-
ming and set-based programming. The most pervasive aspect of SPARCL derived from
these two sources is the partitioned set and its implied constraints. The unification
algorithm and inference mechanism are specialized in SPARCL to handle them. The
need for ordered collections of terms, N-tuples, in the set-based system lead us to
handle N-tuples as special organizations of sets. 

Programs are sets of clauses in SPARCL and therefore unordered; they are usually
ordered in other logic programming languages. Similarly, the body of a clause is a set
of literals and is also therefore unordered. We have provided the “delay” mechanism
to address the selection of which literal in a clause to interpret and two built-in meta-
predicates, ordered_disjunction/2 and if/3, to address ordering the selection of which
clause to interpret. The representation of the “delay” mechanism was simply done and
needs to be reconsidered to reduce program size.

In the “Visual Programming Design Elements” section we present a categoriza-
tion of possible editing environments:

(1) program representation drawn “free hand” and resulting unstructured picture
parsed by system;

(2) program representation drawn using system-provided elements and resulting
structured picture parsed by system;

(3) program representation drawn using system-provided semantically-specific
elements with manual layout, no parsing required; or,

(4) program representation indicated by specifying semantic modifications with
automatic layout.

SPARCL uses the fourth approach, the semantic modification/automated layout
environment. This approach fits well with diagrammatic visual representation,
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declarative semantics of logic programming, and unordered relationship among ele-
ments of sets. It is particularly valuable for the three-dimensional representation,
since it relieves the programmer of a very complex layout problem.

In the “Sets With Partitioning Design Elements” section we showed the multiple
uses of partitioned sets. This single mechanism provides convenient ways to express
union, intersection, and difference operations on sets. We presented a detailed exami-
nation of the ‘Union’/3 predicate to show how these set operations relate to parti-
tioned sets. Partitioned sets also provide a mechanism to specify the logical structure
of a set. 

In the “Logic Programming Design Elements” section we explained the general
semantics of SPARCL as represented by the SPARCL interpreter. SPARCL is a Horn clause
logic programming system that is basically an SDNF resolution theorem prover with
partitioned set unification, partitioning constraints, and delayed literals. Negation is
provided as “failure” under the Closed World Assumption.

In the “Visual, Logic, and Set Design Elements” section we discussed the
Input/Output system of SPARCL. This is a difficult area which has not been thoroughly
addressed yet. The basic concepts of the current approach are the persistent term and
the term set program. These deal with output in a consistent logical fashion, but don’t
provide all of the services a programmer needs. To fill some of the output “gaps”, we
also implemented two built-in predicates that write readable linear representations of
terms to the ‘*Output*’ window. We don’t yet have any solution to interactive input
during the interpretation of a query.

Programming in SPARCL. Our presentation of programming in SPARCL discusses the
implementation of several predicates and various ways in which these predicates can
be queried. The predicates defined are: ‘Parent’/2, ‘Female’/1, ‘Male’/1, ‘Sister (sort
of)’/2, ‘Different’/2, ‘Sister’/2, ‘Offspring’/2, ‘Mother’/2, ‘Grandmother’/2,
‘Predecessor’/2, ‘Vertical/1, ‘Horizontal/1, and ‘Column Sum’/3. We introduced the
concepts of facts, rules, and questions. Then, we examined in detail how SPARCL

solved a particular query of the ‘Predecessor’/2 predicate. The second and third parts
of this programming introduction presented handling of complex data: first N-tuples,
then partitioned sets, tables, and intensional sets.

Assessment. This chapter shows that SPARCL is a syntactically well-formed language
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that successfully embodies programming language design aspects of the hypothesis of
this thesis.
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Chapter 4
Partitioned Set Unification

This set unification algorithm was developed as part of the SPARCL visual logic
programming language. SPARCL makes extensive use of finite sets, particularly parti-
tioned finite sets. Thus, partitioned finite set unification is a core element of the
semantics of SPARCL. (All of the sets discussed in this paper are finite, so the “finite”
is implicit in the rest of the paper.) Languages which work with sets generally provide
support for at least three basic operations on sets: union, intersection, and difference.
In SPARCL, these operations are expressed using the single mechanism of partitioned
set unification. In this chapter we present a formalization of the partitioned set unifi-
cation algorithm with examples of its operation. We prove the soundness and com-
pleteness of the “atomization” portion of this algorithm, but the full proof of these
properties for the entire unification algorithm remains to be done.

The related work is all in the area of set (or subset) unification and matching. This
is the first work of which we know where partitioned sets are directly unified (or
matched). There is limited form of partitioned set matching done in SEL. SEL as pre-
sented in [Jayaraman&Nair 1988] is one of the few declarative programming lan-
guages in which sets are “…‘first class’ objects, i.e., not simulated by lists.” SEL is a
functional language based on term-rewriting. It uses associative-commutative
matching of sets, instead of associative-commutative-idempotent matching or unifica-
tion. The set representation used in SEL is {X|T} which is equivalent to

. This can be represented by a partitioned set: . Parti-
tioned set unification is associative-commutative, and not idempotent. This is similar
to the (partitioned) set matching of SEL.

Notation. Here we present a summary of the notations and their meanings as they are
used in this chapter.

A unification “term” is represented by . This can be read “S and T unify” or
“S unifies with T”.

Generally, lowercase letters are used for constants and uppercase for variables of
the object language.

A set is represented using braces: {a, b} is the set of two constants, a and b.
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A multiset is represented as a set with a multi subscript:  is a multiset
of three elements, each with one occurrence. Multiple occurrences are indicated by a
prefix superscript:  is a multiset of three elements of 2, 1, and 5 occur-

rences.

A multiset union is indicated by the operator . For instance: . The mul-

tiset union is a union of multisets and keeps track of the occurrence counts.
 means the union across the elements of S (which must be sets). For instance:

.
 is the (intensional) set of all x such that predicate p(x) is true.

A partitioned set is represented by a “term” with ‘ptn’ as its functor and one argu-
ment, which is a set of “parts” of the partitioned set: ‘ ’ is a partitioned
set with three variable parts.

A partitioning constraint is represented by a term with ‘ptncon’ as its functor and
one argument, which is a multiset of parts: ‘ ’ is the partitioning

constraint implied by the partitioned set ‘ ’. The partitioning constraint
uses a multiset instead of a set so that if two variables that represent different parts are
bound to the same term, then the resulting multiset of parts has an element with a
count greater than 1. If it were a set, then the duplicate element would simply
disappear and the partition constraint check would have no way to tell that two parts
had a nonempty intersection (because they had become equal). Since it is a multiset,
the constraint check requires that all elements of the multiset have an occurrence
count of (no more than) 1.

‘ ’ is a shorthand notation for ‘ ’
An atomization formula has the form: , where S is the set to be

atomized, T is a set of variables and singleton sets, and  is a substitution that has
been applied to S and T.

var(x) is a predicate that is true when x is a variable of the object language.
A binding is a term of the form:  where X is a variable and t is any term of the

object language. This binds X to t.
A substitution is a set of bindings.

 is the substitution application of  to term t. The result of the application
has every binding in  applied to the variables in t. If the variable to which the bind-

93

σ

σσ / t

X / t

γ

S ⇒ ptn T( );γ
  S = UT ∧ ∀p, q ∈T (p∩ q = ∅)S = ptn T( )

ptn A, B,C{ }( )
ptncon A, B,C{ }multi( )

ptn A, B,C{ }( )

x p x( ){ }
  U A, B,C{ } = A ∪ B∪C

  US

A ∪
multi

B∪
multi

2 A, B,5C{ }multi

A, B,C{ }multi



ing is being applied matches the left-hand-side of the binding, then the variable is
replaced by the right-hand-side of the binding. Otherwise, the variable is unchanged.

 is the composition of two substitutions. If one treats a substitution like a
function, then this is normal function composition. The substitution equivalent to the
composition is determined by applying  to the right-hand-side of the elements of ,
and then union this modified  with .

A unification formula has the form:  where U is a set of unifications, 
is a set of partitioning constraints, V is a set of variables, and  is a substitution.

We represent parts of the unification algorithm using an inference rule format:

Ante is the antecedent of the rule, Cons is the consequent, and Cond is a condition
(frequently a junction of several propositions) that must hold for the rule to be used.
We consider that Ante is a pattern that is mapped onto a selected term, so that the use
of these inference rules is something like the application of axiom schema. Cons is
general a set of formulas.

For the atomization rules, the formulas of Ante and Cons are atomization
formulas.

For the unification rules, the formulas of Ante and Cons are unification formulas.

Overview of the algorithm. The set unification algorithm is built on the atomized
partitioned set unification algorithm. There are a series of transformations which turn
sets into atomized partitioned sets, then one proceeds with the atomized partitioned
set unification algorithm. This algorithm converts a set of general unification equa-
tions into variable-binding unification equations (an equation with a variable on the
left-hand side and any term on the right-hand side). For example, the set of unifica-
tion equations  is converted to , where a and b are constants
and X is a variable. Note that in this document ‘ ’ is used as the “unifies” operator,
which is distinct from ‘=’ (equality).

A partitioned set is represented by ‘ ’ where X is a set of “parts” of the par-
titioning. These parts are either sets or variables. The partitioned set implies the con-
straint that all of its parts are pairwise disjoint. Further, a partitioned set is equivalent
to a “general” set which is the union of the parts of that partitioned set:
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‘ ’.

The SPARCL pro-
gram for ‘Union’/3 and
a query clause are
shown in Figure 4. 1.
The ‘Union’/3 predicate
is discussed in section 5
of chapter 3 and in
appendix 1. This exam-
ple uses partitioned sets
to specify a “union”
relation. The example
query clause leads to
the following unifica-
tion equations:

The solution for this example is:

The variable R is unified with the union of {a,b} and {b,c}. This is the only solu-
tion because of the disjointness and union constraints implied by the partitioned sets.

A basic aspect of partitioned set unification is that one must unify arbitrary sub-
sets represented by variables. For instance, consider the unification:

There are many different ways in which the sets represented by the variables A, B, C,
X, and Y may be instantiated to satisfy this problem, including: A is part of X and
part of Y, B is the other part of X, and C is the other part of Y; A, B, and C each con-
tain parts of both X and Y; A is the union of X and Y, B and C are empty; or, X is the
union of A, B, and C and Y is empty. Many other solutions are possible. Our
approach to partitioned set unification allows for all possible solutions without com-
mitting to any of them. By not committing to any subset of the possible solutions
when unifying two partitioned sets, it is never necessary to backtrack and redo this
part of the unification process. We do commit to particular possible solutions with
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Figure 4. 1: Clause defining the ‘Union’/3 predicate and a
clause defining the ‘Union Query’/1 predicate.

Union Query
Union

a

b

b

c

Union

ptn A, B,C{ }( ) ˙ = ptn X,Y{ }( ){ }

X ˙ = a{ },Y ˙ = b{ },Z ˙ = c{ }, R ˙ = a,b,c{ }{ }

a,b{ } ˙ = ptn X,Y{ }( ), b,c{ } ˙ = ptn Y, Z{ }( ), R ˙ = ptn X,Y, Z{ }( ){ }

ptn X1,..., Xn{ }( )
= X1 ∪ X2 ∪ ...∪ Xn



regard to the nonvariable parts of a partitioned set; this choice can be backtracked and
redone if necessary.

This is achieved in the unification algorithm by the atomization then the
“hollowing” of variable parts of partitioned sets. The variable parts introduced in the
hollowing process provide the appropriate flexibility to account for all of the possible
subset unifications.

The fundamental partitioned set unification algorithm for unifying partitioned sets
P and Q consists of several major steps:

Remove Identical Elements.
Introduce Hollow Partitioned Sets.
Connect Hollow Partitioned Set Parts
Unify Unconnected Hollow Partitioned Set Parts
Unify Processed Partitioned Sets

Additional steps used to “clean up” and validate the unification equations:
Delete Empty Partition Element
Occur Check
Instantiate
Commute

These steps are specified using an inference-rule-like format.1

Converting sets to atomized partitioned sets.

Before the atomized partitioned set unification algorithm can be applied to a set of
unification equations, these equations must be “atomized”. There may be several
atomizations of the set of unification equations. Each such atomization must be ana-
lyzed by the atomized partitioned set unification algorithm, which may produce many
solutions for each atomization of the original set of unification equations. Thus, this
algorithm may produce many distinct “maximal general unifiers” (MGUs).2

1. This approach to specifying unification is based on the unification-with-residuation specification
given in [Hanus 1995], p. 219.

2. Normally MGU is an abbreviation for “most general unifier”. But since there may be several maxi-
mal general unifiers there usually isn’t a single most general unifier.
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What atomization produces. We define an atomized partitioned set as a partitioned
set where each of its parts is either a singleton set or is a variable. We use the atom-
ized form of partitioned sets since it is simpler to work with this structure than with
“general” partitioned sets. We will sometimes speak of atomizing a partitioned set
instead atomizing a set; the relationship between these terms is simple. A set ‘S’ is
logically equivalent to the partitioned set ‘ptn({S})’, i.e. the partitioned set of one part
where that one part is the set ‘S’.

Atomizing partitioned sets does introduce a complexity to the unification process,
however. There may be several different atomizations of a partitioned set, depending
on how the variables in that set are bound. Consider the partitioned set
‘ptn({{X,a}})’, where ‘X’ is a variable and ‘a’ is a constant. This partitioned set has
one part, ‘{X,a}’. It is not atomized since ‘{X,a}’ has a cardinality of 2. There are
two interesting possibilities for the bindings of ‘X’, either it is bound to ‘a’ or it is
bound to something else. In the first case the partitioned set collapses to ‘ptn({a})’. In
the second case, the partitioned set becomes ‘ptn({{X}, {a}})’. This second case
exactly expresses the idea that “‘X’ is bound to something else”, since the disjoint-
ness constraint implied by the partitioned set notation requires that ‘ ’,
and the only way for this to be true is if ‘X ≠ a’.

We now address the issue of exactly what the atomization produces and how the
result of the atomization relates to the partitioned set being atomized. For this discus-
sion we need the ideas of “substitution” and “bound version”. A substitution is a map-
ping of variables to terms. It is important to realize that the term to which a variable is
mapped may be another variable. A bound version of a term is the result of applying a
substitution to that term. Clearly, applying a substitution that has variables in its range
to a term may result in a bound version that may still contain variables. The atomiza-
tion process produces a set of atomizations that satisfies three properties: all of the
resulting terms are atomized partitioned sets; for any substitution, the atomization of
the bound version of the original set is equivalent to the bound version of one of these
atomizations of the original set; and, for each atomized version ‘T’ of the original,
there is a substitution such that the bound version of ‘T’ equals the bound version of
the original set. We can now summarize the simple set atomization example given
above. Since a particular atomized version of a set has an accompanying (possibly
empty) substitution, we represent the atomized partitioned set in an ordered pair with
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the associated substitution as the second element. Thus, the set of possible atomized
partitioned set versions of ‘ ’ is:

.

To completely express the results of atomization, we need to distinguish between
atomization of a set and atomization of a partitioned set. The atomization of a parti-
tioned set is constructed using the atomization of sets. Let ‘ptn(P)’ be the partitioned
set to be atomized:

To atomize a partitioned set (subject to some given partitioning constraints ‘C’),
we atomize each of that partitioned set’s parts (subject to the partitioning constraint
implied by the original partitioned set plus the given partitioning constraints ‘C’) and
union the results. If a part is a variable, then it is already atomized. If it is not a vari-
able, then it must be a set and we atomize it using the ‘atomization(S, C)’ function
described next. The partitioning constraints may be non-empty due to previous unifi-
cations.

We now characterize the results of atomizing a set, given some (possibly empty)
partitioning constraints. Let ‘S’ be a set, ‘C’ be a set of partitioning constraints, and
‘AS’ be the result of atomizing ‘S’:
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The first proposition in this property of atomization states that all of the elements
of the atomization are atomized partitioned sets, where each part of an atomized parti-
tioned set must be either a variable or a singleton set. The second proposition states
that for every pair of partitioned set and substitution in the atomization that parti-
tioned set is equal to the bound version of the original set (i.e. the union of the parts
of that partitioned set is equal to the original set). The third proposition states that for
any substitution ‘ ’ that retains the validity of the given constraints ‘C’, there is a
pair of a partitioned set and substitution ‘ ’ in the atomization such that the version
of that  partitioned set bound with ‘s’ is equal to the version of the original set bound
using the composition of the substitutions ‘ ’ and ‘ ’ . The second proposition is a
soundness constraint: the atomization process only creates atomized partitioned sets
that validly derive from the original partitioned set. The third proposition is a com-
pleteness constraint: Any substitution that validly binds the original set, creating some
term T, can be used to validly bind some atomization of the original set to create the
same term T.

In the example atomization above, the two resulting partitioned sets in :

have the desired properties. The first proposition requires atomized parts, and they
are both atomized (they contain only singleton sets, in this case). The second
proposition requires that for each atomized partitioned set, the associated substitution
makes the union of its parts equal to the union of the parts of the bound version of the
original partitioned set. The substitution ‘{X/a}’ makes ‘{a}’ equal to ‘{X,a}’, by
converting ‘{X,a}’ to ‘{a,a}’, which is identical to ‘{a}’. The union of  ‘{{X}, {a}}’
is equal to ‘{X,a}’, which is the same as the original partitioned set’s only part. Thus,
the identity substitution (‘{}’) “makes” these two equal by doing nothing. The third
proposition requires that for any substitution ‘s’ for which the bound version of ‘S’ is
a valid partitioning (i.e. the parts of ‘S’ remain pairwise disjoint), there must be some
atomized partitioned set ‘R’ for which the union of its bound version’s parts is equal
to the union of the parts of the bound version of ‘S’. This brings us back to the “two
interesting possibilities” discussed in the initial presentation of this example above:
either ‘s’ binds ‘X’ to ‘a’, or it binds ‘X’ to something else. In the first case
(‘s={X/a}’), the bound version of ‘S’ becomes ‘ptn({{a}})’, which is identically one
of the atomized partitioned sets. In the second case where ‘s’ binds ‘X’ to something
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other than ‘a’ (‘s={X/Y}’, where ‘Y’ is any term such that ‘Y≠a’), ‘S’ is bound to
‘ptn({{Y,a}})’. The other atomized partitioned set handles this case. It is bound to
‘ptn({{Y}, {a}})’. The union of the parts of the bound ‘S’, ‘{{Y,a}}’, must be the
same as the union of the parts of this bound atomized partitioned set, ‘{{Y},{a}}’.
Also, the disjointness constraint must hold for the bound version of the atomized par-
titioned set (‘ ’) since we are assuming ‘Y≠a’.

The atomization algorithm. The atomization algorithm finds a set of atomizations of
a  given set as defined above. There can be many possible sets of atomizations that
satisfy the above atomization property. These sets differ in the extent to which they
contain unbound variables.3 We conjecture that there is a minimal set of atomizations
of a given set, and that our atomization algorithm finds that minimal set. Note that
since set atomization is a step in the unification process and atomization relies on uni-
fication, the atomization algorithm may recurse.

A set S is transformed into an atomized partitioned set by repeated application of
the following inference rules to the formula ‘ ’. The result of the appli-
cation of these inference rules is a set of formulas where the left hand-side of each
formula is an empty set and the partitioned set on the right-hand of the formula is a
transformation of the initial set S. Associated with each such transformation is a (pos-
sibly empty) set of unification equations.

Rule 1 and Rule 2 are the inference rules at the heart of  the atomization algo-
rithm. They are used to manipulate sets of formulas of the form ‘ ’,
where S is the unatomized portion of the original set,  is the atomized parti-
tioned portion of the original set, and  is the set of variable bindings that have been
applied to S and T. The atomization process creates a sequence of sets of these formu-
las. Given a sequence of formula sets, this sequence is extended by transforming the
final formula set of the sequence (the “current” formula set) by applying Rule 1 or
Rule 2 to a formula in that set and creating the next set is the current set minus the
selected formula plus the consequent formulas from the rule application. Eventually
this process converges on a set of formulas where all of the left-hand sides are empty,
i.e. where the set represented by the formula is entirely represented by a partitioned
set. This final formula set contains all possible atomized partitioned set representa-

3. If the original set contains unbound variables then at least one of the elements of the set of atomi-
zations must also contain unbound variables for that set to be finite.

100

γ

ptn T( )

S ⇒ ptn T( );γ

S ⇒ ptn ∅( );∅

Y{ }∩ a{ } = ∅



tions of the original set. 
We define ‘ ’ as the function that given a formula (‘ ’) returns

the set of formulas produced by transforming ‘ ’ according to whichever rule applies
to ‘ ’. Let ‘ ‘ be a formula set in a sequence, where ‘ ’ is the next formula set
in that sequence. Then the equation defining a step is:

 .

The  function returns a singleton set of the given formula  when
that formula’s left-hand side is empty, otherwise it creates a set of formulas each of
which has as its left-hand side a set that is a proper subset of the left-hand side of .

Thus, the sequence must converge at some step k such that . This 

is the final formula set of the sequence. The initial formula set for the atomization of
a set A is ‘ ’. The final formula set in an “atomization sequence” is

of the form ‘ ’, where  is a set of variable

bindings such that:

 .

The first of the three propositions of this property of the final formula set says that
the set resulting from applying  to the original set A is equal to the union of all the

elements of the set . The second of these propositions requires that all of the ele-
ments of the set Bi that are not variables must be non-intersecting sets. These first two
propositions are the expansion of ‘ ‘. The third proposition states that

all of the elements of  are either variables or singleton sets.
Rule 1 and Rule 2 are the two possible cases: either there is a pair of elements X

and Y of S such that X and Y unify and the partitioning T remains valid, or there is not
such a pair of elements of S.
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(Rule.1)

Rule 1 produces a set of formulas from a matched formula, where the set of formulas
are the results of all possible unifications of a pair of elements, including the
“null”unification—specifying that the two elements must not unify. 

(Rule.2)

Rule 2 is the case where there are no unifications among elements of S possible (i.e.
the elements of S are pairwise nonunifiable), so each element is placed in its own part
of the resulting partitioning.

Example atomization. To help explain how the atomization process works, we
present the example of the transformation of S = {a, B,C}, where ‘a’ is not a variable
and B and C are variables. This is solved in four steps, with the following result:

To start the atomization, we create the initial formula set:
.
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To find the next formula set, we must apply the appropriate rule the element of
the current formula set. We apply a rule to a formula by finding all possible mappings
of the antecedent onto that formula, then calculating the expanded form of the conse-
quent of the rule for each such mapping. Thus, to start the rule application process,
we determine which of the two rules applies to the formula in ‘ ’. Since there are
elements on the left-hand-side of the arrow in that formula that unify with each other,
we apply Rule 1.  There are six mappings of the antecedent of Rule 1 to the single
formula of this set: 

The first of these leads to the following expanded consequent:

The second of the antecedent mappings gives:

The third gives:

The fourth gives:

The fifth gives:

The sixth gives:
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a, B{ }⇒ ptn C{ }{ }( );∅( ), a, B{ }⇒ ptn ∅( ); C / a{ }( ){ }

a,C{ }⇒ ptn B{ }{ }( );∅( ), a, B{ }⇒ ptn ∅( ); C / B{ }( ){ }

a{ }∪ C{ }⇒ ptn B{ }{ }∪∅( );∅( ), a{ }∪ C{ }⇒ ptn ∅( ); B/ a{ }( ){ }
= a,C{ }⇒ ptn B{ }{ }( );∅( ), a,C{ }⇒ ptn ∅( ); B / a{ }( ){ }

C{ }∪ B{ }⇒ ptn a{ }{ }∪∅( );∅( ), a{ }∪ B{ }⇒ ptn ∅( ); C/ a{ }( ){ }
= B,C{ }⇒ ptn a{ }{ }( );∅( ), a, B{ }⇒ ptn ∅( ); C / a{ }( ){ }

B{ }∪ C{ }⇒ ptn a{ }{ }∪∅( );∅( ), a{ }∪ C{ }⇒ ptn ∅( ); B/ a{ }( ){ }
= B,C{ }⇒ ptn a{ }{ }( );∅( ), a,C{ }⇒ ptn ∅( ); B / a{ }( ){ }

X = a,Y = B, S = C{ },T =∅;
X = a,Y = C,S = B{ },T =∅;
X = B,Y = a, S = C{ },T =∅;
X = B,Y = C, S = a{ },T =∅;
X = C,Y = a,S = B{ },T =∅;
X = C,Y = B, S = a{ },T =∅.

Φ1



Combining all of these expanded consequents and eliminating duplicate formulas
gives:

This is the result of the first atomization step. We repeat the atomization process
on this formula set to find the next one. Again, Rule 1 applies to all of the formulas in
this set. The mappings of the antecedent for the first formula are:

The first of these leads to the following consequent:

The second mapping leads to:

104

B{ }∪∅⇒ ptn C{ }{ }∪ a{ }{ }( );∅( ), B{ }∪∅⇒ ptn a{ }{ }( ); C/ B{ }( ){ }
= B{ }⇒ ptn a{ }, C{ }{ }( );∅( ), B{ }⇒ ptn a{ }{ }( ); C / B{ }( ){ }

C{ }∪∅⇒ ptn B{ }{ }∪ a{ }{ }( );∅( ), B{ }∪∅⇒ ptn a{ }{ }( ); C/ B{ }( ){ }
= C{ }⇒ ptn a{ }, B{ }{ }( );∅( ), B{ }⇒ ptn a{ }{ }( ); C / B{ }( ){ }

X = B,Y = C, S =∅,T = a{ }{ },γ =∅;

X = C,Y = B, S =∅,T = a{ }{ },γ =∅.

Φ2 =

B,C{ } => ptn a{ }{ }( );∅( ), a,C{ } => ptn ∅( ); B / a{ }( ),

a, B{ } => ptn ∅( ); C / a{ }( ), a,C{ } => ptn B{ }{ }( );∅( ),
a, B{ } => ptn ∅( ); C / B{ }( ), a,B{ } => ptn C{ }{ }( );∅( )

 

 
 

 
 

 

 
 

 
 

a, B{ }⇒ ptn C{ }{ }( );∅( ), a, B{ }⇒ ptn ∅( ); C / B{ }( ){ }



The simplified combination of these results is:

The second formula yields the following antecedent mappings:

The first mapping leads to the following consequent:

The second mapping gives:

The combination of these results is:

The third formula results are produced in a fashion similar to that shown for the
second formula (swapping ‘B’ and ‘C’):

The fourth formula gives the combined results:

The fifth formula gives the combined results:

The sixth formula in F2 uses Rule 1 giving as its combined results:
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B{ }⇒ ptn a{ }, C{ }{ }( );∅( ), a{ }⇒ ptn C{ }{ }( ); B/ a{ }( ),
a{ }⇒ ptn B{ }, C{ }{ }( );∅( )

 
 
 

  

 
 
 

  

B{ }⇒ ptn a{ }{ }( ); C / B{ }( ), a{ }⇒ ptn B{ }{ }( ); C / B{ }( ),
a{ }⇒ ptn ∅( ); B/ a,C / a{ }( )

 
 
 

 
 
 

C{ }⇒ ptn a{ }, B{ }{ }( );∅( ), a{ }⇒ ptn B{ }{ }( ); C / a{ }( ),
a{ }⇒ ptn B{ }, C{ }{ }( );∅( )

 
 
 

  

 
 
 

  

B{ }⇒ ptn a{ }{ }( ); C / a{ }( ), a{ }⇒ ptn B{ }{ }( ); C / a{ }( ),
a{ }⇒ ptn ∅( ); B/ a,C / a{ }( )

 
 
 

 
 
 

C{ }⇒ ptn a{ }{ }( ); B / a{ }( ), a{ }⇒ ptn C{ }{ }( ); B / a{ }( ),
a{ }⇒ ptn ∅( ); B/ a,C / a{ }( )

 
 
 

 
 
 

a{ }∪∅⇒ ptn C{ }{ }∪∅( ); B/ a{ }( ), a{ }∪∅⇒ ptn ∅( ); B / a,C/ a{ }( ){ }
= a{ }⇒ ptn C{ }{ }( ); B / a{ }( ), a{ }⇒ ptn ∅( ); B/ a,C / a{ }( ){ }

C{ }∪∅⇒ ptn a{ }{ }∪∅( ); B/ a{ }( ), a{ }∪∅⇒ ptn ∅( ); B / a,C/ a{ }( ){ }
= C{ }⇒ ptn a{ }{ }( ); B / a{ }( ), a{ }⇒ ptn ∅( ); B/ a,C / a{ }( ){ }

X = a,Y = C,S = ∅,T =∅,γ = B / a{ };
X = C,Y = a,S = ∅,T =∅,γ = B / a{ }.

C{ }⇒ ptn a{ }, B{ }{ }( );∅( ), B{ }⇒ ptn a{ }{ }( ); C / B{ }( ),
B{ }⇒ ptn a{ }, C{ }{ }( );∅( )

 
 
 

  

 
 
 

  



Combing all of these results for each formula gives formula set 3:

All of the formulas in ‘ ’ have singleton sets on the left-hand-side of the arrow,
so Rule 1 cannot apply to any of them. Thus, they are all processed by Rule 2. This
rule moves the contents of the left-hand-side set to the right-hand-side, putting each
element in its own part within the partitioned set:

Since all of the formulas in ‘ ’ have empty left-hand-sides of the arrow, no
more processing needs to be done. The final set of atomized partitioned
set/substitution pairs is as shown at the beginning of this example.

General Unification.

The general unification algorithm takes a unification formula and transforms it
into a set of bindings. This transformation applies the a set of rules in a certain order.
The variable unification rules, Rule 20 through Rule 22, are applied at every opportu-
nity to process simple variable unifications. First the set unification rules, Rule 3
through Rule 5, are applied to eliminate set unifications either by replacing them with
unification of their elements (for singleton sets) or by converting them into parti-
tioned sets. Then, the partitioned set unification rules are applied. This may introduce
new set unifications, which recursively invokes the unification process.

Within the partitioned set unification rules, there is an ordering into five steps:
Rule 8, Rule 9, Rule 10, Rule 11, then Rule 12 through Rule 19. At each step in this
ordering, the rules of that step are applied repeatedly until they can no longer be
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Φ4

Φ4 =

∅ => ptn a{ }, B{ }, C{ }{ }( );∅( ), ∅ => ptn a{ }, B{ }{ }( ); C / B{ }( ),
∅ => ptn a{ }, C{ }{ }( ); B / a{ }( ), ∅ => ptn a{ }{ }( ); B / a,C / a{ }( ),
∅ => ptn a{ }, B{ }{ }( ); C / a{ }( )

 

 
 

 
 

 

 
 

 
 

Φ3

Φ3 =

C{ } => ptn a{ }, B{ }{ }( );∅( ), B{ } => ptn a{ }{ }( ); C / B{ }( ),
B{ } => ptn a{ }, C{ }{ }( );∅( ), C{ } => ptn a{ }{ }( ); B / a{ }( ),
a{ } => ptn ∅( ); B / a,C / a{ }( ), a{ } => ptn C{ }{ }( ); B / a{ }( ),
B{ } => ptn a{ }{ }( ); C / a{ }( ), a{ } => ptn B{ }{ }( ); C / a{ }( ),

( a{ } => ptn B{ }, C{ }{ }( );∅), a{ } => ptn B{ }{ }( ); C / B{ }( )

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 



applied, then the process moves on to the next step.
A fully specified rule has the form:

where  is a set of unification equations,  is a set of constraints (the accumu-
lated pairwise disjointness constraints from the partitioned sets present at any time in
the process of “solving” the unification problem),  is the set of all of the variables
in  and , and  is the set of bindings developed for the unification problem. In
this form, a rule may convert a single unification problem in the antecedent into a set
of unification problems. This transformation of a single unification problem into mul-
tiple unification problems reflects the underlying multiplicity of possible solutions
when unifying sets.

Set Unification.

Singleton set unification is equivalent to the unification of their elements:

(Rule.3)

This rule converts a unification such as ‘{a} = {b}’ to the simpler ‘a = b’. All of the
other parts of the “mapped” unification formula are unchanged. The condition of this
rule simply ensures that the mapping to the given set of unifications divides that set
into two disjoint parts, the unification of interest (‘ ’) and all of the other
unifications (‘ ’). This condition is present in some form for all of the unification
rules.

Unifications which involve sets of more than one element are converted to atom-
ized partitioned set unifications by Rule 4:
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Λ

A{ } ˙ = B{ }

A{ } ˙ = B{ }{ }∪Λ;Γ;V;Σ
A ˙ = B{ }∪Λ;Γ;V;Σ

where A ˙ = B( )∉Λ

ΣΓU
V

ΓU

  

U ;Γ;V;Σ
U1;Γ1;V1;Σ1 ,

M
Un ;Γn;Vn ;Σn

 

 
 

 
 

 

 
 

 
 



(Rule.4)

This rule’s consequent generates a set of formulas. The atomization process may cre-
ate a set of possible atomizations and we need a consequent formula for each possible
atomization. A possible atomization is a 4-tuple of an atomized partitioned set, the
substitution used to create that partitioned set, the new variables created for that atom-
ized partitioned set, and the new partitioning constraints created for that atomized
partitioned set.

This rule converts the unification ‘{a,b}={X,Y}’ to ‘ptn({{a},{b}})={X,Y}’. More
complicated structures involving variables in sets inside sets on the left hand side of
the unification problem would make interesting use of the per-atomized-partitioned-
set substitution, variable set, and constraint set.

We handle the case of a set appearing on the right-hand-side of a unification by
moving it over to the left-hand-side, so that Rule 4 can then be applied to it. This set-
commuting is specified by Rule 5:

(Rule.5)

The not-variable condition in Rule 5 avoids “undoing” the work of the variable
commuting rule (Rule 21). The requirement that it is not a set keeps this rule from
commuting formula to which Rule 3 or Rule 4 might be applied. This rule would flip
‘ptn(X)={a,b}’ to ‘{a,b}=ptn(X)’, but would leave ‘{a}={X}’ alone.
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T ˙ = S{ }∪ Λ;Γ;V ;Σ
S ˙ = T{ }∪ Λ;Γ;V ;Σ

if cardinality S( ) > 1∧ ¬var T( )∧ ¬set T( )
∧ T ˙ = S( )∉Λ

  

S ˙ = T{ }∪Λ;Γ;V;Σ
P ˙ = σ / T{ };σ / Γ ∪γ( );V ∪α ;σ oΣ( ) P,σ ,α,γ ∈AS{ }

if cardinality S( ) > 1∧ AS = atomization S,Γ,V( )
∧ S ˙ = T( )∉Λ



Partitioned Set Unification.

Partitioned set unification proceeds in two phases. The first phase is a preparation
phase and the second phase is the core partitioned set unification process.

Ground unification. At each step of the unification process, all unification formulas
are checked for ground unifications. Each ground unification formula (one that con-
tains no variables) is checked for validity. If it is valid, then it is removed from the set
of unifications in its containing formula, otherwise the unification formula to which it
belongs is invalid and that formula is removed from the unification formula set.

The two rules that specify this ground unification are defined using the ‘ground’
predicate, ‘canon(T)’ function, and ‘setequal(S, T)’ predicate. The ground predicate is
true if its argument is a term that does not contain any variables. The canon function
takes a term and replaces partitioned sets by simple sets. Since the partitioned sets are
ground, the pairwise disjoint constraint is no longer needed (there are no variables to
constrain). Thus we can simplify them to be just sets. The canon function uses two
predicates: ‘is_constant(T)’ and ‘is_nonempty_set(T)’. The is_constant predicate is
true if its argument is an ur term or an empty set. The is_nonempty _set predicate is
true when its argument is nonempty set term (which does not include partitioned set
terms). An example canonicalization is: 

The setequal predicate is true when its two arguments are equivalent sets. This
assumes a simple “identical symbols” equality theory for ‘=’, such as that specified in
Clarke’s Equality Theory. An example true proposition is:
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setequal a ,b{ } ,c{ } , c, a ,b{ }{ }( )

  

canon T( ) =

U canon p( ) p ∈P{ } if T = ptn P( )

T if is_constant T( )

canon s( )s∈T{ } if is_nonempty_set T( )

 

 
 

 
 

canon ptn ptn a{ }, b{ }{ }( ), c{ }{ }( )( ) = a,b,c{ }



The rules handle the two possibilities for a ground unification, either the unifica-
tion succeeds or fails. The form of these rules is a slight extension of the general form
of the unification rules. In these rules we have made the antecedent be the entire set
of unification formulas, instead of being a single formula. This allows us to express
the failure case. Rule 6 is the success case. The canonical forms of the two ground
terms are found to be setequal. The consequent modifies the selected unification for-
mula so that the valid unification is removed from it. The consequent set of unifica-
tion formulas is the same as the antecedent set with only the selected unification for-
mula trimmed in this way.

(Rule.6)

Rule 7 is the failure case. The canonical forms of the two ground terms are not “sete-
qual.” The set of unification formulas of the consequent is the set of the antecedent
minus the unification formula containing the offending unification.

(Rule.7)
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X ˙ = Y{ } ∪ Λ;Γ;V;Σ( ){ } ∪Π

Π
where ground X( )∧ ground Y( )

∧¬setequal canon X( ),canon Y( )( )
∧ X ˙ = Y{ } ∪ Λ;Γ;V;Σ( ) ∉Π ∧ X ˙ = Y( )∉Λ

X ˙ = Y{ }∪ Λ;Γ;V;Σ( ){ }∪Π

Λ;Γ;V ;Σ( ){ }∪ Π

where ground X( )∧ ground Y( )

∧ setequal canon X( ),canon Y( )( )
∧ X ˙ = Y{ }∪Λ;Γ;V;Σ( ) ∉Π ∧ X ˙ = Y( ) ∉Λ

setequal T1,T2( ) ≡

is_nonempty_set T1( )∧ is_nonempty_set T2( )
∧∀s s ∈T1 → ∃t ∈T2 setequal s,t( )( )( )
∧∀s s ∈T2 → ∃t ∈T1 setequal s,t( )( )( )

 

 

 
 
 

 

 

 
  

∨
is_constant T1( )∧ is_constant T2( )
∧T1 = T2

 

 
 

 

 
 

 

 

 
 
 
 
 

 

 

 
 
 
 
 



Preparation. The preparation phase uses three rules: remove identical elements (
Rule 8), introduce hollow partitioned sets (Rule 9), and connect hollow partitioned set
parts (Rule 10).

Remove Identical Elements. The two atomized partitioned sets being unified may con-
tain identical parts. These identical parts must be unified with each other and will not
contribute to the substitution resulting from the unification of the two partitioned sets.
So, we simply remove the identical parts from each of the partitioned sets being uni-
fied.

(Rule.8)

The  constraint ensures that the resulting unification equation has all
identical elements removed. This notion of identity is not simply syntactic, but mod-
el-based. That is, a subset of the elements of P and a subset of the elements of Q are
identical if for all interpretations I, they are interpreted to the same element of the
model of I. This eliminates syntactic inequalities such as that between the sets {a, b}
and {b, a}. This rule would simplify ‘ptn({{{a,Z}},{X},{b}}) =
ptn({{a},Y,{{Z,a}}})’ to ‘ptn({{X},{b}})=ptn({{a},Y})’.

Introduce Hollow Partitioned Sets. Rule 9 implements the “hollowing” of variable
parts of (atomized) partitioned sets. Each part of an atomized partitioned set is either
a singleton set or a variable. This rule transforms the variable parts; it leaves the sin-
gleton set parts unchanged. In the introduction of this chapter we briefly presented the
need to unify arbitrary subsets of partitioned sets, where the subsets are represented
by variable parts. We allow for this by replacing a variable part with a partitioned set
that consists only of variable parts, where these variables are not used anywhere else
in the unification problem (the original variable is unified with this new “hollow” par-
titioned set). Suppose one is unifying the two atomized partitioned sets
‘ptn(S)=ptn(T)’, and that we are processing the variable parts of ‘S’. A new hollow
partitioned set replacing a variable part of ‘S’ has as many parts as there are in the
other (atomized) partitioned set, ‘T’. The variable parts of the new hollow partitioned
set are either null or they are connected to ‘T’. If a variable part of a hollow parti-
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A∩ B = ∅

ptn X ∪ A( ) ˙ = ptn X ∪ B( ){ }∪ Λ;Γ;V;Σ
ptn A( ) ˙ = ptn B( ){ }∪ Λ;Γ;V;Σ

where A∩ B =∅ ∧ ptn X ∪ A( ) ˙ = ptn X ∪ B( )( ) ∉Λ



tioned set is connected to ‘T’, then it is bound to a singleton set part of ‘T’ or a vari-
able part of a hollowed partitioned set part of ‘T’. This approach to hollowing and
connecting parts of ‘S’ and ‘T’ allows for all possible subset relationships between
them.

This rule introduces hollow partitioned sets to ‘S’ and ‘T’, the next rule connects
the hollow partitioned set parts of ‘S’ to the hollow partitioned set parts of ‘T’. The
conditional part of this rule partitions ‘S’ into ‘X’ and ‘A’, where ‘X’ contains all of
the variable parts of ‘S’ and ‘A’ contains everything else (all of the singleton set parts
of ‘S’). Similarly, ‘T’ is partitioned into its variables parts ‘Y’ and singleton set parts
‘B’.

The consequent of this rule builds a single new formula. The first portion of the
formula is the unification equations. There are three sets of unification equations:
‘Ex’, the unifications of each variable part of ‘X’ with its replacement hollowed parti-
tioned set; ‘Ey’, the unifications of each variable part of ‘Y’ with its replacement hol-
lowed partitioned set; and the unification with the transformed ‘X’ and ‘Y’.

The second portion of the formula is the set of constraints. This rule creates new
partitioned sets, the hollow partitioned sets that replace the variable parts of ‘S’ and
‘T’, so there are new partitioning constraints of which to keep track. These partition-

ing constraints are represented by ‘ ’ and ‘ ’. (The

‘ptncon’ function is used solely for representing partitioning constraints.)
The third portion of the new unification formula is the set of variables. This is

extended by this rule with the variables introduced in the new hollow partitioned sets.
This rule is the only rule that uses the set of variables, in addition to being the only
one that modifies it. The set of variables is used to ensure that the variables used in
the new hollow partitioned sets have not already been used.
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ptncon ′ Y ∪
multi

B( )ptncon ′ X ∪
multi

A( )



(Rule.9)

The definition of this rule uses four equations based on two special functions,
‘hollow_partitioned_set_subs(P,Q,R,V)’ and ‘partitioned_sets(P)’. The ‘hollow_parti-
tioned_set_subs(P,Q,R,V)’ function does the core work of this rule. It builds the hol-
low partitioned sets and associates them with the variable parts. It associates a hollow
partitioned set, call it ‘H’, with each variable in ‘P’, where there are as many parts in
‘H’ as elements in the union of ‘Q’ and ‘R’. The variables of ‘H’ are not in ‘V’, (i.e.
they are “new”). The value of the function is the set of substitutions unifying each
variable part with its replacement hollow partitioned set. The equation defining ‘ ’

sets ‘ ’ equal to the equations unifying each element of ‘X’ with hollow partitioned
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σx

σx

partitioned_sets P( ) = Q∃v v / Q( )∈P( ){ }

hollow_partitioned_set_subs P,Q, R,V( ) = v /ptn Xv1, ..., Xvk{ }( )( )v ∈P{ }
if k = cardinality Q∪ R( ) ∧ ∀s,t,u, v Xst = Xuv → s = u∧ t = v( )( )
∧∀s,t var Xst( )∧ Xst ∉V( )

′ Y = partitioned_sets σ Y( )
′ X = partitioned_sets σ X( )

σY = hollow_partitioned_set_subs Y,A, X,V ∪vars_in σ X( )( )
σ X = hollow_partitioned_set_subs X, B,Y,V( )

  

ptn X ∪ A( ) ˙ = ptn Y ∪ B( ){ }∪ Λ;Γ;V
ptn ′ X ∪ A( ) ˙ = ptn ′ Y ∪ B( ){ }∪ Λ;

σ X oσ Y( ) / Γ ∪ptncon ′ X ∪
multi

A( )∪ ptncon ′ Y ∪
multi

B( ) 
 

 
 ;

V ∪ varsin σ X( )∪varsin σ Y( );
Σ oσ X oσY

 

 

 
 
 
 

 

 

 
 
 
 

where
∀v ∈X var v( )( )
∧¬∃v ∈A var v( )( )

 

 
 

 

 
 ∧

∀v ∈Y var v( )( )
∧¬∃v ∈B var v( )( )

 

 
 

 

 
 

∧ ptn X ∪ A( ) ˙ = ptn Y∪ B( )( )∉Λ



sets each having as many parts as the cardinality of the union of ‘B’ and ‘Y’, and none
of the hollow partitioned set variable parts are in ‘V’. Similarly, the equation defining
‘ ’ sets ‘ ’ equal to the equations unifying each element of ‘Y’ with hollow parti-

tioned sets each having as many parts as the cardinality of the union of ‘A’ and ‘X’,
and none of the hollow partitioned set variable parts are in the union of  ‘V’ and the
variables in ‘ ’.

The other special function, ‘ ’, maps ‘P’ to the right-hand-side
of the substitutions in ‘P’. When ‘ ’ is given a ‘P’ that contains
only partitioned sets on the right-hand-sides of the unification equations, it returns
those partitioned sets. This is how it is used in the equations defining  and . 
is the ‘partitioned_sets’ of ‘ ’, which we have explained above is a set of equations
unifying the elements of X with hollow partitioned sets. Thus,  is the set of hollow
partitioned sets associated by ‘ ’ with the elements of X. Similarly,  is the set of

hollow partitioned sets associated by ‘ ’ with the elements of Y.

As an example of the application of this rule, consider the unification:

where  are variables and ‘a’ and ‘b’ are constants. Mapping the
antecedent of this rule onto the example unification equation in a fashion that honors
the rule’s conditional yields:

‘ ’ and ‘ ’.

This gives:

 

and
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σY = hollow_partitioned_set_subs
T1,T2{ }, a{ }, D{ }{ }, S1,S2, S3{ },

S1,L,S15 ,T1,T2{ }

 

 
 

 

 
 

= T1 /ptn T3,T4,T5,T6,T7{ }( ),T2 /ptn T8 ,T9,T10 ,T11 ,T12{ }( ){ }

σ X = hollow_partitioned_set_subs
S1,S2, S3{ }, b{ }, E{ }{ },

T1,T2{ }, S1,S2,S3,T1,T2{ }

 

 
 

 

 
 

=
S1 /ptn S4, S5 ,S6 ,S7{ }( ),S2 /ptn S8,S9, S10 ,S11{ }( ),
S3 /ptn S12 ,S13 ,S14 , S15{ }( )
 
 
 

 
 
 

Y = T1,T2{ }, B = b{ }, E{ }{ }X = S1,S2,S3{ }, A = a{ }, D{ }{ }

S1, S2 ,S3 ,D,T1,T2, E

ptn S1, S2 ,S3 , a{ }, D{ }{ }( ) ˙ = ptn T1,T2, b{ }, E{ }{ }( ){ }

σy

′ Y σx

′ X 
σx

′ X ′ Y ′ X 

partitioned_sets P( )

partitioned_sets P( )

σx

σyσy



The equations for  and  are:

We can now construct the unifications portion of the consequent of Rule 9:

The combined substitutions are used in calculating the constraints and total substi-
tutions for the consequent formula. They are:
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ptn ′ X ∪ A( ) ˙ = ptn ′ Y ∪ B( ){ }

=

ptn

ptn S4, S5, S6 ,S7{ }( ),ptn S8 ,S9,S10 , S11{ }( ),
ptn S12 ,S13 ,S14 , S15{ }( )

 
 
 

 
 
 

∪ a{ }, D{ }{ }

 

 

 
 
 

 

 

 
  

˙ = ptn
ptn T3,T4,T5,T6,T7{ }( ),ptn T8 ,T9, T10 ,T11 ,T12{ }( ){ }
∪ b{ }, E{ }{ }

 

 
 

 

 
 

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

=

ptn
ptn S4, S5, S6 ,S7{ }( ),ptn S8 ,S9,S10 , S11{ }( ),
ptn S12 ,S13 ,S14 , S15{ }( ), a{ }, D{ }

 
 
 

 
 
 

 

 
 

 

 
 

˙ = ptn
ptn T3,T4,T5,T6,T7{ }( ),
ptn T8,T9,T10 ,T11 ,T12{ }( ), b{ }, E{ }

 
 
 

 
 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

′ Y = partitioned_sets σ Y( )

= partitioned_sets T1 /ptn T3,T4 ,T5,T6,T7{ }( ),T2 /ptn T8 ,T9 ,T10 ,T11,T12{ }( ){ }( )
= ptn T3 ,T4 ,T5,T6,T7{ }( ), ptn T8,T9 ,T10 ,T11,T12{ }( ){ }

′ X = partitioned_sets σ X( )

= partitioned_sets
S1 /ptn S4, S5, S6 ,S7{ }( ),S2 /ptn S8,S9, S10 ,S11{ }( ),
S3 /ptn S12 ,S13 ,S14 ,S15{ }( )

 
 
 

 
 
 

 

 
 

 

 
 

= ptn S4, S5, S6 ,S7{ }( ),ptn S8,S9,S10 , S11{ }( ),ptn S12 , S13, S14 ,S15{ }( ){ }

′ Y ′ X 



The constraints portion of the consequent formula is:
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σ X o σY( ) / Γ ∪ ptncon ′ X ∪
multi

A( )∪ ptncon ′ Y ∪
multi

B( ) 
 

 
 

= σ X oσ Y( ) /

∅

∪

ptncon
ptn S4 ,S5,S6,S7{ }( ), ptn S8,S9, S10 ,S11{ }( ),
ptn S12 ,S13 ,S14 ,S15{ }( ), a{ }, D{ }

 
 
 

 
 
 multi

 

 
 

 

 
 ,

ptncon
ptn T3,T4,T5,T6 ,T7{ }( ),
ptn T8,T9 ,T10 ,T11,T12{ }( ), b{ }, E{ }

 
 
 

 
 
 multi

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

= σ X oσ Y( ) /

ptncon
ptn S4 ,S5,S6,S7{ }( ), ptn S8, S9, S10 ,S11{ }( ),
ptn S12 ,S13 ,S14 ,S15{ }( ), a{ }, D{ }

 
 
 

 
 
 multi

 

 
 

 

 
 ,

ptncon
ptn T3,T4,T5,T6 ,T7{ }( ),
ptn T8,T9,T10 ,T11,T12{ }( ), b{ }, E{ }

 
 
 

 
 
 multi

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

= σ X oσ Y( ) /
ptncon S4 ,L,S15 , a{ }, D{ }{ }multi( ),
ptncon T3,L,T12 , b{ }, E{ }{ }multi( )

 
 
 

 
 
 

  

σ X o σY

=

S1 /ptn S4,S5, S6, S7{ }( ),S2 /ptn S8,S9,S10 , S11{ }( ),
S3 /ptn S12 ,S13 ,S14 ,S15{ }( )
 
 
 

 
 
 

o T1 /ptn T3 ,T4 ,T5,T6,T7{ }( ),T2 /ptn T8 ,T9 ,T10 ,T11,T12{ }( ){ }

 

 

 
 
 

 

 

 
 
 

=

S1 /ptn S4, S5 ,S6 ,S7{ }( ),S2 /ptn S8,S9, S10 ,S11{ }( ),
S3 /ptn S12 ,S13 ,S14 , S15{ }( ),
T1 /ptn T3,T4, T5,T6,T7{ }( ),T2 /ptn T8 ,T9, T10 ,T11 ,T12{ }( )

 

 
 

 
 

 

 
 

 
 



For our example, there were no constraints to start with (hence  is empty). The
final form of the ‘ptncon’ terms is a simplification where a part of a partitioned set
that is itself a partitioned set can be replaced by its parts (partitioned set terms can be
“flattened” and the result is semantically equivalent).

The variables portion of the consequent formula is:

The substitutions portion of the consequent formula is:
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Σ oσ X oσ Y

= ∅ o

S1 /ptn S4,S5,S6, S7{ }( ), S2 /ptn S8 ,S9 ,S10 ,S11{ }( ),
S3 /ptn S12 ,S13 ,S14 ,S15{ }( ),
T1 /ptn T3,T4,T5 ,T6 ,T7{ }( ), T2 /ptn T8,T9,T10 ,T11,T12{ }( )

 

 
 

 
 

 

 
 

 
 

=

S1 /ptn S4, S5 ,S6 ,S7{ }( ),S2 /ptn S8,S9, S10 ,S11{ }( ),
S3 /ptn S12 ,S13 ,S14 , S15{ }( ),
T1 /ptn T3,T4, T5,T6,T7{ }( ),T2 /ptn T8 ,T9, T10 ,T11 ,T12{ }( )

 

 
 

 
 

 

 
 

 
 

  

V ∪ varsin σ x( )∪varsin σ Y( )

=

D,E,S1,S2,S3,T1,T2{ }

∪varsin
S1 /ptn S4,S5, S6, S7{ }( ),S2 /ptn S8 ,S9,S10 , S11{ }( ),
S3 /ptn S12 ,S13 ,S14 ,S15{ }( )

 
 
 

 
 
 

 

 
 

 

 
 

∪varsin T1 /ptn T3,T4,T5,T6,T7{ }( ),T2 /ptn T8,T9,T10 ,T11 ,T12{ }( ){ }( )

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= D,E,S1,L,S15 ,T1,L,T12{ }

Γ
  

=

S1 /ptn S4,S5, S6, S7{ }( ),S2 /ptn S8,S9,S10 , S11{ }( ),
S3 /ptn S12 ,S13 ,S14 ,S15{ }( ),
T1 /ptn T3,T4,T5,T6 ,T7{ }( ),T2 /ptn T8,T9,T10 ,T11 ,T12{ }( )

 

 
 

 
 

 

 
 

 
 

/
ptncon S4,L,S15 , a{ }, D{ }{ }multi( ),
ptncon T3,L,T12 , b{ }, E{ }{ }multi( )
 
 
 

 
 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

=
ptncon S4 ,L,S15 , a{ }, D{ }{ }multi( ),
ptncon T3,L,T12 , b{ }, E{ }{ }multi( )

 
 
 

 
 
 



The result of applying the “hollow partitions” rule to the example unification for-
mula with an empty constraint set can be summarized by:

We will continue with the processing of this example in the discussion of the next
rule.

Connect Hollow Partitioned Set Parts In the preceding discussion of Rule 9 we stated
that given a unification ‘ptn(S)=ptn(T)’, the variable parts of the new hollow parti-
tioned set in ‘S’ are either null or they are connected to ‘T’. And further that if a vari-
able part of a hollow partitioned set is connected to ‘T’, then it is bound to a singleton
set part of ‘T’ or a variable part of a hollowed partitioned set part of ‘T’. More partic-
ularly, there is a variable unification for each pair of hollowed parts of ‘S’ and ‘T’.
That is, for each hollow partitioned set introduced into ‘S’, there is one of that parti-
tioned set’s variable parts that is unified with a variable part in each of the hollowed
partitioned sets of ‘T’ (without unifying a variable part of a hollow partitioned set of
‘S’ with another variable part of a hollow partitioned set of ‘S’). Thus, the hollow
partitioned sets in ‘S’ and ‘T’ are fully cross-linked.
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=

ptn
ptn S4 ,S5,S6, S7{ }( ), ptn S8, S9 ,S10 ,S11{ }( ),
ptn S12 ,S13 ,S14 ,S15{ }( ), a{ }, D{ }

 
 
 

 
 
 

 

 
 

 

 
 

˙ = ptn
ptn T3,T4,T5,T6 ,T7{ }( ),
ptn T8,T9,T10 ,T11,T12{ }( ), b{ }, E{ }

 
 
 

 
 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

;

ptncon S4,L, S15, a{ }, D{ }{ }( ),
ptncon T3 ,L,T12 , b{ }, E{ }{ }( )

 
 
 

 
 
 
;

D,E,S1,L,S15 ,T1,L,T12{ };

S1 /ptn S4,S5, S6, S7{ }( ),S2 /ptn S8,S9,S10 , S11{ }( ),
S3 /ptn S12 ,S13 ,S14 ,S15{ }( ),
T1 /ptn T3,T4,T5,T6 ,T7{ }( ),T2 /ptn T8,T9,T10 ,T11 ,T12{ }( )

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

apply hollow_partitions,
ptn S1, S2 ,S3 , a{ }, D{ }{ }( ) ˙ = ptn T1,T2, b{ }, E{ }{ }( ){ };∅;

D, E,S1, S2 ,S3 ,T1, T2{ }

 

 
 

 

 
 

 

 
 

 

 
 



An example of the cross-linking is dia-
grammed in Figure 4. 2. Here the original unifi-
cation problem is
‘ptn({S1,S2,S3,{a},{X}})=ptn({T1,T2,{b},{
Y}})’. Each of the variable parts is shown as
divided into sub-parts, the result of the hollow-
ing process. The lines crossing between S and
T show the variable sub-parts that have been
unified. This diagram shows the result of
applying Rule 10. The variable parts of S and
T are fully cross-linked through their sub-
parts. Some sub-parts have been left “open”
for possible unification with other parts in a
later step.

Rule 10 continues where Rule 9 left off. The antecedent of Rule 10 maps a unifi-
cation of partitioned sets ‘ptn(S)=ptn(T)’. The conditional for the rule requires that
‘S’ and ‘T’ have been hollowed, as specified in Rule 9. X’ is the set of hollow parti-
tioned sets introduced into ‘S’ and ‘A’ are all of the other parts of ‘S’. Similarly for
‘T’ with respect to Y’ and ‘B’. The consequent of the rule expresses the cross-linking
of ‘S’ and ‘T’ and the reduced form of the unifications for ‘S’ and ‘T’ that haven’t
been processed yet. That is, the variables that are unified as a result of the cross-link-
ing process are removed from the unification problem of the antecedent.

(Rule.10)
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Figure 4. 2: Diagram of connec-
tions between two hollowed parti-
tioned sets. Original partitioned
sets being
S=ptn({S1,S2,S3,{a},{X}}) and
T=ptn({T1,T2,{b},{Y}}).

a b
X Y

S T
S1

S2
S3

T1

T2

  

ptn ′ X ∪ A( ) ˙ = ptn ′ Y ∪ B( ){ }∪ Λ;Γ;V;Σ

σ ′ X ′ Y /

ptn ′ ′ X ( ) ˙ = ptn Bn( ),
ptn ′ ′ Y ( ) ˙ = ptn An( ),
ptn Au( ) ˙ = ptn Bu( )

 

 
 

 
 

 

 
 

 
 

∪ Λ

 

 

 
 

 

 

 
 
;

σ
′ X ′ Y /Γ;V;Σ oσ

′ X ′ Y 

 

 

 
 
 
 

 

 

 
 
 
 

Au ⊆ A∧ An = A − Au

∧Bu ⊆ B∧ Bn = B − Bu

∧ card Bu( ) = card Au( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

if∀t ∈ ′ X ∃P t = ptn P( )( )∧∀t ∈ ′ Y ∃P t = ptn P( )( )
∧∀t ∈A ¬var t( )∧ ¬∃P t = ptn P( )( )( )
∧∀t ∈B ¬var t( ) ∧¬∃P t = ptn P( )( )( )
∧ ptn ′ X ∪ A( ) ˙ = ptn ′ Y ∪ B( )( ) ∉Λ



The expression of the consequent of Rule 10 uses four equations and a special
function, ‘trimmed_partitioned_sets(R,S)’. The cross-linking unifications are the
value of .  is the set of substitutions such that there is one substitution link-
ing each pair of hollow partitioned sets where the first element of the pair is from X’
and the second element is from Y’. The “where” condition on the definition of 
prevents any variable from being in more than one unification.

The trimmed_partitioned_sets function returns the partitioned sets from R
trimmed according to S. A partitioned set ‘P=ptn(Q)’ is trimmed according to S by
removing all of the members of Q that are unified in S. X’’ is defined as the set X’
trimmed according to . Thus X’’ is the same X’, but with the variables that were
used in connecting X’ to Y’ removed. Y’’ is defined similarly.

The consequent set of formulas, ‘R’, may be quite large, depending on the sizes of
A and B:

The structure of this formula is largely the result of the requirement that
. For every possible cardinality ‘i’ of subsets of A and B, there are

(i card(A)) such subsets of A and (i card(B)) such subsets of B. All possible pairings
of these subsets is the cross product of these two sets of subsets. There are

 such pairings. Since k and m are the minimum and
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i ⋅ card A( )( ) ⋅ i ⋅ card B( )( )

card Bu( ) = card Au( )

connecting_ consequent _ cardinality =
i
k
 

 
  
 

i
m
 

 
  
 i =1

k

∑

where k = min card A( ),card B( )( ), m = max card A( ),card B( )( )

σ ′ X ′ Y 

σ ′ X ′ Y 

σ ′ X ′ Y σ ′ X ′ Y 

trimmed_partitioned_sets R, S( ) = P

ptn Q( )∈R

∧P = ptn u
u ∈Q
∧¬∃v u / v( )∈S∨ v / u( )∈S( )

 
 
 

 
 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

′ ′ Y = trimmed_partitioned_sets ′ Y ,σ ′ X ′ Y ( )
′ ′ X = trimmed_partitioned_sets ′ X ,σ ′ X ′ Y ( )

σ
′ X ′ Y = u/ v L∈ P×Q ptn P( ), ptn Q( ) ∈ ′ X × ′ Y { }∧ u,v = choice L( ){ }

where ∀ u / v( )∈σ ′ X ′ Y 

¬∃ ′ u ′ u ≠ u∧ ′ u / v( )∈σ ′ X ′ Y ( )
∧¬∃ ′ v ′ v ≠ v ∧ u / ′ v ( ) ∈σ ′ X ′ Y ( )

 

 
 

 

 
 



maximum of the cardinalities of A and B, k will be the cardinality of one of them and
m will be the cardinality of the other one. Thus, .
The total number of pairings of subsets of A and B is the sum over the possible cardi-
nalities of pairs of subsets of the number of pairings at each of these cardinalities. The
smallest such possible cardinality is 1 and the greatest is k, the cardinality of the
smaller of the two sets (this is the greatest possible “pairing-cardinality” since there
cannot be a pair of same-cardinality subsets for any cardinality greater than the cardi-
nality of the smaller of the two sets). Typically most of these formulas will fail: they
will not result in successful unifications as they are processed by later transformations
that attempt to unify the elements of the various pairings.

We continue processing our example from Rule 9. There is only one formula in
the set of unification formulas, so ‘ ’ (the rest of the “input” formulas) is empty. The
values of X’, A, Y’, and B are as before. We have new values for ‘ ’ and ‘V’:

Since  relies on making a “choice”, several different results are possible.
However, they are all semantically equivalent. The “pool” of possible connections is:
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σ ′ X ′ Y 

Σ =

S1 /ptn S4,S5,S6, S7{ }( ), S2 /ptn S8 ,S9 ,S10 ,S11{ }( ),
S3 /ptn S12 ,S13 ,S14 ,S15{ }( ),
T1 /ptn T3,T4,T5,T6 ,T7{ }( ),T2 /ptn T8,T9,T10 ,T11,T12{ }( )

 

 
 

 
 

 

 
 

 
 

  V = D,E,S1,L,S15 ,T1,L,T12{ }
  
Γ =

ptncon S4,L, S15 , a{ }, D{ }{ }( ),
ptncon T3,L,T12 , b{ }, E{ }{ }( )

 
 
 

 
 
 

′ Y = ptn T3,T4,T5,T6,T7{ }( ),ptn T8, T9,T10 ,T11 ,T12{ }( ){ }
′ X = ptn S4, S5, S6 ,S7{ }( ),ptn S8,S9,S10 , S11{ }( ),ptn S12 , S13, S14 ,S15{ }( ){ }

Λ =∅

Γ

Λ

i ⋅ card A( )( ) ⋅ i ⋅ card B( )( ) = i ⋅ k ⋅i ⋅m



A possible value for  given the above “pool” is:

Using the value for , we can determine values for X’’ and Y’’:

122

′ ′ X = trimmed_partitioned_sets ′ X ,σ ′ X ′ Y ( )

= trimmed_partitioned_sets

ptn S4 ,S5,S6,S7{ }( ), ptn S8,S9, S10 ,S11{ }( ),
ptn S12 ,S13 ,S14 ,S15{ }( )
 
 
 

 
 
 
,

S4 / T3, S5 / T8, S8 / T4, S9 / T9 ,S12 / T5,S13 / T10{ }

 

 

 
 
 

 

 

 
  

= ptn S6, S7{ }( ), ptn S10 ,S11{ }( ), ptn S14 ,S15{ }( ){ }

σ ′ X ′ Y 

σ ′ X ′ Y 

= u / v L∈ P ×Q ptn P( ), ptn Q( ) ∈ ′ X × ′ Y { } ∧ u,v = choice L( ){ }
= S4 / T3,S5 / T8,S8 / T4,S9 / T9, S12 / T5 ,S13 / T10{ }

σ ′ X ′ Y 

  

P×Q ptn P( ), ptn Q( ) ∈ ′ X × ′ Y { }

=

S4, T3 , S4 ,T4 , S4,T5 , S4 ,T6 , S4,T7 , S5,T3 , S5,T4 , S5,T5 , S5,T6 , S5,T7 ,

S6,T3 , S6,T4 , S6 ,T5 , S6 ,T6 , S6,T7 , S7, T3 , S7,T4 , S7,T5 , S7,T6 , S7,T7

 
 
 

 
 
 
,

L,

S12 ,T8 , S12 ,T9 , S12 ,T10 , S12 ,T11 , S12 ,T12 , S13 ,T8 , S13 ,T9 , S13 ,T10 , S13 ,T11 , S13,T12 ,

S14 ,T8 , S14 ,T9 , S14 ,T10 , S14 ,T11 , S14 ,T12 , S15 ,T8 , S15 ,T9 , S15 ,T10 , S15 ,T11 , S15,T12

 
 
 

 
 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

′ X × ′ Y =

ptn S4, S5, S6 ,S7{ }( ),ptn S8,S9,S10 , S11{ }( ),
ptn S12 , S13, S14, S15{ }( )
 
 
 

 
 
 

× ptn T3,T4 ,T5 ,T6 ,T7{ }( ), ptn T8,T9,T10 ,T11,T12{ }( ){ }

 

 

 
 
 

 

 

 
 
 

=

ptn S4 ,S5,S6, S7{ }( ), ptn T3,T4,T5,T6 ,T7{ }( ) ,

ptn S4 ,S5,S6, S7{ }( ), ptn T8,T9,T10 ,T11,T12{ }( ) ,

ptn S8, S9 ,S10 ,S11{ }( ),ptn T3,T4,T5,T6,T7{ }( ) ,

ptn S8, S9 ,S10 ,S11{ }( ),ptn T8,T9,T10 ,T11 ,T12{ }( ) ,

ptn S12 ,S13 ,S14 ,S15{ }( ),ptn T3 ,T4 ,T5,T6,T7{ }( ) ,

ptn S12 ,S13 ,S14 ,S15{ }( ),ptn T8 ,T9 ,T10 , T11 ,T12{ }( )

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 



The consequent formula’s A and B “target” subsets are:

These A and B subset targets give unifications for the consequent formula of:
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TargetedUnifs =

ptn ′ ′ X ( ) ˙ = ptn Bn( ),
ptn ′ ′ Y ( ) ˙ = ptn An( ),
ptn Au( ) ˙ = ptn Bu( )

 

 
 

 
 

 

 
 

 
 

Au, An, Bu ,Bn ∈Targets

 

 
 

 
 

 

 
 

 
 

=

ptn ptn S6, S7{ }( ), ptn S10 ,S11{ }( ), ptn S14 ,S15{ }( ){ }( )
˙ = ptn Bn( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn An( ),

ptn Au( ) ˙ = ptn Bu( )

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Au, An, Bu ,Bn ∈Targets

 

 

 
 

 

 
 

 

 

 
 

 

 
 

=

∅, a{ }, D{ }{ },∅, b{ }, E{ }{ } ,

a{ }{ }, D{ }{ }, b{ }{ }, E{ }{ } , a{ }{ }, D{ }{ }, E{ }{ }, b{ }{ } ,

D{ }{ }, a{ }{ }, b{ }{ }, E{ }{ } , D{ }{ }, a{ }{ }, E{ }{ }, b{ }{ } ,

a{ }, D{ }{ },∅, b{ }, E{ }{ },∅

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Targets = Au, An, Bu , Bn

Au ⊆ A ∧ An = A− Au

∧Bu ⊆ B ∧ Bn = B − Bu

∧ card Bu( ) = card Au( )

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

= Au , An ,Bu, Bn

Au ⊆ a{ }, D{ }{ }∧ An = a{ }, D{ }{ } − Au

∧Bu ⊆ b{ }, E{ }{ } ∧ Bn = b{ }, E{ }{ }− Bu

∧card Bu( ) = card Au( )

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

′ ′ Y = trimmed_partitioned_sets ′ Y ,σ
′ X ′ Y ( )

= trimmed_partitioned_sets

ptn T3,T4,T5,T6 ,T7{ }( ),
ptn T8,T9 ,T10 ,T11,T12{ }( )

 
 
 

 
 
 
,

S4 / T3, S5 / T8, S8 / T4 ,S9 / T9 ,
S12 / T5, S13 / T10

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

= ptn T6 ,T7{ }( ),ptn T11,T12{ }( ){ }



The consequent formula’s constraints are:
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Γ2 = σ ′ X ′ Y /Γ

=
S4 / T3,S5 / T8,S8 / T4,
S9 / T9, S12 / T5, S13 / T10

 
 
 

 
 
 

/
ptncon S4,L, S15, a{ }, D{ }{ }( ),
ptncon T3 ,L,T12 , b{ }, E{ }{ }( )

 
 
 

 
 
 

=
ptncon

T3,T8, S6 ,S7,
T4,T9,S10 , S11,
T5,T10 ,S14 ,S15 ,
a{ }, D{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 

 

 

 
 
 

,

ptncon T3,L,T12 , b{ }, E{ }{ }( )

 

 

 
 

 

 
 

 

 

 
 

 

 
 

=

ptn ptn S6, S7{ }( ), ptn S10 ,S11{ }( ), ptn S14 ,S15{ }( ){ }( ) ˙ = ptn b{ }, E{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }, D{ }{ }( ),ptn ∅( ) ˙ = ptn ∅( )

 

 
 

 
 

 

 
 

 
 
,

ptn ptn S6, S7{ }( ), ptn S10 ,S11{ }( ), ptn S14 ,S15{ }( ){ }( ) ˙ = ptn E{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn D{ }{ }( ),ptn a{ }{ }( ) ˙ = ptn b{ }{ }( )

 

 
 

  

 

 
 

  
,

ptn ptn S6, S7{ }( ), ptn S10 ,S11{ }( ), ptn S14 ,S15{ }( ){ }( ) ˙ = ptn E{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }{ }( ),ptn D{ }{ }( ) ˙ = ptn b{ }{ }( )

 

 
 

  

 

 
 

  
,

ptn ptn S6, S7{ }( ), ptn S10 ,S11{ }( ), ptn S14 ,S15{ }( ){ }( ) ˙ = ptn b{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn D{ }{ }( ),ptn a{ }{ }( ) ˙ = ptn E{ }{ }( )

 

 
 

  

 

 
 

  
,

ptn ptn S6, S7{ }( ), ptn S10 ,S11{ }( ), ptn S14 ,S15{ }( ){ }( ) ˙ = ptn b{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }{ }( ),ptn D{ }{ }( ) ˙ = ptn E{ }{ }( )

 

 
 

  

 

 
 

  
,

ptn ptn S6, S7{ }( ), ptn S10 ,S11{ }( ), ptn S14 ,S15{ }( ){ }( ) ˙ = ptn ∅( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn ∅( ),

ptn a{ }, D{ }{ }( ) ˙ = ptn b{ }, E{ }{ }( )

 

 
  

 
 
 

 

 
  

 
 
 

 

 

 
 
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 



The substitutions for the consequent formula are:

Combining the above results gives the following as the six consequent formulas:
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ptn ptn S6, S7{ }( ),ptn S10 ,S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn b{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn D{ }{ }( ),
ptn a{ }{ }( ) ˙ = ptn E{ }{ }( )

 

 
  

 
 
 

 

 
  

 
 
 

;Γ2;V;Σ2

ptn ptn S6, S7{ }( ),ptn S10 ,S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn E{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }{ }( ),
ptn D{ }{ }( ) ˙ = ptn b{ }{ }( )

 

 
  

 
 
 

 

 
  

 
 
 

;Γ2;V;Σ2

ptn ptn S6, S7{ }( ),ptn S10 ,S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn E{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn D{ }{ }( ),
ptn a{ }{ }( ) ˙ = ptn b{ }{ }( )

 

 
  

 
 
 

 

 
  

 
 
 

;Γ2;V;Σ2

ptn ptn S6, S7{ }( ),ptn S10 ,S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn b{ }, E{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }, D{ }{ }( ),ptn ∅( ) ˙ = ptn ∅( )

 

 
 

  

 

 
 

  
;Γ2 ;V;Σ2

  

Σ2 = Σ oσ
′ X ′ Y 

=

S1 /ptn S4,S5, S6, S7{ }( ),S2 /ptn S8,S9,S10 , S11{ }( ),
S3 /ptn S12 ,S13 ,S14 ,S15{ }( ),
T1 /ptn T3,T4,T5,T6 ,T7{ }( ),T2 /ptn T8,T9,T10 ,T11 ,T12{ }( )

 

 
 

 
 

 

 
 

 
 

o S4 / T3, S5 / T8,S8 / T4, S9 / T9 ,S12 / T5,S13 / T10{ }

 

 

 
 
 
 

 

 

 
 
 
 

=

S1 /ptn T3 ,T8, S6 ,S7{ }( ),S2 /ptn T4,T9,S10 , S11{ }( ),
S3 /ptn T5 ,T10 , S14 ,S15{ }( ),
T1 /ptn T3,T4, T5,T6,T7{ }( ),T2 /ptn T8 ,T9, T10 ,T11 ,T12{ }( ),
S4 / T3,S5 / T8,S8 / T4, S9 / T9 ,S12 / T5 ,S13 / T10

 

 

 
 

 

 
 

 

 

 
 

 

 
 



The ground unification rules can be applied to the first and second of these resulting
unification formulas. For the first unification formula, the first ground unification rule
removes the ‘ ’ unification. For the second unification formula, the
second ground unification rule removes the entire formula because the
‘ ’ unification fails.
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ptn a{ }{ }( ) ˙ = ptn b{ }{ }( )

ptn ∅( ) ˙ = ptn ∅( )

ptn ptn S6, S7{ }( ),ptn S10 ,S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn ∅( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn ∅( ),

ptn a{ }, D{ }{ }( ) ˙ = ptn b{ }, E{ }{ }( )

 

 
  

 
 
 

 

 
  

 
 
 

;Γ2 ;V;Σ2

ptn ptn S6, S7{ }( ),ptn S10 ,S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn b{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }{ }( ),
ptn D{ }{ }( ) ˙ = ptn E{ }{ }( )

 

 
  

 
 
 

 

 
  

 
 
 

;Γ2;V;Σ2



Unify Unconnected Hollow Partitioned Set Parts. The last step in preparing the parti-
tioned sets for unification is to create individual unifications for the parts of the hol-
lowed partitioned sets that are not used in connecting to other hollowed partitioned
sets. These are the parts “left over” after the application of the previous rule (Rule 10
“connect hollow partitioned sets”).

(Rule.11)

This rule relies on two equations and a special function, ‘mapping(P,C)’. The
mapping function associates each element of P with an element of C and with the
empty set, where no element of P is associated with more than one element of C and
every element of C is associated with an element of P. The definition of
‘mapping(P,C)’ is recursive and relies on ‘choice(S)’ to choose an element from ‘S’.
Using the choice function recursively imposes an order on the elements of P and C.
The cardinality of P is guaranteed to be greater than or equal to the cardinality of C
by the way in which hollow partitioned sets are constructed.

The ‘ ’ term is defined to be all mappings from partitioned set parts in Z to ele-
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σZ

ΤZ = τZ

τ Z ⊆ σZ

∧∀t ∈C∃u

u / t( )∈τ Z

∧∀s ∈C u / s( )∈τ Z( )→ t = s

∧¬∃v u ≠ v ∧ v / t( )∈τZ( )

 

 

 
 

 

 

 
 

 

 

  

 

 
 

 

 

  

 

 
 

mapping P,C( )

=
u / t,u /∅{ }∪ mapping P − u{ },C − t{ }( ) if

C ≠ ∅

∧u = choice P( )∧ t = choice C( )
 

 
  

 
 

u /∅u ∈P{ } if C =∅

 

 
 

  

σZ = u / t( ) ptn P( )∈Z ∧ u / t( )∈mapping P,C( ){ }

  

ptn Z( ) ˙ = ptn C( ){ }∪ Λ;Γ;V;Σ
τZ / Λ;τ Z /Γ;V;Σ oτ Z( )τ Z ∈ΤZ{ }

where ∀t ∈Z∃P t = ptn P( )∧ ∀u ∈P var u( )( )( )
∧ ptn Z( ) ˙ = ptn C( )( ) ∉Λ



ments of C. The ‘ ’ term is defined to be a set of substitutions where each
substitution completely maps Z to C and sets to empty parts not used in mapping to C.

We continue the example from the previous rule. Consider the first of the conse-
quent formulas, “simplified” as indicated above by the application of the first of the
ground unification rules:

The current rule applies to both unifications in this formula. Consider the second

unification, ‘ ’.

From these values of Z and C we derive ‘ ’:

This value of ‘ ’ allows us to build ‘ ’:

The substitutions in  are each applied to the initial constraints :
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ΓΤZ

ΤZ =

T6 / a{ },T7 / D{ },T11 / ∅,T12 /∅{ },

T6 / a{ },T7 /∅,T11 /∅,T12 / D{ }{ },

T6 /∅,T7 / D{ },T11 / b{ },T12 /∅{ },

T6 /∅,T7 / ∅,T11 / a{ },T12 / D{ }{ }

 

 

  

 

 
 

 

 

  

 

 
 

ΤZσZ

σZ = u / t( ) ptn P( )∈Z ∧ u / t( )∈mapping P,C( ){ }

= u / t( )
ptn P( )∈ ptn T6 ,T7{ }( ), ptn T11 ,T12{ }( ){ }
∧ u / t( ) ∈mapping P, a{ }, D{ }{ }( )

 
 
 

  

 
 
 

  

=
T6 / a{ },T6 /∅,T7 / D{ },T7 / ∅,
T11 / a{ },T11 /∅,T12 / D{ },T12 / ∅
 
 
 

 
 
 

σZ

Λ = ptn ptn S6 ,S7{ }( ),ptn S10 , S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn b{ }, E{ }{ }( ){ }
C = a{ }, D{ }{ }

Z = ptn T6 ,T7{ }( ), ptn T11 ,T12{ }( ){ }
ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }, D{ }{ }( )

ptn ptn S6, S7{ }( ),ptn S10 ,S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn b{ }, E{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }, D{ }{ }( )

 

 
 

  

 

 
 

  
;Γ2;V;Σ2

ΤZ



All of the above results are equivalent. This will always be the case. Let this com-
mon partitioning constraint set be ‘ ’.

The substitutions in  are applied to the initial substitution :
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ΣΤZ

Γ3

T6 /∅,T7 /∅,T11 / a{ },T12 / D{ }{ } /Γ2

= ptncon

T3,T8, S6 ,S7,
T4,T9,S10 , S11,
T5,T10 ,S14 ,S15 ,
a{ }, D{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 

 

 

 
 
 

, ptncon
T3,T4,T5,
T8,T9,T10 , a{ }, D{ },
b{ }, E{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

T6 /∅,T7 / D{ },T11 / a{ },T12 /∅{ } /Γ2

= ptncon

T3,T8, S6 ,S7,
T4,T9,S10 , S11,
T5,T10 ,S14 ,S15 ,
a{ }, D{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 

 

 

 
 
 

, ptncon
T3,T4,T5, D{ },
T8,T9,T10 , a{ }
b{ }, E{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

T6 / a{ },T7 /∅,T11 /∅,T12 / D{ }{ } /Γ2

= ptncon

T3,T8, S6 ,S7,
T4,T9,S10 , S11,
T5,T10 ,S14 ,S15 ,
a{ }, D{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 

 

 

 
 
 

, ptncon
T3,T4,T5, a{ },
T8,T9,T10 , D{ }
b{ }, E{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

T6 / a{ },T7 / D{ },T11 / ∅,T12 /∅{ } /Γ2

= T6 / a{ },T7 / D{ },T11 /∅,T12 /∅{ } /

ptncon

T3,T8,S6, S7 ,
T4 ,T9 ,S10 ,S11 ,
T5 ,T10 ,S14 ,S15 ,
a{ }, D{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 

 

 

 
 
 

,

ptncon
T3,T4 ,T5,T6,T7,
T8, T9,T10 ,T11 ,T12 ,
b{ }, E{ }

 

 
 

  

 

 
 

  

 

 

 
 

 

 

 
 

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

= ptncon

T3,T8, S6 ,S7,
T4,T9,S10 , S11,
T5,T10 ,S14 ,S15 ,
a{ }, D{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 

 

 

 
 
 

, ptncon
T3,T4,T5, a{ }, D{ },
T8,T9,T10 ,
b{ }, E{ }

 

 
 

  

 

 
 

  

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 



To make the presentation more compact, we extract the portion of ‘ ’ that no
substitution in ‘ ’ alters and label it ‘ ’:

The four overall substitutions (one for each ) are:

Since all of the substitutions in ‘ ’ bind variables not found in ‘ ’, there are no
changes in ‘ ’ from the antecedent to the consequent.

The consequent set of unification formulas this yields is:
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Λ

ΛΤZ

T1 /ptn T3 ,T4 ,T5{ }( ),T2 /ptn T8,T9 ,T10 , a{ }, D{ }{ }( ),
T6 /∅,T7 /∅,T11 / a{ },T12 / D{ }

 
 
 

 
 
 
∪σcommon

T1 /ptn T3 ,T4 ,T5, D{ }{ }( ),T2 /ptn T8,T9 ,T10 , b{ }{ }( ),
T6 /∅,T7 / D{ },T11 / b{ },T12 /∅

 
 
 

 
 
 
∪σ common

T1 /ptn T3 ,T4 ,T5, a{ }{ }( ),T2 /ptn T8,T9,T10 , D{ }{ }( ),
T6 / a{ },T7 /∅,T11 /∅,T12 / D{ }

 
 
 

 
 
 
∪σcommon

T1 /ptn T3 ,T4 ,T5, a{ }, D{ }{ }( ),T2 /ptn T8,T9 ,T10{ }( ),
T6 / a{ },T7 / D{ },T11 /∅,T12 /∅

 
 
 

 
 
 
∪σcommon

τZ

σcommon =

S1 /ptn T3,T8,S6,S7{ }( ),S2 /ptn T4 ,T9, S10 ,S11{ }( ),
S3 /ptn T5,T10 ,S14 , S15{ }( ),
S4 / T3 ,S5 / T8, S8 / T4 ,S9 / T9,S12 / T5,S13 / T10 ,

 

 
 

 
 

 

 
 

 
 

σcommonΤZ

Σ
  

Σ oτ Z

=

S1 /ptn T3 ,T8, S6 ,S7{ }( ),S2 /ptn T4,T9,S10 , S11{ }( ),
S3 /ptn T5 ,T10 , S14 ,S15{ }( ),
T1 /ptn T3,T4, T5,T6,T7{ }( ),T2 /ptn T8 ,T9, T10 ,T11 ,T12{ }( ),
S4 / T3,S5 / T8,S8 / T4, S9 / T9 ,S12 / T5 ,S13 / T10

 

 

  

 

 
 

 

 

  

 

 
 

oτ Z



The same processing is applied to each of four formulas in this consequent. Con-
sider the first of these four formulas. The antecedent mapping is:

The substitution mappings are:

This yields a ‘ ’ of:
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ΤZ

σZ =

S6 / b{ },S6 /∅,S7 / E{ },S7 /∅,
S10 / b{ },S10 /∅,S11 / E{ }, S11 /∅,
S14 / b{ },S14 /∅,S15 / E{ },S15 /∅

 

 
 

  

 

 
 

  

ρ1 =
T1 /ptn T3,T4,T5 , a{ }, D{ }{ }( ),T2 /ptn T8,T9,T10{ }( ),
T6 / a{ },T7 / D{ }, T11 /∅,T12 / ∅

 
 
 

 
 
 

Σ = ρ1 ∪σ common

Λ =∅

C = b{ }, E{ }{ }

Z = ptn S6 ,S7{ }( ),ptn S10 , S11{ }( ),ptn S14 , S15{ }( ){ }

  

τZ / Λ;τ Z /Γ;V;Σ oτ Z( )τ Z ∈ΤZ{ }

=

Λ;Γ3;V;
T1 /ptn T3 ,T4 ,T5, a{ }, D{ }{ }( ),T2 /ptn T8,T9,T10{ }( ),
T6 / a{ },T7 / D{ },T11 /∅,T12 /∅

 
 
 

 
 
 
∪σcommon

 

 
 

 

 
 ,

Λ;Γ3;V;
T1 /ptn T3 ,T4 ,T5, a{ }{ }( ), T2 /ptn T8,T9,T10 , D{ }{ }( ),
T6 / a{ },T7 /∅,T11 /∅,T12 / D{ }

 
 
 

 
 
 
∪σcommon

 

 
 

 

 
 ,

Λ;Γ3;V;
T1 /ptn T3 ,T4 ,T5, D{ }{ }( ),T2 /ptn T8,T9 ,T10 , b{ }{ }( ),
T6 /∅,T7 / D{ },T11 / b{ },T12 /∅

 
 
 

 
 
 
∪σ common

 

 
 

 

 
 ,

Λ;Γ3;V;
T1 /ptn T3 ,T4 ,T5{ }( ),T2 /ptn T8,T9 ,T10 , a{ }, D{ }{ }( ),
T6 /∅,T7 /∅,T11 / a{ },T12 / D{ }

 
 
 

 
 
 
∪σcommon

 

 
 

 

 
 

 

 

 
 
 
 
 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 
 
 
 
 



These various substitutions yield a common constraint set ‘ ’:

In this constraint set, the two separate ‘ptncon’ terms of  have collapsed to a
single term.

The consequent substitutions, one for each ‘ ’ in ‘ ’, differ only in the bind-
ings of certain ‘ ’ variables. These bindings are only in ‘ ’. Further, ‘ ’ is

the part of ‘ ’ that is unchanged by all of these ‘ ’:
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σcommon =
S1 /ptn T3,T8,S6,S7{ }( ),S2 /ptn T4 ,T9, S10 ,S11{ }( ),
S3 /ptn T5,T10 ,S14 , S15{ }( )

 
 
 

 
 
 
∪σ kernel

σkernel = S4 / T3 ,S5 / T8 ,S8 / T4 ,S9 / T9,S12 / T5, S13 / T10 ,{ }

τZσcommon

σkernelσcommonSi

ΤZτZ

Γ3

Γ4 = τZ /Γ3

= ptncon

T3,T8, b{ }, E{ },
T4,T9,
T5,T10 ,
a{ }, D{ }

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 

 

 

 
 
 

,ptncon
T3 ,T4 ,T5,
T8 ,T9 ,T10 , a{ }, D{ },
b{ }, E{ }

 

 
 

  

 

 
 

  

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

= ptncon
T3,T4 ,T5 ,T8,T9,T10 ,
a{ }, D{ }, b{ }, E{ }

 
 
 

 
 
 

 

 
 

 

 
 

 
 
 

 
 
 

Γ4

ΤZ =

S6 / b{ }, S7 / E{ },S10 /∅,S11 /∅,S14 /∅,S15 /∅{ },

S6 / b{ }, S7 /∅, S10 / ∅,S11 / E{ },S14 /∅,S15 /∅{ },

S6 / b{ }, S7 /∅, S10 / ∅,S11 /∅, S14 /∅, S15 / E{ }{ },

S6 /∅,S7 / E{ }, S10 / b{ },S11 /∅,S14 /∅,S15 /∅{ },

S6 /∅,S7 /∅,S10 / b{ },S11 / E{ },S14 /∅,S15 /∅{ },

S6 /∅,S7 /∅,S10 / b{ },S11 /∅, S14 /∅, S15 / E{ }{ },

S6 /∅,S7 / E{ }, S10 / ∅,S11 /∅,S14 / b{ },S15 /∅{ },

S6 /∅,S7 /∅,S10 /∅,S11 / E{ },S14 / b{ },S15 /∅{ },

S6 /∅,S7 /∅,S10 /∅,S11 /∅,S14 / b{ }, S15 / E{ }{ }

 

 

 
 
 
 
 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 
 
 
 
 



There are nine overall substitutions, one for each unification formula in the conse-
quent. The non-kernel portions of these are:

The consequent for this second application of Rule 11 is:
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S1 /ptn T3,T8{ }( ), S2 /ptn T4 ,T9{ }( ),S3 /ptn T5,T10 , b{ }, E{ }{ }( ){ }
S1 /ptn T3,T8{ }( ), S2 /ptn T4 ,T9 , E{ }{ }( ),S3 /ptn T5,T10 , b{ }{ }( ){ }
S1 /ptn T3,T8, E{ }{ }( ), S2 /ptn T4 ,T9{ }( ),S3 /ptn T5,T10 , b{ }{ }( ){ }
S1 /ptn T3,T8{ }( ), S2 /ptn T4 ,T9 , b{ }{ }( ),S3 /ptn T5,T10 , E{ }{ }( ){ }
S1 /ptn T3,T8{ }( ), S2 /ptn T4 ,T9 , b{ }, E{ }{ }( ),S3 /ptn T5,T10{ }( ){ }
S1 /ptn T3,T8, E{ }{ }( ), S2 /ptn T4 ,T9 , b{ }{ }( ),S3 /ptn T5,T10{ }( ){ }
S1 /ptn T3,T8, b{ }{ }( ), S2 /ptn T4 ,T9{ }( ),S3 /ptn T5,T10 , E{ }{ }( ){ }
S1 /ptn T3,T8, b{ }{ }( ), S2 /ptn T4 ,T9 , E{ }{ }( ),S3 /ptn T5,T10{ }( ){ }
S1 /ptn T3,T8,{b},{E}{ }( ), S2 /ptn T4 ,T9{ }( ),S3 /ptn T5,T10{ }( ){ }



The unification formulas in this result are finished, that is there are no more unifi-
cations to process. Thus, the partitioning constraints and substitutions in them are
final results.

There are nine such final formulas for each of the four unification formulas of the
previous step making 36 final results emanating from the first formula in the conse-
quent of the previous rule. The second formula of the consequent of the previous rule
“fails”, as mentioned above. The third formula produces an interestingly different
result. The third formula of the consequent of the preceding rule is:
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τZ / Λ;τ Z /Γ;V;Σ oτ Z( )τ Z ∈ΤZ{ }

=

∅;Γ4;V;
S1 /ptn T3,T8 , b{ }, E{ }{ }( ), S2 /ptn T4 ,T9{ }( ),S3 /ptn T5,T10{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 ,

∅;Γ4;V;
S1 /ptn T3,T8 , b{ }{ }( ), S2 /ptn T4 ,T9 , E{ }{ }( ),S3 /ptn T5,T10{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 ,

∅;Γ4;V;
S1 /ptn T3,T8 , b{ }{ }( ), S2 /ptn T4 ,T9{ }( ),S3 /ptn T5,T10 , E{ }{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 ,

∅;Γ4;V;
S1 /ptn T3,T8 , E{ }{ }( ), S2 /ptn T4 ,T9 , b{ }{ }( ),S3 /ptn T5,T10{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 ,

∅;Γ4;V;
S1 /ptn T3,T8{ }( ), S2 /ptn T4 ,T9 , b{ }, E{ }{ }( ),S3 /ptn T5,T10{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 ,

∅;Γ4;V;
S1 /ptn T3,T8{ }( ), S2 /ptn T4 ,T9 , b{ }{ }( ),S3 /ptn T5,T10 , E{ }{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 ,

∅;Γ4;V;
S1 /ptn T3,T8 , E{ }{ }( ), S2 /ptn T4 ,T9{ }( ),S3 /ptn T5,T10 , b{ }{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 ,

∅;Γ4;V;
S1 /ptn T3,T8{ }( ), S2 /ptn T4 ,T9 , E{ }{ }( ),S3 /ptn T5,T10 , b{ }{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 ,

∅;Γ4;V;
S1 /ptn T3,T8{ }( ), S2 /ptn T4 ,T9{ }( ),S3 /ptn T5,T10 , b{ }, E{ }{ }( ){ }
∪ρ1 ∪σ kernel

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 



The first and second unifications in this formula produce three and two different
substitutions, respectively. The third formula is not processed by the current rule (
Rule 11). The set of unification formulas that processing the first and second unifica-
tions produces is:

Processing the fourth formula of the preceding rule with the current rule produces
a similar result:

The result of processing the fifth formula of the preceding rule’s consequent is:
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ptn a{ }{ }( ) ˙ = ptn E{ }{ }( ){ };

ρ ∪σ ∪τ( ) /Γ2 ;
V;
Σ2 o ρ ∪σ ∪τ( )

 

 

 
 
  

 

 

 
 
 

ρ = S7 /∅, S11 /∅,S15 /∅,T7 /∅,T12 /∅{ }

∧σ ∈

S6 / b{ },S10 /∅, S14 /∅{ },

S6 / ∅,S10 / b{ }, S14 /∅{ },

S6 / ∅,S10 /∅,S14 / b{ }{ }

 

 
 

 
 

 

 
 

 
 

∧τ ∈
T6 / D{ },T11 /∅{ },

T6 /∅,T11 / D{ }{ }

 
 
 

 
 
 

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 

  

ptn D{ }{ }( ) ˙ = ptn b{ }{ }( ){ };

ρ ∪σ ∪τ( ) /Γ2 ;
V;
Σ2 o ρ ∪σ ∪τ( )

 

 

 
 
  

 

 

 
 
 

ρ = S7 /∅, S11 /∅,S15 /∅,T7 /∅,T12 /∅{ }

∧σ ∈

S6 / E{ }, S10 /∅, S14 / ∅{ },

S6 /∅,S10 / E{ }, S14 / ∅{ },

S6 /∅,S10 /∅,S14 / E{ }{ }

 

 
 

 
 

 

 
 

 
 

∧τ ∈
T6 / a{ },T11 / ∅{ },

T6 /∅,T11 / a{ }{ }

 
 
 

 
 
 

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 

ptn ptn S6, S7{ }( ),ptn S10 ,S11{ }( ),ptn S14 ,S15{ }( ){ }( ) ˙ = ptn E{ }{ }( ),

ptn ptn T6,T7{ }( ),ptn T11,T12{ }( ){ }( ) ˙ = ptn a{ }{ }( ),
ptn D{ }{ }( ) ˙ = ptn b{ }{ }( )

 

 
  

 
 
 

 

 
  

 
 
 

;Γ2;V;Σ2



Finally, the result of processing the sixth formula of the preceding rule’s conse-
quent is the single unification formula:

At this point we have expanded the original single unification formula into 55
unification formulas, 36 of which are “finished” and the other 19 contain a single uni-
fication.

Unify Processed Partitioned Sets. The inference rules which follow process the ele-
ments of a partition on the left-hand side of a unification equation. They generally
reduce a unification that involves partitioned sets into a unification between an ele-
ment of each of these partitioned sets and the unification of these partitioned sets
minus the “extracted” elements. This reduction relies on the “pairwise disjoint” prop-
erty of partitioned sets in that if a part of a partitioned set unifies with something, then
no other part of that same partitioned set can unify with that same thing.

These rules are applied repeatedly to the same unification of a unification formula
to produce several different mappings of that unification formula onto the antecedent
of the rule.

Unify Partitioned Set Element of Set-type. These three rules are the possibilities for a
part on the left-hand-side that is a singleton set. In Rule 12 and Rule 13, the part on
the right-hand-side is itself a partitioned set. In Rule 14, the part on the right-hand-
side is a singleton set. The part on the right-hand-side is never a variable: the vari-
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ptn a{ }, D{ }{ }( ) ˙ = ptn b{ }, E{ }{ }( ){ };σ /Γ2;V;Σ2 oσ( )

where σ = τ
τ = Si /∅( )∧ i ∈ 6,7,10,11,14,15{ }( )
∨ τ = Ti /∅( )∧ i ∈ 6,7,11,12{ }( )

 
 
 

 
 
 

  

ptn D{ }{ }( ) ˙ = ptn E{ }{ }( ){ };

ρ ∪σ ∪τ( ) /Γ2 ;
V;
Σ2 o ρ ∪σ ∪τ( )

 

 

 
 
  

 

 

 
 
 

ρ = S7 /∅, S11 /∅,S15 /∅,T7 /∅,T12 /∅{ }

∧σ ∈

S6 / b{ }, S10 /∅, S14 / ∅{ },

S6 /∅,S10 / b{ }, S14 / ∅{ },

S6 /∅,S10 /∅,S14 / b{ }{ }

 

 
 

 
 

 

 
 

 
 

∧τ ∈
T6 / a{ },T11 /∅{ },

T6 /∅,T11 / a{ }{ }

 
 
 

 
 
 

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 



ables at this “level” have been removed by the hollowing process.

(Rule.12)

(Rule.13)

(Rule.14)

We can continue our example from Rule 11.  The first group of unification formulas
is not processed any further since it contains no unifications. The second group of
unification formulas was:

The unification formulas of this group all have the same unification:

This unification can only be mapped onto the third of these rules, Rule 14. This map-
ping gives:
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ptn D{ }{ }( ) ˙ = ptn b{ }{ }( )

  

ptn D{ }{ }( ) ˙ = ptn b{ }{ }( ){ };

ρ ∪σ ∪τ( ) /Γ2 ;
V;
Σ2 o ρ ∪σ ∪τ( )

 

 

 
 
  

 

 

 
 
 

ρ = S7 /∅, S11 /∅,S15 /∅,T7 /∅,T12 /∅{ }

∧σ ∈

S6 / E{ }, S10 /∅, S14 / ∅{ },

S6 /∅,S10 / E{ }, S14 / ∅{ },

S6 /∅,S10 /∅,S14 / E{ }{ }

 

 
 

 
 

 

 
 

 
 

∧τ ∈
T6 / a{ },T11 / ∅{ },

T6 /∅,T11 / a{ }{ }

 
 
 

 
 
 

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 

ptn R{ }{ }∪ P( ) ˙ = ptn X{ }{ }∪Q( ){ }∪ Λ;Γ;V;Σ
R ˙ = X,ptn P( ) ˙ = ptn Q( ){ }∪Λ;Γ;V;Σ

where ptn R{ }{ }∪ P( ) ˙ = ptn X{ }{ }∪ Q( )( )∉Λ

ptn R{ }{ }∪ P( ) ˙ = ptn ptn X{ }{ }∪ S( ){ }∪Q( ){ }∪ Λ;Γ;V ;Σ

R ˙ = X,ptn P( ) ˙ = ptn ptn S( ){ }∪Q( ){ }∪Λ;Γ;V;Σ

where ptn R{ }{ }∪ P( ) ˙ = ptn ptn X{ }{ }∪ S( ){ }∪Q( )( )∉Λ

  

ptn R{ }{ }∪ P( ) ˙ = ptn ptn X{ }∪ S( ){ }∪Q( ){ }∪ Λ;Γ;V ;Σ

σ / ptn P( ) ˙ = ptn ptn S( ){ }∪Q( ){ }∪ Λ( );σ /Γ;V;Σ o σ

where var X( )∧σ = X / R{ }

∧ ptn R{ }{ }∪ P( ) ˙ = ptn ptn X{ }∪S( ){ }∪Q( )( )∉Λ



The j and k indices are used to select some particular pair of  and  substitutions.
There are six such pairings possible.  This mapping produces the consequent unifica-
tion formula:

This is simplified by the ground unification rules to:

A similar process is used in unifying the fourth and fifth groups to create:

The sixth group gives two unification formulas, which are the same except for their
sets of unifications. These two sets of unifications are:

The unification formula containing the first of these is eliminated by the ground unifi-
cation rules since a does not unify with b. Thus the single unification formula remain-

138

a ˙ = b, D ˙ = E{ }
a ˙ = E, D ˙ = b{ }

D ˙ = E{ };Γpq;V;Σpq

a ˙ = E{ };Γlm;V;Σ lm

D ˙ = b{ };Γjk ;V;Σ jk

D ˙ = b,ptn ∅( ) ˙ = ptn ∅( ){ };Γ jk;V;Σ jk

ΘTΘ S

  

R = D
P = ∅

X = b
Q =∅

ρ = S7 /∅,S11 /∅, S15 /∅,T7 /∅,T12 /∅{ }

Θ S ∈

S6 / E{ }, S10 /∅, S14 /∅{ },

S6 /∅,S10 / E{ }, S14 /∅{ },

S6 /∅,S10 /∅,S14 / E{ }{ }

 

 
 

 
 

 

 
 

 
 

ΘT ∈
T6 / a{ },T11 /∅{ },

T6 /∅,T11 / a{ }{ }

 
 
 

 
 
 

σ j ∈Θ S

τk ∈ΘT

Γ jk = ρ ∪σ j ∪τ k( ) /Γ2

Σ jk = Σ2 o ρ ∪σ j ∪τ k( )
Λ =∅



ing from Rule 14 processing the sixth result of the previous example discussion is:

where  and  are the mappings from the sixth result onto the antecedent of
Rule 14.

Unify Partitioned Set Element of Partitioned-set-type. These rules handle the case
where there is a part on the left-hand-side that is a partitioned set. The antecedents of
both rules select a part of a partitioned set that is a part of the left-hand-side of a unifi-
cation. In both antecedents there are two new unifications created to replace the
selected unification: one unification is for the selected part and the other unification is
for the original unification minus the selected part. The two rules differ in how they
set up these two new unifications: either the selected part is set to the empty set and
the remainder of the left-hand-side is set to the original right-hand-side (Rule 15) or
the selected part is set to some part of the right-hand-side of the unification and the
remainder of the left-hand-side is set to the remainder of the right-hand-side (
Rule 16).

(Rule.15)

(Rule.16)

Delete Empty Partition Element There are three rules for handling empty sets. Parti-
tioned sets on the left-hand-side that are unified with empty sets must have all of their
parts unified with empty sets (Rule 17). Empty sets that appear on the left-hand-side
are shifted to the right-hand-side (Rule 18), which makes the previous rule applicable
in some circumstances. Finally, a partitioned set with no parts is replaced by the
empty set (Rule 19).
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ptn ptn R{ }∪ Y{ }( ){ }∪ P( ) ˙ = ptn Z{ }∪Q( ){ }∪ Λ;Γ;V;Σ

R ˙ = Z,ptn ptn Y( ){ }∪ P( ) ˙ = ptn Q( ){ }∪Λ;Γ;V;Σ

where ptn ptn R{ }∪ Y{ }( ){ }∪ P( ) ˙ = ptn Z{ }∪ Q( )( )∉Λ

ptn ptn R{ }∪ Y{ }( ){ }∪ P( ) ˙ = ptn Q( ){ }∪ Λ;Γ;V;Σ

R ˙ = ∅,ptn ptn Y( ){ }∪ P( ) ˙ = ptn Q( ){ }∪Λ;Γ;V;Σ

where ptn ptn R{ }∪ Y{ }( ){ }∪ P( ) ˙ = ptn Q( )( )∉Λ

Σ3Γ3

a ˙ = E, D ˙ = b{ };Γ3;V;Σ3



(Rule.17)

(Rule.18)

(Rule.19)

Variable Unification. These rules are concerned with the unification of variables.

Occur Check: This rule verifies that the variable doesn’t occur in the term with which
it is being bound. It recognizes a kind of unification that fails. Since this rule specifies
a failure, it uses the extended form of the rule that is used in Rule 6 and Rule 7. The
entire unification formula to which the failing unification belongs is removed from
the set of unification formulas to be solved.

(Rule.20)

Instantiate. This rule “instantiates” a variable unification—applies the binding of the
variable to the rest of the unification problem.

(Rule.21)

Commute. This rule transposes unifications so that all unifications involving a vari-
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X ˙ = T{ }∪ Λ;Γ;V;Σ
σ /Λ;σ /Γ;V;Σ oσ
where var X( )∧ ¬occurs_in X,T( )∧σ = X / T{ }
∧ X ˙ = T( )∉Λ

X ˙ = T{ }∪ Λ;Γ;V;Σ{ }∪Π

Π
where T ≠ X ∧ var X( )∧occurs_in X,T( )

ptn ∅( ) ˙ = T{ }∪ Λ;Γ;V;Σ
∅ ˙ = T{ }∪ Λ;Γ;V;Σ

where ptn ∅( ) ˙ = T( )∉Λ

T = ptn ∅( ){ }∪ Λ;Γ;V;Σ
T ˙ = ∅{ }∪ Λ;Γ;V;Σ

where T = ptn ∅( )( )∉Λ

∅ ˙ = T{ }∪ Λ;Γ;V;Σ
T ˙ = ∅{ }∪ Λ;Γ;V;Σ

where ∅ ˙ = T( )∉Λ

ptn Q( ) ˙ = ∅{ }∪ Λ;Γ;V ;Σ
q ˙ = ∅q ∈Q{ }∪ Λ;Γ;V;Σ

where ptn Q( ) ˙ = ∅{ }∉Λ



able and a non-variable have the variable on the left-hand-side.

(Rule.22)
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T ˙ = X{ }∪ Λ;Γ;V;Σ
X ˙ = T{ }∪ Λ;Γ;V;Σ

where ¬var T( )∧ var X( )∧ T ˙ = X( )∉Λ



An Example Unification.

The “union” example presented earlier serves as an example for showing the
application of the unification algorithm outlined above. The initial unifications are:

(Union.1)

The initial variables are X, Y, Z, and R. The constraint and substitution sets are
empty. In most of the discussion below, we will suppress references to the variable,
constraint, and substitution sets to simplify the presentation.

The first step is to atomize these equations applying Rule 1 and Rule 2 to pro-
duce:

(Union.2)

Rule 8 has no effect on this example, since there are no “identical” elements. Rule 9
can be applied to each of the three unifications in Union 2. We show the application
of Rule 9 in detail for the first unification. First, we distinguish the variable parts of
partitionings from the nonvariable parts:

Next, we set up the “skeletons” for the variable parts:
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ptn a{ }, b{ }{ }( ) ˙ = ptn X,Y{ }( )
ˆ X = ∅

ˆ Y = X,Y{ }
ˆ A = a{ }, b{ }{ }
ˆ B =∅

ptn a{ }, b{ }{ }( ) ˙ = ptn X,Y{ }( ),

ptn b{ }, c{ }{ }( ) ˙ = ptn Y, Z{ }( ),
R ˙ = ptn X,Y ,Z{ }( )

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

a,b{ } ˙ = ptn X,Y{ }( ), b,c{ } ˙ = ptn Y, Z{ }( ), R ˙ = ptn X,Y, Z{ }( ){ }



Finally, we combine these elements to create the unification which replaces the
unification with which we started:

Doing this replacement in Union 2 produces a new form of the “union” set of uni-
fications:

Repeating this process for the other original unification yields:

(Union.3)

In Union 3 we give an elided form of the full unification formula, with just the
first term (the unification set) and the last term (the substitutions).

Rule 10 does not apply in this example. If it were to apply, it would apply here.
But, there are no unifications with partitionings containing variable parts (“hollow
partitionings”) on both sides of the unification and thus there are no hollow parti-
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ptn a{ }, b{ }{ }( ) ˙ = ptn ptn X1, X2{ }( ), ptn Y1,Y2{ }( ){ }( ),
ptn b{ }, c{ }{ }( ) ˙ = ptn ptn Y1,Y2{ }( ), ptn Z1, Z2{ }( ){ }( ),
R ˙ = ptn ptn X1, X2{ }( ),ptn Y1,Y2{ }( ), ptn Z1, Z2{ }( ){ }( )

 

 
 

 
 

 

 
 

 
 

;

L; X /ptn X1, X2{ }( )( ), Y /ptn Y1,Y2{ }( )( ), Z /ptn Z1, Z2{ }( )( ){ }

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

ptn a{ }, b{ }{ }( ) ˙ = ptn ptn X1, X2{ }( ), ptn Y1,Y2{ }( ){ }( ),
ptn b{ }, c{ }{ }( ) ˙ = ptn ptn Y1,Y2{ }( ),Z{ }( ),
R ˙ = ptn ptn X1, X2{ }( ), ptn Y1,Y2{ }( ),Z{ }( )

 

 
 

 
 

 

 
 

 
 

 

 

  

 

 
 

 

 

  

 

 
 

ptn a{ }, b{ }{ }( ) ˙ = ptn ptn X1, X2{ }( ), ptn Y1,Y2{ }( ){ }( )

σx = hpss ˆ X , ˆ B , ˆ Y ,∅( ) = ∅

σy = hpss ˆ Y , ˆ A , ˆ X ,∅( ) = X /ptn X1, X2{ }( )( ), Y /ptn Y1,Y2{ }( )( ){ }
ˆ ′ X = ps σx( ) =∅

ˆ ′ Y = ps σ y( ) = ptn X1, X2{ }( ), ptn Y1,Y2{ }( ){ }



tioned sets to “connect”.
The next phase of the unification process applies Rule 11 to unify the variable

parts which were just introduced. We show this process for one of the unifications.
First, we distinguish the variable parts from the nonvariable parts, as before:

First, we build the sets of possible substitutions:

These sets are shown here in a “compressed” form.  There are other sets of possi-
ble unifications, but they are not logically distinct from those shown here - they can’
ultimately lead to different answers. This compression relies on the variables on the
left hand sides of these unifications being variables introduced in this unification pro-
cess which  therefore cannot be referenced in any other part of the larger “query” of
which this unification might be a part.

The modified form of the “union” unification set, with empty set simplification (
Rule 17) applied, is:
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ΤZ =

X1 / a{ }, X2 / b{ },
Y1 /∅,Y2 /∅
 
 
 

 
 
 
,

X1 / a{ }, X2 /∅,
Y1 /∅,Y2 / b{ }
 
 
 

 
 
 
,

X1 /∅, X2 / b{ },
Y1 / a{ },Y2 /∅
 
 
 

 
 
 
,

X1 /∅, X2 /∅,
Y1 / a{ },Y2 / b{ }
 
 
 

 
 
 

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 

ptn a{ }, b{ }{ }( ) ˙ = ptn ptn X1, X2{ }( ), ptn Y1,Y2{ }( ){ }( )
ˆ ′ ′ X =∅

ˆ ′ ′ Y = ptn X1, X2{ }( ), ptn Y1,Y2{ }( ){ }
ˆ A = a{ }, b{ }{ }
ˆ B =∅



(Union.4)

This is the first point in the unification process where we see multiple results.
This result is further simplified by replacing partitioning parts which are ground parti-
tioned sets by their elements (a kind of “flattening”):
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ptn b{ }, c{ }{ }( ) ˙ = ptn ptn Z1,Z2{ }( ){ }( )
R ˙ = ptn ptn a{ }, b{ }{ }( ), ptn Z1, Z2{ }( ){ }( )

 

 
 

  

 

 
 

  
;

L;

X /ptn a{ }, b{ }{ }( ),Y /∅,

Z /ptn Z1, Z2{ }( ),
X1 / a{ }, X2 / b{ },Y1 /∅,Y2 /∅

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

ptn b{ }, c{ }{ }( ) ˙ = ptn ptn b{ }{ }( ),ptn Z1,Z2{ }( ){ }( ),
R ˙ = ptn ptn a{ }{ }( ), ptn b{ }{ }( ), ptn Z1, Z2{ }( ){ }( )

 

 
 

 
 

 

 
 

 
 
;

L;
X /ptn a{ }{ }( ),Y /ptn b{ }{ }( ),Z /ptn Z1, Z2{ }( ),
X1 ˙ = a{ }, X2 ˙ = ∅,Y1 ˙ = ∅,Y2 ˙ = b{ }

 
 
 

 
 
 

 

 

 
 
 
  

 

 

 
 
 
 

ptn b{ }, c{ }{ }( ) ˙ = ptn ptn a{ }{ }( ),ptn Z1,Z2{ }( ){ }( ),
R ˙ = ptn ptn b{ }{ }( ), ptn a{ }{ }( ), ptn Z1, Z2{ }( ){ }( )

 

 
 

  

 

 
 

  
;

L;
X /ptn b{ }{ }( ),Y /ptn a{ }{ }( ),Z /ptn Z1, Z2{ }( ),
X1 ˙ = ∅, X2 ˙ = b{ },Y1 ˙ = a{ },Y2 ˙ = ∅

 
 
 

 
 
 

 

 

 
 
 
  

 

 

 
 
 
 

ptn b{ }, c{ }{ }( ) ˙ = ptn ptn a{ }, b{ }{ }( ),ptn Z1,Z2{ }( ){ }( ),
R ˙ = ptn ptn a{ }, b{ }{ }( ), ptn Z1, Z2{ }( ){ }( )

 

 
 

  

 

 
 

  
;

L;
X / ∅,Y /ptn a{ }, b{ }{ }( ), Z /ptn Z1,Z2{ }( ),
X1 ˙ = ∅, X2 ˙ = ∅,Y1 ˙ = a{ },Y2 ˙ = b{ },

 
 
 

 
 
 

 

 

 
 
 
  

 

 

 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 



(Union.5)

The unification process proceeds with each of the four alternatives in the above
unification set. The third and fourth alternatives fail directly, due to the partition-
ing/partitioning unification. In both of these alternatives this unification requires that
a set consisting of only b and c be unified with a set containing a and possibly other
things. This unification must fail.

This leaves the first two alternatives to explore. The first alternative produces one

result (considering both ways of mapping Z1 and Z2 to {b} and {c} as producing

essentially the same result):
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ptn b{ }, c{ }{ }( ) ˙ = ptn ptn Z1,Z2{ }( ){ }( )
R ˙ = ptn a{ }, b{ }, ptn Z1, Z2{ }( ){ }( )

 

 
 

  

 

 
 

  
;

L;

X /ptn a{ }, b{ }{ }( ),Y /∅,

Z /ptn Z1, Z2{ }( ),
X1 / a{ }, X2 / b{ },Y1 /∅,Y2 /∅

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

ptn b{ }, c{ }{ }( ) ˙ = ptn b{ },ptn Z1,Z2{ }( ){ }( ),
R ˙ = ptn a{ }, b{ }, ptn Z1, Z2{ }( ){ }( )

 

 
 

 
 

 

 
 

 
 
;

L;
X /ptn a{ }{ }( ),Y /ptn b{ }{ }( ),Z /ptn Z1, Z2{ }( ),
X1 ˙ = a{ }, X2 ˙ = ∅,Y1 ˙ = ∅,Y2 ˙ = b{ }

 
 
 

 
 
 

 

 

 
 
 
  

 

 

 
 
 
 

ptn b{ }, c{ }{ }( ) ˙ = ptn a{ },ptn Z1,Z2{ }( ){ }( ),
R ˙ = ptn a{ }, b{ }, ptn Z1, Z2{ }( ){ }( )

 

 
 

  

 

 
 

  
;

L;
X /ptn b{ }{ }( ),Y /ptn a{ }{ }( ),Z /ptn Z1, Z2{ }( ),
X1 ˙ = ∅, X2 ˙ = b{ },Y1 ˙ = a{ },Y2 ˙ = ∅

 
 
 

 
 
 

 

 

 
 
 
  

 

 

 
 
 
 

ptn b{ }, c{ }{ }( ) ˙ = ptn a{ }, b{ },ptn Z1,Z2{ }( ){ }( ),
R ˙ = ptn a{ }, b{ }, ptn Z1, Z2{ }( ){ }( )

 

 
 

  

 

 
 

  
;

L;
X / ∅,Y /ptn a{ }, b{ }{ }( ), Z /ptn Z1,Z2{ }( ),
X1 ˙ = ∅, X2 ˙ = ∅,Y1 ˙ = a{ },Y2 ˙ = b{ },

 
 
 

 
 
 

 

 

 
 
 
  

 

 

 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 



This result fails due to the partitioning constraint implied by the last unification
equation. This presents a partitioned set of . This is invalid due

to two of the parts of the partitioning having a nonempty intersection, b.
This leaves only the second alternative of Union 5 as a possible solution of the

original union unification set. It contains a single partitioned set/partitioned set unifi-
cation equation. This is processed in the same fashion as was done above, and the
result is simplified:

(Union.6)

This completes the unification process for the original unification set, the interest-
ing substitutions being .

Completeness and Soundness of Atomization.

The atomization algorithm is valid if it satisfies the atomization definition given
above. We repeat this definition here:
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AS = atomization(S,C)

→

∀R,γ
ptn R( ),γ ∈AS

→ ∀p p∈R → var p( )∨ cardinality p( ) = 1( )( )( )
 

 
 

 

 
 

∧∀R,γ
ptn R( ),γ ∈AS

→ valid _ partitioning ptn R( )( ) ∧UR = γ / S( )
 

 
 

 

 
 

∧∀s

valid_constraints s / C( )

→∃R,γ
ptn R( ),γ ∈AS

∧valid _ partitioning s / ptn R( )( )∧ U s / R( ) = s oγ( ) / S

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

X / a{ },Y / b{ }, Z / c{ }, R / a, b,c{ }

  

∅;L;
X / a{ },Y / b{ }, Z / c{ },
X1 / a{ },X2 /∅,Y1 /∅,Y2 / b{ },
Z1 /∅, Z2 / c{ }, R / a,b,c{ }

 

 
 

  

 

 
 

  

 

 
 

  

 

 
 

  

ptn a{ }, b{ }, b{ }, c{ }{ }( )

  

R ˙ = ptn a{ }, b{ }, b{ }, c{ }{ }( )
invalid

1 2 4 4 4 4 3 4 4 4 4 

 
 
 

 
 
 
;L;

X / a,b{ },Y /∅,Z / b,c{ },
X1 / a{ }, X2 / b{ },
Y1 /∅,Y2 /∅,
Z1 / b{ },Z2 / c{ },

 

 
 

 
 

 

 
 

 
 



As described earlier, the second proposition of this definition is soundness and the
third proposition is completeness. In our description of the atomization algorithm we
noted that it produces a sequence of sets of atomization formulas, and that this
sequence converges on a set of atomization formulas all of which have empty left-
hand-sides.

Soundness of atomization. We claim that if the soundness proposition holds for
each step of the sequence, then the final set of atomization formulas is a sound trans-
formation of the initial set. To prove that each step is sound, we need to show that
each application of a rule is sound.

The rules have the form:

 

where n ≥ 1. The elements of the original set, R, are found in the union of the sets
on the two sides of the arrow. For statement , the original set is

. Also, the sets on the two sides of the arrow are disjoint

. The rules are valid if they preserve the elements of the original set
after applying the current unifiers, the resulting statements are valid (i.e. maintain the
disjointness of the two sides of the arrow), the unifier set is valid, and they find all
distinct partitionings. The unifier set is valid if no variable is unified with two differ-
ent terms.

Consider Rule 2:

This rule is the simpler of the two atomization rules. First, we replace the
‘ ’ in the antecedent of the rule by its definition, so that the rule antecedent is
expressed in terms of standard set-theoretic propositions. This expansion is done by
replacing the ‘ ’ by a variable (‘A’), defining the value of this variable
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ptn T( )

ptn T( )

S ⇒ ptn T( );γ
∅⇒ ptn U{ }U ∈S{ }∪T( );γ{ }

if ¬∃X,Y ,σ
X,Y ∈S ∧σ ∈unifiers X,Y( )
∧valid _ partitioning σ T( )
 

 
 

 

 
 

  S ∩ UT( ) =∅
  R = U S{ }∪ T( )

S ⇒ ptn T( )

  

S ⇒ ptn T( );γ
U1 ⇒ ptn V1( ); µ1,L,Un ⇒ ptn Vn( );µ n{ }



(‘ ’), and adding a proposition describing the pairwise disjointness constraint
implicit in the use of ‘ ’ (‘ )’).

Reducing the antecedent:

R is the total set represented by both sides of the antecedent formula.
Reducing the consequent:

Simplifying the total set represented by the antecedent, V:

The total set for the statements is preserved between the antecedent and the conse-
quent (R = V). 

The remaining question is whether the partitioning constraints introduced by the
consequent limit the possible substitutions more than the antecedent limits them. This
is not a problem due to the constraint on the application of the rule:

The elements of the consequent’s new partitioning constraint are all of the single-
ton sets from S. This constraint can only fail if they fail to be pairwise disjoint, i.e. if
two of them intersect. For two singleton sets to intersect, their single members must
be equal. It is impossible for any of these singleton sets to be equal, even after apply-
ing an arbitrary valid-for-the-antecedent substitution, because the condition on the
rule forbids that any two elements of S be unifiable. Therefore, the consequent does
not limit the unification possibilities beyond whatever limitations were already
present in the antecedent. Further, no partitioning constraints are removed, so none of
the antecedent’s constraints are eased, either. Thus, Rule 2 is sound.

Consider Rule 1:
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¬∃X,Y ,σ
X,Y ∈S∧σ ∈unifiers X,Y( )
∧valid _ partitioning σ T( )
 

 
 

 

 
 

  V = U U{ }U ∈S{ }∪ T( ) = U S{ }∪T( )

  

∅⇒ ptn U{ }U ∈S{ }∪T( )⇔
∅⇒V,

V = U U{ }U ∈S{ }∪T( )
∧∀p,q ∈ U{ }U ∈S{ }∪ T( ) p∩q =∅( )

 

 

 
 
 

 

 

 
  

  

S ⇒ ptn T( )⇔
S ⇒ A,
A = UT ∧ ∀p,q ∈T p∩q =∅( )
 

 
  

 
 

let R = S∪ A = S∪UT = U S{ }∪ T( )

∀p, q∈T( p∩q = ∅)ptn T( )
  A = UT



First, we expand the antecedent:

There are two parts to the analysis of the consequent, the “initial” formula and the
‘R’ construct:

The consequent expansion of the initial formula:

We set  to be the “total set” represented by the initial formula of the conse-
quent. The extended equality shows it to be the same as the total set for the anteced-
ent.

Next we analyze the a prototypical element of the R construct. First, we develop
an expression for the “total set” of this element, :
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σ Y{ }∪S( )⇒ ptn σ T( )
⇔σ Y{ }∪ S( ) ⇒ A, A = U σ T( )∧ ∀p,q ∈ σ T( ) p∩ q =∅( )

′ Ψ 2 = U σ Y{ }∪ S( ){ }∪ σ T( )( )

′ Ψ 2

′ Ψ 1

  

Y{ }∪S ⇒ ptn X{ }{ }∪T( )
⇔ Y{ }∪ S ⇒ A, A = U X{ }{ }∪T( )∧ ∀p,q ∈ X{ }{ }∪T( ) p∩ q =∅( )

Let Ψ = U X,Y{ }∪ S{ }∪ T( )
′ Ψ 1 = U Y{ }∪S{ }∪ X{ }{ }∪ T( )( ) = U X{ }{ }∪ Y{ }∪ S{ }( )∪ T( )

= U X{ }∪ Y{ }∪ S{ }∪T( ) = U X,Y{ }∪ S{ }∪T( ) = Ψ

Y{ }∪S ⇒ ptn X{ }{ }∪T( );γ{ }∪ R

  

X,Y{ }∪ S ⇒ ptn T( )

⇔ X,Y{ }∪ S⇒ A, A = UT ∧∀p, q∈T p ∩q = ∅( )
R = U X,Y{ }∪ S{ }∪T( )

  

X,Y{ }∪ S⇒ ptn T( );γ
Y{ }∪S ⇒ ptn X{ }{ }∪T( );γ{ }∪ R

if R ≠ ∅

∧R = P
P = Y{ }∪σ S ⇒ ptn σ T( );σ o γ[ ]
∧unify X,Y,σ( )∧ valid _ partitioning σ T( )

 
 
 

 
 
 

(where σ is a set of bindings)



The “prototype” substitution applied to the set of X and Y collapses that set to just
the common substituted term:

Now we can verify that applying the combined substitution to the total set of the
antecedent produces the same set as the total set of the prototypical element of R.
Since the antecedent is presumed to have had the antecedent substitution applied to it,

Using the simplified form of the substitution applied to the total set for the ante-
cedent, we show that this is equal to the total set for the prototypical element of R,
derived above:

This shows that the total set is preserved by all of the atomization formulas pro-
duced by this rule. The new atomization formulas preserve disjointness. For the initial
new formula, the unifier set is valid since it is unchanged. For the other new formulas,
the unifier sets are valid since X was an unbound variable when the antecedent was
applied, and thus must not have been previously unified.

These two rules have been shown to be sound; the atomizations they produce are
equivalent to the original partitioned set (under some substitution).

Completeness of atomization. To establish that the completeness proposition holds
we need to prove that all possible distinct  bound versions of the original partitioned
set have corresponding atomized versions. To prove this we need the detailed defini-
tions of the atomization functions. The basic recursive relationship defining the atom-
ization sequence was given above as:

The atomize_set, atomize_step, apply, and strict_apply functions are given below:
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  Φ i +1 = U atomize_step φ( )φ ∈Φi{ }

  

σ Ψ = U σ X,Y{ }∪ S( ){ }{ }∪ σ T( )( )
= U σ Y{ }∪S( ){ }{ }∪ σ T( )( ) = ′ Ψ 2

∴ ′ Ψ 2 = σ ∪ σ γ( )( ) Ψ

  σ oγ( ) Ψ = σ Ψ

σ ∈unifiers X,Y( )→ σ X( ) = Y( )→σ X,Y{ } = σ Y{ }



The atomization(S) function returns the pairs of atomized partitioned sets and their
associated substitutions that are the result of the atomization process. The apply(Rule,
F) function returns a set of atomization formulas as the result of applying rule Rule to
formula F:

This function is a simple wrapper for the strict_apply(Rule, F) function. If the
strict_apply function returns an empty set (no applications are possible), the apply
returns a singleton set of the given formula.

The strict_apply(Rule, F) function returns a set of atomization formulas that are
the result of applying rule Rule to formula F. If no applications are possible, then it
returns an empty set. There are two forms of this function, one for each of the two
atomization rules. Both of these forms return the union of the set of all possible con-
sequent atomization formula sets for all possible mappings of the antecedent onto the
given formula that satisfy that rule’s constraints.
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strict_apply rule1, L⇒ ptn T( );γ( )

= U Cons

X,Y{ }⊆ L ∧ X ≠ Y ∧ S = L − X,Y{ } ∧ R ≠ ∅

∧R = P
P = Y{ }∪σ S ⇒ ptn σ T( );σ ∪ σ γ( )[ ]
∧σ = unifier X,Y( )∧ valid _ partitioning σ T( )

 
 
 

 
 
 

 

 
 

 
 

 

 
 

 
 

Cons ≡ Y{ }∪ S⇒ ptn X{ }{ }∪T( );γ{ }∪ R

apply Rule, F( ) =

if strict_apply Rule, F( ) =∅

then F{ };
else strict_apply Rule, F( ).

  

atomization S( ) = R,γ ∅⇒ R;γ( )∈atomize_step S⇒∅;∅( ){ }( ){ }

atomize_step S( ) =

if ∀F ∈S strict_apply rule1, F( ) = ∅∧ strict_apply rule2, F( ) =∅( )( )
then S;

else atomize_step U apply rule1, F( )∪ apply rule2, F( ) F ∈S{ }( ).



The atomize_step function applies itself recursively to the set of formulas. At
each step of the recursion it exhaustively expands the set of formulas by applying
Rule 1 and Rule 2, replacing each expanded statement by its expansion. The recursion
terminates when every statement has an empty left-hand side. Each application of a
rule reduces the cardinality of the left-hand-side set. If a left-hand-side set is non-
empty, then either Rule 1 or Rule 2 applies to it. Thus, the recursion processes every
statement fully and it must terminate.

The atomization function is complete if for any  A which is a valid atomization of
S there exists an  in  atomization(S) such that there is a substitution h such that

. Consider the set G which is the union of the parts of partitioned set F.
Elements of G are in S or are the result of unifying two or more elements of S (by the
unification in Rule 1). Rule 2 puts those elements which cannot be unified into the
result, and Rule 1 puts atomizations for all possible unifications of two elements and
the atomization for not unifying those two elements into the result (i.e. a partitioned
set with these two elements in different parts and thus required to not unify together).
Repeated applications of Rule 1 finds atomizations for all possible unifications of two
or more elements. Thus, an F that can be unified with any possible A will be con-
structed by atomization(S).
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  h o g( ) / F = A

F,g

strict_apply rule2,S ⇒ ptn T( );γ( )

= ∅⇒ ptn U{ }U ∈S{ }∪ T( );γ( ) ¬∃X,Y,σ
X,Y ∈S ∧σ ∈unifiers X,Y( )

∧valid _ partitioning σ T( )
 

 
  

 
 

 
 
 

 
 
 



Implementation.

The implementation of the partitioned set unification algorithm by the SPARCL
Interp Unify module is discussed in chapter 6. In the worst case the algorithm’s essen-
tial complexity is exponential: given a partitioned set of two variable parts unifying
with a set of n elements, there are 2n possible subsets of elements and each subset can
unify with either of the two parts (the remainder unifying with the other part).

The implemented unification algorithm is substantially more complex than the
one outlined in this chapter. There are many special cases of unifications which are
recognized in order to speed the unification process. Also, there is a direct representa-
tion of N-tuples which is incorporated into the unification process (an N-tuple being a
special form of a set), and various special cases introduced to handle N-tuples effi-
ciently.

The handling of the constraints is somewhat complex in that the constraints are
simplified periodically. The inference procedure of which the unification algorithm is
part trims irrelevant constraints when possible. Irrelevant constraints are those that
constrain variables that are not present in the literals to be solved (and thus ones that
cannot be unified by subsequent processing of the inference engine). This analysis of
irrelevance requires keeping track of which variables are used in which setof or mult-
isetof meta-predicate scope; a variable is irrelevant outside of its scope. Also, the
“hollow” partitioned sets for variable parts of partitioned sets may introduce variables
that prove to be irrelevant. Trimming these irrelevant variables proved to be an
important storage and performance efficiency because the constraint collection was
constantly growing over the course of solving a query. For some queries, the internal
limit on the number of variables that can be defined in MACPROLOG32 (the language
in which SPARCL is implemented) was reached, preventing the query from being
solved. Even when the query solution didn’t create too many variables, the large con-
straint collections slowed down execution in that they required a lot of time to check.

Discussion

We have presented a formalization of the partitioned set unification algorithm, an
example of its application, a proof of its soundness, and comments on its implementa-
tion. We also proved the generality of atomized partitioned sets as a basic representa-
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tion of collections of terms. The unusual aspects of this formalization, compared with
“traditional” unification, include the atomization process, the use of the atomized par-
titioned set as the canonical form of collections of terms (instead of strict sets or
union sets), and the introduction and “linking” of hollow partitioned sets. The use of
atomized partitioned sets as the basic form simplifies the formalization, analysis, and
implementation of the unification algorithm. The hollowing process dramatically
improves the performance of the implementation in certain common unification situa-
tions.

In the implementation section we pointed out that there are several performance-
enhancing complications of the implementation of the unification algorithm com-
pared with the formalization. These involve special cases for common unification sit-
uations and careful handling of the constraints. We introduced the idea of irrelevant
variables in constraint specifications and pointed out that trimming the constraint col-
lection to eliminate irrelevant variables was a crucial performance enhancement in
SPARCL. The constraint handling is an area of SPARCL that can use a great deal more
work. We currently use a very simple approach to determining the validity of a col-
lection of constraints: a collection of constraint partitioned sets is acceptable if all of
the ground partitioned sets are valid. A ground partitioned set is valid if its parts are
pairwise disjoint. Ground partition sets are removed from the constraint partitioned
set collection. A more sophisticated analysis would recognize some collections of
nonground partitioned sets that could never be simultaneously satisfied, thus failing
the validity check of the entire collection. This would trim searches of some unprofit-
able proof tree branches much earlier, thus speeding up SPARCL.

Another unification implementation improvement we would like to explore is the
dynamic specialization of the unification algorithm, perhaps for each clause head.
This is part of the basic strategy used by most compilers of logic programming lan-
guages. A more general approach is partial evaluation of SPARCL with respect to a par-
ticular clause, predicate, or collection of predicates. This partial evaluation would
produce a “compiled” form of the SPARCL interpreter specialized for a particular
SPARCL program. Such a compilation might include unification specialization.

The formalization is not as concise as we believe is can be. We hope to investi-
gate finding a shorter presentation. Having a formal definition of the partitioned set
unification algorithm is an essential element of producing an analysis of the proce-
dural semantics of SPARCL. Other elements that we have not yet addressed include an
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equality theory (similar to Clark’s Equality Theory, perhaps) that includes sets or an
adaptation of the standard Herbrand interpretation that includes finite sets. These are
necessary for the model-theoretic connection between a declarative semantics of
SPARCL and a procedural semantics of SPARCL, in the manner of the standard approach
to logic programming semantics epitomized by John Lloyd’s Foundations of Logic
Programming [Lloyd 1987b].
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Chapter 5
Three-Dimensional Representation of SPARCL

Three-dimensional representation of SPARCL has several motivations. In general,
three-dimensional scenes are something people are very adept at understanding. Thus,
a three-dimensional representation of a program could be more understandable in
ways that take advantage of this natural ability of people. A more specific motivation
stems from the “line-crossing” problem discussed in section 4 (“Visual Programming
Design Elements”) of chapter 3. Most of the work in this thesis focusses on the 2D
representation because we were able to complete the design and implementation of
the 2D-based interactive development environment (IDE), but a complete 3D-based
IDE was not produced. However, sub-
stantial progress was made on the use
of a 3D representation. In this chapter
we present our approach to three-di-
mensional representation in SPARCL: the
3D representation in general of SPARCL,
our approach to rendering 3D models,
the automated layout of 3D models of
the abstract representation of a SPARCL

program, and a detailed presentation of
the modelling of hyperedges. The dis-
cussion of the modelling of hyperedges
extends material originally presented in
[Spratt&Ambler 1994].

General 3D representation of SPARCL.

The 3D designs of most of the concrete representations of the display objects in
the full, abstract visual representation of SPARCL are simple extensions of their 2D
designs. Two-dimensional and three-dimensional versions of various SPARCL terms
are shown in Figure 5. 1 and Figure 5. 2. If a display object is represented by a circle in
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Figure 5. 1: 2D and 3D versions of SPARCL
terms.
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2D (i.e. a variable), then
it is represented by a
sphere in 3D (as shown
by the variable in
Figure 5. 1). Text display
objects (clause name, lit-
eral name, ur constants)
are represented in 3D by
extruded text; the charac-
ters in a text string
become 3D objects. If a
display object is repre-
sented by a
rectangle in
2D, then it is
represented by
a box in 3D
(as shown by
the partitioned
set term in
Figure 5. 1).
The represen-
tation of an N-
tuple in 3D
differs from
the 2D repre-
sentation in
that the 3D representation is built around a spiral. This spiral is seen in the example 3-
tuple shown in Figure 5. 2. We discuss this in more detail below. Abstract containment
between two terms is represented by concrete containment between the projection of
the models of the terms to the X-Y plane. Two- and three-dimensional examples of
the representation of containment is shown in Figure 5. 3. This shows a partitioned set
containing two parts, with one part containing two N-tuples. Each of these N-tuples
has as its “final” element a partitioned set containing two parts, where one of these
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Figure 5. 2: 2D and 3D versions of N-tuple and inten-
sional set terms.

 
Figure 5. 3: 2D and 3D representations of a partitioned set contain-
ing two parts, one of which contains two N-tuples.
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parts contains a
variable.

Four views of a
3D representation of
the ‘Union’/3 predi-
cate are shown in
Figure 5. 4. These
views are rendered
by POV-RAY. These
scenes are anti-
aliased, shaded, and
shadowed render-
ings.

 The hyperedges
are “biased” to the
right so that they
won’t be stacked up
in this view. Each
argument is outlined
by a thin rectangle.
This clause has a set
of two parts in the
first and second
arguments and a set
of three parts in the
third argument. In
the three-part parti-
tioned set, there is
an empty space in
the set (on the lower left of the set) where a fourth part would go. View (c) gives a
better idea of the shapes of the parts. They are boxes with open tops (as are the sets).
The simple lighting model used by this renderer doesn’t show these part boxes well in
the front view (a).

Two views of a 3D representation of the “homogeneous” clause for the ‘ID3
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(a)  (b)

(c)   (d)
Figure 5. 4: Four views of a 3D representation of the definition
of the ‘Union’/3 predicate.



Tree’/4 predicate are
shown in Figure 5. 5.
The ID3 implementa-
tion of which this is a
part is presented in
chapter 7. (This clause
is called “homoge-
neous” because it uses
a ‘Homogeneous
Examples’/3 literal as
opposed to the other
clause for ‘ID3 Tree’/4
shown in Figure 5. 13

and Figure 5. 14 that
uses a ‘Heterogeneous
Examples’/2 literal.)
This clause shows a
literal in its body
(where the ‘Union’/3
clause in Figure 5. 4

has an empty body),
two N-tuples, and sev-
eral variables. The two
N-tuples are a 2-tuple
(ordered pair) in the
third argument of the
clause and a 3-tuple
(ordered triple) in the
fourth argument the
clause. The literal name has a thin, light-colored back plate that helps the name stand
out by making it higher contrast. This is useful for since the literal “plate” is fairly
dark and does not contrast as strongly with the literal name.

Figure 5. 6 was rendered using the Apple Macintosh QuickDraw3D Simple

160

(a)

(b)
Figure 5. 5: Views (a) and (b) of a 3D concrete representation
of the “homogeneous” clause from the ‘ID3 Tree’/4 predicate
definition.



Viewer. There are various rendering prob-
lems with this view; aliasing (i.e. jagged
lines that should be smooth), “angular”
instead of smoothly curving hyperedges,
no shadows, and very simple surface tex-
ture modelling (although more complex
texture mapping is possible with this ren-
derer). Making these simplifications
allows for much faster rendering, so that
changes in views are immediate with very
little (or no) apparent time for making the
changes when running on an Apple Power
Macintosh 8500/120. Comparing this with
Figure 5. 5, one can see the advantages of
the anti-aliasing in the overall increased
legibility and the shadowing in better
visual definition of the geometry of the model. The drawback is that the POV-RAY

scenes each required about 15 minutes to render on the same machine that rendered
the scenes in Figure 5. 5 almost instantaneously.

The representation of text for QD3D POV-RAY is simplified by using only upper
case text, although SPARCL uses both cases and is actually case-sensitive. Making the
text both upper and lower case is conceptually easy to fix, but time-consuming. The
problem is that POV-RAY comes with a library of upper-case only character models.
We adapted these models for use in QD3D (which comes with no character model-
ling). To represent lower-case characters, we will need to create models for them. A
less tedious solution is available for QD3D: there is a fairly simple method for
generating character models from text strings using the Apple Macintosh QuickDraw
GX system. This system is not yet well integrated into the Macintosh and presents us
with other problems, however. Eventually, this is probably the approach we will take.
Thus, it’s not worth building our own hand-crafted lower-case representations.

The implementation of the 3D representation is incomplete in several respects:
certain elements of SPARCL are not representable (term tables, fact tables, and com-
ments), there is no representation for a group of clauses in the same “scene”, all text
is represented as upper-case (as discussed above) and the 3D representation is not
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Figure 5. 6: View of the QuickDraw 3D
concrete representation of the ‘ID3
Tree’/4 predicate’s “homogeneous”
clause.



interactive—the user cannot directly edit the display (although she can inspect the
representation by arbitrary changes of viewpoint). Comments present some interest-
ing possibilities. We have more places to put them in a 3D representation than in a 2D
one. The argument comments can be placed on the side of the clause box, making
them only visible to certain “oblique” views of the clause. The clause comment can
be placed on another side (such as the top) of the clause box, or on the back. There
could be two kinds of clause comments: summary comments and full comments. The
summary comments could be placed on the top side, thus easily viewed by an appro-
priate oblique view, which can include viewing the argument side and the top side.
The full comments can be placed on the back side of the clause box, keeping it out of
the way for general viewing of the clause. We expect to explore some of these possi-
bilities, as well as developing table representations and making the 3D representation
interactively editable, in future work on SPARCL.

Rendering

A 3D concrete representation is a rendering of a scene. The scene describes some
geometry and associates texture information with the surfaces of this geometry. The
rendering uses a lighting model of the scene (positioning and kinds of the lights) and
a viewing model (a “camera” pointed at some point in the scene) to produce a 2D
image for display. Thus, there are many variables to control in defining a 3D
representation, many more variables than are needed to define a 2D representation.
The rendering aspect of the representation can be (and probably should be) controlled
by the viewer, although the viewer should be given reasonable default behavior by the
rendering process. The interested reader should see [Foley et al. 1990] for a detailed
discussion of 3D rendering.

There are many different techniques for rendering a scene. Choosing a rendering
technique is one of the major challenges in providing a 3D representation. These
techniques vary greatly in their speed, in the quality of the image produced, in the
kinds of geometry, texturing, and lighting they handle. There is no best technique for
all rendering applications; there sometimes isn’t even an obviously best technique for
a particular application. The highest quality rendering is called “photo realistic” - it
looks just like a photograph of a real scene. This quality of rendering is still
unobtainable for scenes in general; but, for scenes which only use certain kinds of
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geometries and certain kinds of texturing, photo-realism is achievable.
The choice of rendering technique is dependent on performance requirements,

desired geometries, desired texturing, and desired lighting effects (shades or shadows,
diffuse and/or specular, reflection, refraction). The performance requirements need to
take into account whether the viewer has a movable point of view, or if a single point
of view on a scene is sufficient. Generally, applications which render images provide
a choice of techniques which differ primarily in their performance. This allows the
user to view many rough drafts of a scene quickly, then to very slowly generate a
high-quality final version.

This choice of rendering techniques is further complicated by the availability of
specialized hardware to speed up certain techniques. Thus, one’s choice of technique
is also dependent on the hardware platform for the programming system.

Ray tracing and radiosity are two of the most realistic techniques
[Foley et al. 1990]. These have different strengths and they are difficult to combine.
Ray tracing is good at shiny and transparent surfaces - reflection and refraction. Radi-
osity is good at diffuse lighting effects. Radiosity has the additional advantage of
allowing one to calculate the lighting effects independent of the observer’s point of
view. Thus, it lends itself to making many different views of the same scene. Radiosi-
ty is difficult to apply to general models (i.e. Constructive Solid Geometry (CSG)
models, and ones with curved surfaces other than a cylinder), while ray tracing works
well with CSG and a variety of curved surfaces (any surface described by a quadratic
implicit equation - e.g. cylinders, spheres, and cones). Ray tracing is generally easier
to implement than radiosity. Ray tracing is currently the photo-realistic rendering
technique most widely used.

Other, less realistic techniques include z-buffer and spanning scan-lines
[Foley et al. 1990]. The z-buffer technique is very popular because it is very fast. This
is frequently the technique which specialized graphics hardware supports. The
spanning scan-lines technique is less fast, but is a little more realistic. Both of these
techniques are widely used.

Our implementation of the 3D representation allows the user to choose between
three systems for rendering the 3D model of a SPARCL clause: POV-Ray, a freeware
omni-platform ray tracing and radiosity package with a very powerful modeling lan-
guage; OpenInventor [Wernecke 1994], a multi-platform, general 3D system origi-
nated by Silicon Graphics Inc. with a variety of rendering possibilities; and
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QuickDraw3D [Apple Computer, Inc. 1995], a multi-platform, general 3D system
originated by Apple Computer, Inc. that provides wireframe and simple shading ren-
dering. These three different systems are supported due to the development history of
SPARCL. POV-Ray was the only one of the three available when we began work on the
3D representation of SPARCL, so naturally it was adopted as the rendering system.
Later OpenInventor became available to the authors (on a Silicon Graphics ONYX
machine). This provided a great deal more flexibility, including the opportunity of
interacting with the representation, so we extended our rendering system choices to
include it. Finally, QD3D became available on the Apple  Macintosh. Since this ren-
dering system is also very flexible and the rest of the implementation of SPARCL is on
the Macintosh, we extended our rendering system choices again to include it.

Automated layout of SPARCL in three dimensions.

The 3D representation of SPARCL is particularly challenging because we fully
automate the modelling and layout of the concrete representation. The 3D concrete
representation is derived from the partial abstract visual representation (which is in
turn derived form the full abstract visual representation, which is maintained by
SPARCL’s editing system). The layout of the 3D representation is done in the same two
phases as for the layout of the 2D representation: the display objects other than the
hyperedges are modelled, then the hyperedges are modelled.

Using the containment relationship, non-hyperedge display objects can be thought
of as forming a tree. In modelling a display object in either two or three dimensions,
we first model its containment subtree of display objects. This gives the size of the
volume of space the object’s model must enclose, which in turn allows us to calculate
the geometry of the object. Part of the topology of an object’s model is a “hollow”
space to hold the subtree object models. We translate the subtree of object models
into this hollow space. We collect together the subtree models and the object’s model
into a single model that is used by the parent of that object. If an object may have an
indefinite number of children in the same “role” in the containment subtree, then
some “sibling layout” algorithm must be used for placing these children. The layout
of an object  type that has different “roles” for children is handled by a layout algo-
rithm specialized for that object type. For instance, a clause has three “roles” for its
non-hyperedge children: clause name, clause arguments, and clause literals. The lay-
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out for a clause makes one application of a sibling layout algorithm to the arguments
and another application to the literals, and then it places the argument model collec-
tion and the literal model collection within the clause model.

Sibling layout. There are several kinds of display objects that have multiple children:
a program (window) may contain multiple clauses, a partitioned set may have multi-
ple parts, a part of a partitioned set may have multiple members, an N-tuple has mul-
tiple elements, a clause may have multiple arguments or multiple literals, a literal
may have multiple arguments, an intensional set may have multiple literals. In 3D
layout, we use three different sibling layout algorithms. One is used for clause and lit-
eral arguments, another for N-tuple elements, and another for partitioned set parts,
partitioned set part members, and clause literals. For 2D layout, we use six sibling
layout algorithms: one is used for clause and literal arguments, another for N-tuple
elements, another for partitioned set parts, another for partitioned set part members
and clauses in a program window, another for clause literals, and another for term and
fact tables. These 2D layout algorithms are discussed in the SPARCL Display module
explanation in chapter 6 (“Implementation”).

(1) The sibling algorithm for arguments places the given argument models in
order in a vertical stack (i.e. along the y-axis, which is vertical when seen from the
default front view), with the first model at the top of the stack.

(2) The sibling algorithm for N-tuple elements places the given element models in
order in a spiral with arrows in between consecutive elements. Example three-dimen-
sional N-tuples are shown in Figure 5. 2 and inside the partitioned set of Figure 5. 3.
These are “short” spirals in that they only go around two- or three-fourths of one
“loop”. An example of a ten-element N-tuple is shown in Figure 5. 7. The spiral’s axis
is parallel to the Z-axis. The center view of Figure 5. 7 looks along this axis. The spiral
loosely outlines a cone, with the point of the cone being furthest away from the clause
base (and thus nearest the viewer in the default front view). The sides of the cone are
nearly parallel to its axis (i.e. it is almost a cylinder).  The first element is furthest
from the clause base (and thus nearest the viewer in the default front view). We
adopted the spiral layout to make the presentation of N-tuples compact in three
dimensions. The cone outline (as opposed to a cylindrical outline) was adopted to
make all of the elements of the N-tuple visible from the default front view. However,
this has not actually made much of a difference in practice. The visibility of the ele-
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ments of an N-tuple is highly dependent
on the distance of the viewpoint from
the N-tuple. If the viewpoint is close
enough to make ur terms legible (as in
Figure 5. 7), then the sightlines to the ele-
ments of the N-tuple pass inside the
“cone” of the N-tuple. The design of the
layout of N-tuples is an area that needs
much more research.

(3) The “compact rectilinear”
sibling algorithm is used for laying
out partitioned set parts, partitioned
set part members, and clause literals.
We give examples showing layouts
for five, six, and seven elements for
each of these three kinds of siblings
in Figure 5. 8, Figure 5. 9, and
Figure 5. 10. There is no attempt at
providing a layout that reflects a particular order of the models. This algorithm places
the given models in an array that when viewed from the default front view has the
elements in straight rows and columns, where the models are aligned horizontally (in
rows) by there “bottoms” (their smallest X values) and vertically (in columns) by
their “left sides” (their smallest Y values). This array is filled in in such a way that it
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Figure 5. 7: 2D representation of an 10-tuple and three views of a 3D representation of
that 10-tuple.

  
Figure 5. 8: 3D Layouts of 5, 6, and 7
terms in a part.

  
Figure 5. 9: 3D Layouts of 5, 6, and 7 parts
in a partitioned set:
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is always as near being a filled square of rows and columns as possible. The algo-
rithm for this places models in abstract positions that give the row and column for
each model, then translates the abstract position to concrete positions based on the
sizes of the models placed in the various rows and columns. It has been designed so
that more members can be added to a layout in such a way that the “compactness” of
the layout is always preserved but no members already placed need be moved. The
“next” abstract position for a model is defined by abstract_position/4 in Figure 5. 11.

The four cases defined in the abstract_position/4 predicate are: If the last member
in the array (RowIN,ColumnIN) was at the lower right corner (RowIN =:=
ColumnIN), then the array is square and the next member is placed in the leftmost
position of the next row. If the last member in the array is in the last row and the last
column (but the array isn’t square), then the next member goes to the top of the next
column. If the last member is in the last column but above the last row, then place the
next member under the last member. Finally, if the last member is in the last row but
before the last column, then
place the next member to
the right of the last member.
This gives the pattern shown
in Figure 5. 12. The first
member is placed at (1,1),
as shown. The “next” posi-
tion from (1,1) is (2,1) (i.e.
a query of
‘abstract_position(1,
1, R, C)’ binds R and C
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Figure 5. 10: 3D Layouts of 5, 6, and 7 literals in a clause (for predicate ‘Layout’/0).

abstract_position(RowIN, ColumnIN,
RowNEXT, ColumnNEXT) :-
          RowIN =:= ColumnIN
            -> RowNEXT is RowIN + 1,
               ColumnNEXT is 1
          ; RowIN =:= ColumnIN + 1
            -> RowNEXT is 1,
               ColumnNEXT is RowIN
          ; RowIN < ColumnIN
            -> RowNEXT is RowIN + 1,
               ColumnNEXT is ColumnIN
          ; RowIN > ColumnIN + 1
            -> RowNEXT is RowIN,
               ColumnNEXT is ColumnIN + 1.
Figure 5. 11: abstract_position/4 predicate for “next”
position calculation in compact rectilinear sibling
algorithm



such that ‘(R,C)=(2,1)’). Thus the cell (2,1) of Figure 5. 12 contains a ‘2’. This
placement algorithm guarantees that regardless of the number of members being
placed, the absolute difference in the number of columns and rows is never more than
one.

Tubes: 3D Connecting Lines.

As we discussed in  section 4 (“Visual Programming Design Elements”) of
chapter 3, there are three basic ways to show relationships in static nonlinear repre-
sentations. SPARCL uses all three, but heavily depends on connecting lines. SPARCL

uses “same text” to classify predicate names (clauses and literals), “same shape” or
“same texture” is to classify term
types (variables and constants),
containment to show elements in a
set, parts of a partitioning, and
literals in a clause, and connecting
lines to show term coreference (all
terms in the same hyperedge unify).

SPARCL employs several 3D
representation techniques in its rep-
resentations of connecting lines.
First, items connected by a line are
equivalent (i.e., they unify). There
may be many items that are intended
to unify with each other (in a textual language these items could be references to the
same variable name). SPARCL uses a hyperedge to connect these many items (a
hyperedge is an “edge” that connects more than two items). There may be several
hyperedges in a single scene, but generally there are fewer than 10. These hyperedges
have the same crossing problem common to connecting lines. In SPARCL, these
crossings are made less confusing in several ways. Hyperedges are depicted as
smoothly curving tubes which curve through all three dimensions. A tube is
composed of one or more segments. The segments join each other smoothly (their
tangent lines are identical at the join point -- the geometry of these tubes is discussed
in more detail below). Each hyperedge is a different color, i.e., all of the segments of
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Figure 5. 12: Order of placement for com-
pact rectilinear sibling layout algorithm.
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a hyperedge are the same color, segments of different hyperedges are different colors.
Hyperedge tubes usually don’t intersect. Generally the tubes rise to different heights
above the basic plane of the “program”. Viewed from some particular angle, such as
“in front of” the program, these tubes will appear to cross each other. But, if the
viewer changes her view point the crossings will change. The tubes are shaded and
shine according to the lighting, and they cast shadows on each other and the other
program elements. In the following discussion we differentiate between crossings and
intersections: crossings are an artefact of the view used to render a clause, where
intersections are intrinsic to the geometry of the model and thus they exist indepen-
dent of the particular view used to render a clause.

Intersections. There are three different severities of intersections between hyper-
edges: centerline intersections are the most severe where the centerlines of two differ-
ent hyperedges intersect; partial centerline intersections where the centerline of a
hyperedge passes through another hyperedge without intersecting that other
hyperedge’s centerline; and marginal intersections where the surfaces of two hyper-
edges intersect without either of their centerlines intersecting the surface of the other
hyperedge. The centerline intersections are potentially the most confusing since there
is no vantage point from which the hyperedges appear separated. The marginal inter-
sections are barely noticeable as intersections and thus cause little confusion. The par-
tial centerline intersections are in between these other two kinds in the degree to
which they are visually confusing. There is a partial centerline intersections in the
‘Union’/3 clause of Figure 5. 4. It is most easily seen in views (c) and (d). It’s in front
of the third argument of the clause. There are two marginal intersections in the ‘ID3
Tree’/4 clause of Figure 5. 14 and Figure 5. 15. One of them is in front of the third
argument of the ‘Select Attribute’/5 literal. The other one is in front of the top part of
the partitioned set in the first argument of the clause. None of these intersections is
particularly confusing.

We have not determined a statistical profile for the prevalence of intersections.
However, we propose that the higher the ratio of hyperedges to graphical token count
(i.e. the higher the “density” of hyperedges), the greater the likelihood of intersec-
tions. We define graphical token counts for SPARCL in chapter 8 (“Objective Analy-
sis”). This is based on the observations that the hyperedge endpoints are confined to
the volume of space occupied by the clause and that the volume of space occupied by
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a clause is roughly proportional to the number of graphical tokens in the clause. The
token count for ‘Union’/3 is 17, which gives us a ratio of hyperedges to token count
of 3/17, or about 0.18. The hyperedge to token count ratio for the ‘ID3 Tree’/4 “heter-
ogeneous” clause is 8/54, which is about 0.15. This ratio for the ‘ID3 Tree’/4 “homo-
geneous” clause is 4/27, which is equal to the “heterogeneous” clause ratio (about
0.15). This ratio must always be between 0 and 0.5: there must always be a few more
tokens than twice the number of hyperedges. A refinement of this metric is to
“weight” the number of hyperedges more heavily: the more hyperedges there are, the
more likely that there will be intersections between them. For instance, the adjusted
hyperedge-to-size metric P could be:

where H is the number of hyperedges in the clause and S is the graphical token

count “size” of the clause. (The H+1 avoids problems with log2 of 0). The adjusted

values are: ‘Union’/3 = 0.857; heterogeneous clause = 0.469; and homogeneous
clause = 0.344. These adjusted values might arguably be in better agreement with the
observed severity of intersections of these clauses: we claim that the two marginal
intersections of the heterogeneous clause are less an impediment to readability than
the partial centerline intersection of the ‘Union’/3 clause. We have not attempted a
general analysis of all of our example SPARCL programs to analyze this metric, so we
do not have any data on common values to compare with the three values reported
here. This is an area for further study.

Also, it is apparent that the more problematic the kind of intersection is the less
likely it is (i.e. centerline intersections are less likely than partial centerline intersec-
tions, which are less likely than marginal intersections).

Crossings. Figure 5. 13 shows a 2D representation of another clause of our SPARCL

program for implementing the ID3 machine learning algorithm [Quinlan 1982]. This
clause is shown in Figure 7. 3  of our discussion of the entire program in chapter 7.
This is the “heterogeneous” clause of the ‘ID3 Tree’/4 predicate definition. (This
clause is called “heterogeneous” because it uses a ‘Heterogeneous Examples’/2 literal
as opposed to the other clause for ‘ID3 Tree’/4 shown in Figure 5. 5 that uses a
‘Homogeneous Examples’/3 literal.) Understanding the ‘ID3 Tree’/4 predicate is not
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important here; we are only
interested in noting the
complexity of the line crossings.
Figure 5. 14 and Figure 5. 15 show
two views of a 3D concrete rep-
resentation (for POV-RAY) of
this “heterogeneous” clause.

There are several aspects of
SPARCL’s approach that help the
viewer comprehend what items
are equivalent in spite of the line
crossings. The main problem is
to easily identify which apparent
intersections of segments are
accidental crossings and which
are joins. The common colors
(obviously, not visible here in
black and white) are a simple
and effective way to see that two
segments do or do not belong to
the same hyperedge. The
smooth joins within a
hyperedge help the viewer to
distinguish a crossing that is
“accidental” as most accidental
crossing are obviously not
smooth. The shading,
highlights, and shadows all
help the viewer discern that two
segments accidentally cross
since they are not in the same
location of the scene. The
highlights and shading are
different due to a different
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Figure 5. 13: 2D Representation of the “heteroge-
neous” clause of the ‘ID3 Tree’/4 predicate defini-
tion.

Figure 5. 14: Full view of a 3D concrete representa-
tion of the ‘ID3 Tree’/4 “heterogeneous” clause.
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viewing angle. If
the viewer moves
her viewpoint,
then many of the
accidental
crossings will
change relative
position. Also,
the view
dependent
lighting features
(highlights) will
also change their
relative position.
The texturing of
the segments can help further if they are reflective or translucent. If reflective, then
one of them may reflect the other in its surface. If translucent, then the one passing
behind the other will be dimly visible through the front one.

These aspects of a 3D scene with tubes for connections provide the viewer with
many different cues for interpreting the scene. These cues are all ones that people are
used to interpreting in dealing with real scenes and, consequently, require no
conscious effort on the part of the viewer to utilize them even without explanation.
Thus, a very complex collection of hyperedges can be understood more readily in 3D
than in 2D.

Since line crossings are not as devastating to comprehension in 3D as they are in
2D, graph layout programs can allow more crossings to occur as a trade-off for other
improvements (such as better node placement, or a simpler or faster layout
algorithm).

Bezier Tubes.

The segments of a hyperedge are a “Bezier tube”. The 3D model of a Bezier tube
is a pair of bicubic Bezier patches [Foley et al. 1990] (for convenience called “top”
and “bottom”). A bicubic Bezier patch has 16 “control points” which determine the
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Figure 5. 15: Close view of ‘ID3 Tree’/4 “heterogeneous” clause.



shape of the patch. This can be seen in Figure 5. 16. If these control points are
arranged in a four by four matrix, then the points in the outer rows and columns of
this matrix correspond to the four outer edges of the patch: e.g., the four control
points in the top row determine the shape of a Bezier curve which is an edge of the
patch. The tube is constructed by having the top and bottom patch have the same
control points in their outer columns: column 1 of the top patch’s control matrix
equals column 1 of the bottom patch’s control matrix. The bottom patch’s “interior”
control points are a special “inversion” of the interior control points of the top patch.

The model for a Bezier tube is generated from a cubic Bezier space curve. The
cubic Bezier space curve uses only four control points, one at each end and two in the
middle. The Bezier curve is defined to start and end at end control points, and to
smoothly approximate the middle control points. This provides a simple way to
design smoothly curving lines. With careful choice of control point values, Bezier
curves can be joined (i.e. share an endpoint) such that they have identical tangent
lines at the join point.

A hyperedge connects N items (each item has an attachment point). The layout of
the segments which make the
hyperedge is a recursive process,
starting with the set of connection
points being the set of all attachment
points. Each segment is a Bezier tube
made of two patches. There is one
segment in a hyperedge which con-
nects two items, three segments to
connect three items, five segments to
connect four items. In general, there
are 2(N - 2)+1 segments in a hyper-
edge which joins N items. The hyper-
edges are modeled in the order based
on their minimum connection point
Z-dimension distance from the clause
base. The hyperedge with the least
distance from the base is modeled
first. The proposed join plane moves
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Figure 5. 16: Patch control matrix and Bezier
control points.
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out away from the previous actual join plane base by a fixed minimum. The actual
join plane is the plane further from the clause between the proposed join plane and
the plane a default fixed distance further away from the clause base than the “highest”
point the hyperedge must clear. The terms being connected by a hyperedge have a
minimal common containing term. This common containing term defines a subtree of
the containment tree. For a term being connected by the hyperedge, that term has a
“path” of containing terms within the hyperedge subtree, not including the root com-
mon containing term. The highest point the hyperedge must clear is the highest point
among the models for the terms on the hyperedge containing term paths. For exam-
ple, suppose two variables are being connected where one variable A is in an N-tuple
B in a part C of a partitioned set D in an argument E of a clause X and the other vari-
able F is in a part G of a partitioned set H in a part I of a partitioned set J of an argu-
ment K of a literal L in the same clause X. The two variables A and F have hyperedge
containment paths: A B C D E and F G H I J K L. The two paths do not contain the
clause X, since X contains the hyperedge. The highest point the hyperedge must clear
is the highest point among the models for (B C D E G H I J K L). This “clearance”
analysis provides a simple way to minimize irrelevant intersections of the segments of
the hyperedge with the models of terms (e.g. a hyperedge going through the wall of a
partitioned set and a part of that set to get to a variable inside the part, instead of
going “over” that wall). The entire path must be considered rather than the term high-
est up the path because the fact that a term T abstractly contains another term S does
not imply that the model for T extends further away from the clause base than the
model for S. (It does imply that the projection of the model for T to the X-Y plane
contains the projection of the model for S in that plane.)

Determining Bezier space curves for a set of connection points. First, find the two
connection points closest together, and calculate the point which is the centroid of the
remaining N-2 connection points. Calculate a “join” point which is the centroid of the
two selected connection points and the N-2-points centroid. Calculate the centroid of
the join point and the two selected connection points. This last centroid is the
‘JoinInterior’ point. For each selected connection point, if that connection point was a
previous join point then use the associated JoinFollowing point as the
ConnectionInterior point, otherwise calculate the average of the (current) join point
and that connection point as the ConnectionInterior point. Create two bezier curves,
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joining each of the two points to the join point. The control points of the curve for a
particular connection point are: the connection point, the ConnectionInterior point,
the JoinInterior point, and the join point. The two curves have the same third and
fourth control points. This ensures that the two curves will join tangentially at the join
point. Finally, calculate a JoinFollowing point which is the JoinInterior point
“mirrored” across the join point. This JoinFollowing point is used when defining the
curve which starts at the join point. Add the join point (its JoinFollowing point as an
annotation) to the set of points to be combined in the hyperedge. Recursively invoke
the segment curve generating process on this new set.

This procedure can be described symbolically as follows: Let P be a set of con-
nection points. Let CLOSEST(X) be a function which returns a pair set of points
which are two points in the set of points X which are closest together. Let CEN-
TROID(X) be a function which returns the point which is the centroid (average) of
the points in X. Let CARDINALITY(X) be a function which returns the cardinality of
the set X. Let THIRDS(X) be a function which returns a tuple of four points, <P1, T1,
T2, P2>, where P = {P1, P2} and T1 and T2 divide the line between P1 and P2 into
thirds. Let JOINPLANESHIFT(V) be a function which returns V with its z compo-
nent set to JOINPLANE (some value input to this procedure). Let FOLLOWING-
MAP be a set of ordered pairs (an association list) with first element a point in P and
the second element the “following” point for P. Not all points in P have associations
in FOLLOWINGMAP. It is initially empty.

The function CURVES(JOINPLANE, X, FOLLOWINGMAP) returns a set of
Bezier space curves (specified by four-tuples) given a list of points X and a FOL-
LOWINGMAP. The curves with join plane JOINPLANE for a set of connection
points P is found by CURVES(JOINPLANE, P, {}).

If CARDINALITY(P) = 2, then do: If both points in P = {P1, P2} have following
points in FOLLOWINGMAP (<P1, F1> and <P2, F2>) then the Bezier space curve is
<P1, F1, F2, P2>. Else, if only one point has a following point (<P1, F1>), then let M
= CENTROID({F1, P2}), and CURVES = {<P1, F1, M, P2>}. Else, neither point has
a following point, so let <P1, T1, T2, P2> = THIRDS(P), J1 = JOINPLANE-
SHIFT(T1), and J2 = JOINPLANESHIFT(T2). The Bezier space curve result is
CURVES = {<P1, J1, J2, P2>}.

When CARDINALITY(P) > 2, then do: Let A = {A1, A2} = CLOSEST(P), P’ =
P - A, C = CENTROID(P’), and M = JOINPLANESHIFT(CENTROID(A ∪ {C})).
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The result of the rest of the procedure is to define a Bezier space curve that connects
A1 and M and another one which connects A2 and M. Also, a “following point” is
calculated for M and added to the FOLLOWINGMAP. To connect A1 to M: Either
<A1, F1> is in FOLLOWINGMAP, or else let F1 = CENTROID({A1, M}). The
curve from A1 to M is CURVE1 = <A1, F1, C, M>. Similarly, F2 is determined for
A2 and M, and the curve for A2 to M is CURVE2 = <A2, F2, C, M>. The “following
point” for M is F = (M + (M - C)). The resulting set is:

CURVES = {CURVE1, CURVE2}
∪ CURVES(JOINPLANE,

P’ ∪ {M},
(FOLLOWINGMAP

- {<A1, F1>, <A2, F2>})
∪ {<M, F>}).

The new connection point set (P’ ∪ {M}) has one fewer points in it than does P: P
minus the two attachment points, plus the new join point M. Thus, this recursion will
eventually halt. The JoinFollowing point (F) in the above construction ensures that
the segment “leaving” from the join point will join tangentially with the segments
“entering” the join point.

Calculating the control points of the Bezier patches for a Bezier tube. The Bezier
tube for a given a cubic Bezier space curve has that curve as its (approximate) axis.
The simplest way to model this is to “sweep” a circle along the curve, with the center
of the circle following the curve and the plane of the circle always perpendicular to
the tangent of the curve. The modeling system we used does not have the capability
of sweeping a 2D figure along a Bezier space curve, so we approximate this effect by
specify two Bezier patches as described earlier, one for the “top” half of the tube and
the other for the “bottom” half of the tube. The Bezier patch approach can be prefera-
ble to the sweep approach when both are available since the Bezier patches are usual-
ly faster to render than the sweep.

Figure 5. 16 gives an indication of the setting of the patch control points. The “top”
patch control points are placed at a fixed offset distance from the curve in certain
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directions. This fixed offset distance is approximately the radius of the Bezier tube.
At the endpoints, the patch control point’s offset direction is perpendicular to the
curve. For an interior control point, the offset direction is halfway between the
directions toward the two adjacent control points. Patch control points are placed at
the offset distance in both the positive and negative offset directions. Also, an “up”
offset direction is determined at each control point, and two more control points are
placed, one each “up” from the first two offset control points. This gives four control
points in the “top” patch at each control point of the original curve. Care must be
taken in placing the patch’s control points in the appropriate columns and rows of the
patch control matrix to create a smooth “half tube” appearance. If these control points
are placed in the wrong parts of the patch’s control matrix the surface becomes
twisted. The “bottom” patch’s control points are generated from the “top” patch’s
control points. The exterior columns are the same in both patches. The two “inside”
columns of the “bottom” patch are offset twice the negative of the “up” direction
from the two inside columns of the “top” patch.

Discussion

In this section we review the major points presented in this chapter and offer some
assessments of the 3D representation effort.

Summary. The 3D designs of most of the concrete representations of the display
objects in the full, abstract visual representation of SPARCL are simple extensions of
their 2D designs. The notable exception to this is the representation of N-tuples. In
3D the representation is built around a spiral (or more accurately a ziggurat), whereas
it is a horizontal sequence in the 2D representation. We showed several views of the
3D representations of three clauses (the clauses defining ‘Union’/3 and ‘ID3 Tree’/4).
Certain elements of SPARCL are not currently representable (term tables, fact tables,
and comments), there is no representation for a group of clauses in the same “scene”,
all text is represented as upper-case and the 3D representation is not interactive. We
expect to explore some of the possibilities for representing comments, as well as
developing table representations and making the 3D representation interactively
editable, in future work on SPARCL.

There are many approaches to modelling and rendering 3D scenes. Our imple-
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mentation of the 3D representation allows the user to choose between three systems
for rendering the 3D model of a SPARCL clause: POV-Ray; OpenInventor
[Wernecke 1994], and QuickDraw3D [Apple Computer, Inc. 1995].  The POV-Ray
system was used for most of the figures of this chapter since it produces a high qual-
ity rendering, but it is too slow for interactive viewing. The OpenInventor system pro-
duces fairly high-quality renderings that can be used interactively (on SGI’s multi-
processor Onyx and Challenge systems). However, it was awkward for us to use since
it only runs on Silicon Graphics systems, and the rest of our tools are on the Apple
Macintosh. The QuickDraw3D system works well for SPARCL since SPARCL is imple-
mented on the Apple Macintosh and QD3D is a full-featured 3D system native to the
Macintosh that is intended for interactive 3D viewing and editing. It provides mini-
mally acceptable rendering, but it is fast enough that a user can change views of a
clause in real time (on an Apple Macintosh 8500/120 with 32 Mbytes of RAM).

The 3D representation of SPARCL is particularly challenging because we fully
automate the modelling and layout of the concrete representation. The 3D concrete
representation is derived from the partial abstract visual representation (which is in
turn derived form the full abstract visual representation, which is maintained by
SPARCL’s editing system). The layout of the 3D representation is done in the same two
phases as for the layout of the 2D representation: the display objects other than the
hyperedges are modelled, then the hyperedges are modelled. The strong similarity in
approaches to automated layout for 2D and 3D representations should make it easier
for us to combine these approaches. Such a combination would yield an incrementally
updated layout for the 3D representation (such as is currently implemented for the 2D
representation). This is essential for interactive editing of the 3D representation.

Two major aspects of the automated layout of the 3D representation are the layout
of “siblings” within a container and using Bézier tubes for hyperedges.  The sibling
layout algorithms implement a few different styles, each designed with an eye toward
minimizing the effect of incremental changes.

Hyperedges are depicted as smoothly curving tubes which curve through all three
dimensions. A tube is composed of one or more segments. The segments join each
other smoothly. Each hyperedge is a different color. Hyperedge tubes can intersect in
one of three ways: centerline intersection (the most confusing), partial centerline
intersection, and marginal intersection (which causes little confusion). The frequency
of these intersections is roughly proportional to the ratio of hyperedges to graphic
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token count of the clause and is lower for the more confusing kinds of intersections.
In any event, the frequency of intersections is low. We reported this ratio for the three
example clauses presented in this chapter, but we have not done a more general study
of this hyperedge-to-size metric, but such a study is certainly a possibility for the
future. The tubes rise to different heights (join planes) above the basic plane of the
“clause”. Viewed from some particular angle, such as “in front of” the program, these
tubes will appear to cross each other. But, if the viewer changes her view point the
crossings will change, helping the viewer to understand the layout of the tubes. Other
visual aids to understanding the layout of the tubes include shading, highlights, and
shadows.

The geometry of the segment of a hyperedge tube is similar to that resulting from
sweeping a circle along a Bézier space curve, where the circle is centered on the
curve and the plane of the circle is kept perpendicular to the tangent of the curve at
the point of intersection between the curve and the plane of the circle. The actual con-
struction of the model uses Bézier patches. There are relatively complex algorithms
for placing the control points of the underlying Bézier space curve and using these to
generate the Bézier patch control points. The placement of the control points of the
underlying Bézier space curve for a hyperedge segment relies in part on the determi-
nation of the join plane for that hyperedge. Calculating the join plane requires analyz-
ing certain of the models of the terms that “abstractly” contain the terms being con-
nected by the hyperedge. This is necessary to avoid having a segment of the hyper-
edge pass through the model of one of these abstractly-containing terms.

Assessment. In our work on 3D representations for SPARCL we have succeeded in
solving various problems in the design of such representations, particularly in the
development of approaches to automated layout in 3D. The hyperedge representation
is generally satisfying excepting the “scale” problem discussed below. We simplified
the layout problem by making the layout of a hyperedge largely independent of the
layout of any other hyperedge (with the exception of the join plane “incrementing”).
We speculated that there is enough “room” in three dimensions that it would be rela-
tively rare that two hyperedges would have an intersection. Since actually analyzing
for intersections and adjusting to avoid them would make the layout of hyperedges
much more complicated, we felt the rare intersection would be acceptable. This spec-
ulation seems to have proved true. We have only occasionally seen intersections in
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the 3D representations of clauses, as we had expected. It was necessary to “bias” the
layout of hyperedges to avoid having them all lined up, one over the other, in the
default front view. It is possible to easily understand very complex groupings of
hyperedges in 3D that are very hard to understand in 2D. This comparative ease of
understanding frequently holds in the default front view, but when it doesn’t, one can
easily view the hyperedges from another vantage point that does make the relation-
ships depicted by the hyperedge models clear.

The 3D representation we have presented in this chapter is not as successful as we
had hoped. It is not particularly easy to read. There are difficulties in deciding how to
size the models for the various terms, particularly hyperedges and partitioned sets.
The hyperedges need to be thicker when they are longer as can be seen comparing
Figure 5. 4, Figure 5. 5,  and Figure 5. 14. The hyperedge models in these three figures
are all the same radius. They are somewhat too fat in Figure 5. 4, unnecessarily
obscuring parts of the clause and each other. They are better in Figure 5. 5, although
perhaps still somewhat fatter than they need to be (and thus tending to a little more
visual interference than necessary). They are a good thickness in Figure 5. 14. The par-
titioned sets and partitioned set parts also have a problem with the thickness of the
walls of the open-top boxes modelling these terms, the overall size of these boxes,
and the size of the clause in which they are contained. As the overall box size or
clause size increase one wants to have the thicknesses of these boxes increase. How-
ever, having these changing model sizes makes viewing multiple clauses more awk-
ward in that the models for the same types of terms in these clauses have different
appearances (at least different proportions).

We have had little experience with multiple clause views in three dimensions, so
the value of that approach largely remains to be investigated.

In this chapter we presented our approach to three-dimensional representation in
SPARCL: the 3D representation in general of SPARCL, our approach to rendering 3D
models, the automated layout of 3D models of the abstract representation of a SPARCL

program, and a detailed presentation of the modelling of hyperedges. We have made
significant progress in starting the investigation of the 3D representation of SPARCL

and thus the 3D representation portion of the feasibility part of our initial hypothesis.
At this point, the feasibility of a usable 3D representation for visual logic program-
ming with partitioned sets is uncertain. Nonetheless, we believe that if the various
issues discussed above are addressed then this approach will prove very satisfying for
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developing programs.
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Chapter 6
Implementation

SPARCL has several major parts to its implementation: the interpreter, the display
system, and the editing system. Figure 6. 1 shows a diagram of the relationships
between these subsystems, and lists the major modules implementing each of the sub-
systems. The interpreter interprets an internal form of SPARCL. The editing system
handles all of the interactions with the user and it maintains the canonical display rep-
resentation of the program. The display system generates a concrete representation
from the canonical display representation. To evaluate a query, the editing system
converts the canonical display representation into the internal form, invokes the inter-
preter, converts the resulting internal form back to the canonical display representa-
tion, and finally uses the display system to present this result to the user.

The entire system is implemented in Logic Programming Associates, Ltd.
MACPROLOG32 and runs on Apple Macintosh computers running system 7.0 or
greater. Although MacProlog32 does not explicitly support “modules”, we have orga-
nized our implementation of SPARCL very similarly to how we would have done it if
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Figure 6. 1: Diagram of major subsystems of SPARCL, with selected modules imple-
menting those subsystems.
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modules had been available. Thus, we speak of SPARCL as being implemented by a
collection of modules. There are 62 of these modules, all but one (Browser) is imple-
mented by us. These are listed alphabetically in Figure 6. 2. Those modules that have
names starting with “SPARCL” are specific to the implementation of SPARCL, the
other modules are of more general use. We show important modules for the major
subsystems in the implementation diagram in Figure 6. 1.

The main module for the SPARCL application is SPARCL Dev Env. The editing
system’s main modules are: SPARCL DE Program, which handles interactions with
the user; and, SPARCL DE Create Object, SPARCL DE Edit Object, and SPARCL
Factor Table, which together manage the creation and editing of SPARCL programs.
The display system’s main modules are: SPARCL Display, which presents the two-di-
mensional representation of SPARCL programs; and, SPARCL to 3D Model, which cre-
ates a file that defines the three-dimensional representation of SPARCL programs. The
interpreter’s main modules are: SPARCL Interpreter, which interprets SPARCL

programs; and, SPARCL Interp Unify, which implements the partitioned set unifica-
tion algorithm.

In the rest of this chapter we discuss each of the major subsystems (editing sys-
tem, display system, and interpreter) of SPARCL in detail. Various aspects of the imple-
mentation of SPARCL are presented in the course of discussing these subsystems. The
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Figure 6. 2: Modules used in the implementation of SPARCL.



editing system section includes: the interaction style of SPARCL, which relies heavily
on popup menus ( as opposed to other common interaction techniques such as: com-
mand lines, tool palettes, or pull-down menus); the four internal program
representations used by SPARCL; the use of program transformation between “higher”
and “lower” levels of these representations; and, the SPARCL integrated development
environment (IDE) database facility with its support of “undo” using checkpoint and
rollback services. The display system section includes: incremental layout; two-di-
mensional sibling layout algorithms; two-dimensional hyperedge layout; organizing
the program window picture database for rapid searching; and, writing 3D model files
for the three different rendering systems. The interpreter section includes: details of
the implementation of “solving” a goal; details of the implementation of the unifica-
tion algorithm presented in chapter 4 (“Partitioned Set Unification”).

The Editing System.

The “editing system” refers to all of the services of SPARCL except the program
interpreter and the program representation display. It provides the program develop-
ment environment, it manages the interactions with the user, maintains the canonical
visual program representation, and provides various tools to aid in developing and
maintaining SPARCL programs. The editing system also provides the interaction log-
ging, the integrated scripting/tutorial facility, and various interaction log analysis
tools. The SPARCL Dev Env module pulls together all of the services of SPARCL. The
non-editing system services (program interpretation and display) are accessed through
SPARCL DE Program.

The editing system implements the structured semantic editing approach we dis-
cussed in chapter 3 (“Design Elements”). There are two kinds of interactions: through
the menus on the main menu bar or through the program window object popup
menus. Examples of these interactions are given in appendix 1 (“Tutorial Introduction
to SPARCL”).

The menus on the main menu bar are: ‘File’, ‘Edit’, ‘Tools’, and ‘Windows’. (The
first two are standard menu names used in all Macintosh applications, and the other
two are also very common.) The ‘File’ menu provides services for creating, opening,
saving, and closing evaluable programs, term set programs, and projects (projects are
collections of programs). Other system services are also on this menu, such as record-
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ing a system comment (for the SPARCL developer to read), setting and saving
preferences, invoking the tutorial system or the help system, and quitting SPARCL. The
‘Edit’ menu provides the standard copy, cut, paste, clear operations for both text and
program display objects. The ‘Tools’ menu provides some SPARCL program analysis
tools such as size measurement and program overview graph generation, and the
interaction log analysis tools. The ‘Windows’ menu provides access to the windows
for all of the programs that have been opened (the window for a program may be
invisible, in which case the menu is the primary way to make it visible).

The program window object popup menus are the major way to edit a program
and they enforce the semantic-structured editing paradigm. When the user depresses
the mouse button, the system pops up a menu at the cursor position. There are many
different popup menus possible, the one popped up depends on the type of smallest
(in area) object beneath the cursor when the mouse button was depressed. The options
in the popup menu are the operations that the user may do to the associated display
object. Options that are not meaningful in the current state of the system are grayed
out (and unavailable as choices). If there is no object beneath the cursor (i.e. the cur-
sor is over the background of the window), then the associated display object is the
program for that window. The options in a popup menu are either to modify the asso-
ciated object, to select it, or to view a related object. The possible modifications are
semantic, not representational. (One exception to this is that the user may explicitly
position a clause in the program window.)  For instance, the popup menu for an argu-
ment-type object supports inserting a new term in the argument or creating a com-
ment for the argument. The system decides where the new term or comment goes in
the argument representation and how to adjust the argument representation to allow
for the change. The popup menu for an argument does not support explicit control of
the appearance of the argument.

A module dependency graph of selected modules used by SPARCL Dev Env is
shown in Figure 6. 3. In the module dependency graphs shown in this chapter, each
node represents a module and if two modules are connected by an edge, then the
module to the left “depends on” the module to the right. A module X depends on
another module Y if there is at least one clause in X that has a literal in its body that
references a predicate defined in Y. This is a logic programming version of a “call”
graph. In Figure 6. 3, SPARCL Dev Env uses all of the other modules in the graph and
SPARCL DE Program uses SPARCL DE Edit Object, SPARCL Interaction Log, and
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Picture DB. There are many more modules used by the modules in Figure 6. 3 than are
shown in figure. We discuss some of these additional modules and dependencies later
in this chapter.

SPARCL Dev Env. The bulk of the implementation of SPARCL is accessed through
SPARCL DE Program. We will postpone discussion of those modules in Figure 6. 3

that are also depended on by  SPARCL DE Program to our discussion of the SPARCL
DE Program module. These postponed modules are SPARCL DE Edit Object,
SPARCL Interaction Log, and Picture
DB. The other modules of the depen-
dency graph for SPARCL Dev Env in
Figure 6. 3 implement SPARCL program
analysis tools (SPARCL Halstead and
Display Graph), interaction log analysis
(SPARCL Log Analysis), an interactive
tutorial scripting system (SPARCL
Script), and a help system (Browser).
The SPARCL Halstead module imple-
ments the software measurement tools
for SPARCL. Display Graph is a general
purpose module we developed for dis-
playing directed graphs. It was used to
generate the display of the module-use
graph in Figure 6. 3. The program analy-
sis it supports in SPARCL is in displaying
predicate use (“call”) graphs for SPARCL

procedures. The SPARCL Log Analysis
module implements tools for reading,
analyzing, and reporting on SPARCL inter-
action logs and system comment files.
We use the Browser module (provided
with MACPROLOG32) to provide conve-
nient access to “static” information about
SPARCL, a simple help system. The Pic-
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Figure 6. 3: Selected modules used by
SPARCL Dev Env.
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ture DB module
implements a picture data-
base for each program win-
dow in the SPARCL environ-
ment. This picture database
is used when the mouse
button is depressed to rap-
idly determine which dis-
play object is the smallest
display object beneath the
cursor.

SPARCL DE Program. A
simplified dependency
graph for the modules used
by SPARCL DE Program
is shown in Figure 6. 4. The
SPARCL DE Program
module coordinates the
major services of the
SPARCL integrated develop-
ment environment (IDE);
the creation and modifica-
tion of program definitions
(using SPARCL DE Factor
Table, SPARCL DE Edit
Object, and SPARCL DE
Create Object), the inter-
pretation of programs
(using SPARCL Inter-
preter), the display of pro-
grams (using SPARCL Dis-
play (not shown) and SPARCL to 3D Model), the maintenance of the program picture
database (using SPARCL Picture DB and Picture DB), and converting between pro-
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Figure 6. 4: Dependency graph for modules used by
SPARCL DE Program.
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gram representations (SPARCL Visual Transform and SPARCL Trans Disp Obj).

Program representations. There are four program representations used internally by
SPARCL. The primary representation is a collection of “display objects”. This is a
geometry-independent definition of the visual representation of a SPARCL program, the
“full, abstract” representation. The geometry (and other modelling information such
as color and point-of-view) is added when a display mechanism processes the display
objects to create a displayable representation. The SPARCL Display implements the
predicates for creating a two-dimensional representation, and SPARCL to 3D Model
implements the predicates for creating a three-dimensional representation. These two-
and three-dimensional representations are not included among the four “internal” rep-
resentations since SPARCL does not “read” them. SPARCL does use the two-dimensional
representation to guide interactions with the user; that is, the user indicates what
object she wants to work with by putting the mouse cursor over the two-dimensional
representation of that object. We expect eventually to implement a similar use of the
three-dimensional representation.

There is a simplified form of the full abstract representation. This simplified
abstract representation is used by SPARCL to 3D Model instead of the full abstract
representation. The SPARCL Trans Disp Obj module implements the translation from
the full abstract representation to the simplified abstract representation.

The other two forms of SPARCL programs are the internal linear representation and
the readable linear representation. The internal linear representation is used by the
SPARCL Interpreter module; this is the form of a program that the interpreter evalu-
ates. The readable linear representation is a simple syntactic variation on the internal
linear representation that makes the linear representation a little easier for a person to
read and write. The SPARCL Visual Transform module implements predicates for
converting the internal linear representation of SPARCL (as used by the interpreter) into
the full abstract representation. The internal linear representation and the full abstract
representation are not semantically identical (i.e. they do not differ merely in syntax).
The full abstract representation involves concepts that are not present in the internal
linear form. Thus, converting between the internal linear representation and the full
abstract representation involves program transformations. The internal linear repre-
sentation does not have term tables and it does not have explicit coreference links.
The transformation between these two representations creates semantically equivalent
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programs, although the results of evaluating the two representations (if there were an
interpreter for the full abstract representation) could differ in the presence of term
tables versus equivalently structured sets.

Of these four representations, two are stored (using the SPARCL DE Database
module) so that they are available across user interactions: the full abstract represen-
tation and the internal linear representation. (The concrete display representations are
also available across user interactions.)

SPARCL DE Database. Figure 6. 12 shows SPARCL DE Database as one of the mod-
ules on which SPARCL Display depends. The SPARCL DE Database module is also
used by the three main modules of Figure 6. 5. We have left it out of some dependency
graphs (such as Figure 6. 5) to make these graphs easier to read. This SPARCL DE
Database module manages most of the data that must be remembered/stored across
user interactions (this includes data that must be remembered across invocations of
the SPARCL application) excepting “file” data such as saved SPARCL programs, interac-
tion logs, and system comments, and “picture” data that is attached to the windows in
which the pictures reside. Because most modules use some cross-interaction data,
most modules use SPARCL DE Database.

SPARCL DE Database stores data with two mechanisms. One is “direct”; the
information being stored is “asserted” in special dynamic clauses using the PROLOG

assert/1 built-in. For instance, the display object definitions are stored in
‘vpsl$object’/3 clauses. (“vpsl” is a vestige of an earlier version of the SPARCL system;
it stands for Visual Partition Structured Logic). The other is as “preferences”; the
information is stored using the Preference Utilities module so that it can be saved and
restored across invocations of SPARCL.

Some of the directly stored data is registered with the checkpoint facility, which is
implemented in  SPARCL DE Database. This provides a general mechanism to
restore the state of the database to an earlier state, for the checkpointed part of the
database. The checkpoint facility is used to implement the “undo” service. Each user
interaction-invoked command that involves checkpointable data starts by making a
checkpoint in the database. Thus, that interaction can be undone by rolling back the
database to the checkpoint that began the command. The checkpoint facility must
“roll back” the display to correspond to the rolled back database. The utilities used to
accomplish this rolling back of the display are implemented in SPARCL Display Util.
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This is why SPARCL DE Database uses SPARCL Display Util.
The other three modules that Figure 6. 12 shows SPARCL DE Database using are

SPARCL Interp Kernel, SPARCL Linear Transform, and SPARCL Pgm Window
Name. The SPARCL Interp Kernel implements some basic utilities related to the
SPARCL Interpreter module that do not use any predicates in other modules and that
are used by other modules that either are themselves used by SPARCL Interpreter or
that are used by modules that do not otherwise need SPARCL Interpreter. There are
several “kernel” modules in SPARCL. All of these share the property that the clauses in
a “kernel” module do not use predicates defined in any other module.

SPARCL Linear Transform. The SPARCL Linear Transform module implements the
conversion of the full abstract representation to its corresponding internal linear form,
suitable for interpretation by SPARCL Interpreter. As mentioned above, this transla-
tion is a kind of program transformation. The full abstract representation can be con-
sidered a higher level program specification that SPARCL Linear Transform converts
to the lower level internal linear representation. This transformation converts term
tables in the full abstract representation into the equivalent sets. It converts the coref-
erence links to uses of logic variables by introducing unification literals in the body of
the associated clause. For example, if three sets corefer, then a variable is created for
the coreference link and three unification literals are added to the body of the clause,
one unifying each of the sets with the newly created variable. Any argument positions
that held one of the terms in this coreference link has the new variable placed in it
instead of the coreferenced term.

This module is used by SPARCL DE Database when storing a “clause” display
object. The corresponding linear form of the clause is also stored, so that the clause is
“ready” for use by the next execute_query.

SPARCL DE Edit Object, SPARCL DE Create Object, and SPARCL DE Factor
Table. The editing of the full abstract representation of SPARCL programs is supported
primarily by three modules, SPARCL DE Edit Object, SPARCL DE Create Object,
and SPARCL Factor Table. Some of the dependencies of these modules are shown in
Figure 6. 5. The “object” in the names of two of these modules refers to the “display
objects” of the full abstract representation of SPARCL programs. These objects are
stored in an internal database. SPARCL DE Create Object implements the creation of
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the various kinds of display
objects.

SPARCL DE Edit
Object implements the
selection, modification,
deletion, copying, and
“pasting” of display
objects. These basic editing
operations are similar to
those the user is familiar
with from a text processing
application, but with some
interesting differences in
copying and pasting. The
copying of an object must also consider the coreference links that connect to objects
inside of the object being copied. The copied object has a hyperedge linking all of the
subobjects that are in the same hyperedge in the original object. Since a hyperedge
may link subobjects as well as objects outside the object being copied, one may have
hyperedge copies that are smaller than their originals. In pasting from “the clipboard”
to a text selection, the clipboard text replaces the selected text. Pasting an object to a
selected object puts the clipboard object inside the selected object. The system con-
siders the types of the clipboard object and the selected object in deciding where the
clipboard object goes in the selected object. For instance, if one has selected a clause
display object and pastes an argument object into it, then the pasted object is added to
the set of arguments. However, if the pasted object is a literal, then the pasted object
is added to the set of literals. 

SPARCL Factor Table implements the factoring of term tables. Factoring a term
table involves finding some elements common to all of the rows of the table and
extracting these common elements from the rows. The factored table has shortened
rows and a “decoration” that shows the common elements. Factoring term tables is a
complex process; it needs to operate in two different ways depending on whether the
rows are N-tuples or functions.

The additional major modules on which these “editing” modules in Figure 6. 5 rely
are the SPARCL Interp Unify and SPARCL Display modules. The SPARCL Interp
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Figure 6. 5: Selected module dependencies for
SPARCL DE Edit Object, SPARCL DE Create Object,
and SPARCL DE Factor Table.

SPARCL 
DE Factor 
Table

SPARCL 
DE Create 
Object

SPARCL 
Display

SPARCL 
DE Edit 
Object

SPARCL 
Interp 
Unify



Unify implements the “partition structured” unification algorithm of SPARCL, the gen-
eral unification algorithm for all of the term types of the internal linear representation
of SPARCL. The SPARCL Display module implements the two-dimensional
representation algorithm for SPARCL. This module creates a two-dimensional display
representing the “display objects” of the internal SPARCL display object database.

SPARCL Visual Transform. SPARCL Visual Transform converts the other way,
from the internal linear representation to the full abstract representation. This conver-
sion is similar to inferring a specification in going from the lower level form to the
higher level form. This inference treats coreference simply. Multiple uses of the same
variable in the linear representation creates a hyperedge among multiple variables in
the abstract representation. We would like to make this more sophisticated by replac-
ing some of the unify/2 literals in a clause by coreference links. This would be invert-
ing the process that  SPARCL Linear Transform uses. 

The module dependency graph for selected modules used by SPARCL Visual
Transform is shown in Figure 6. 6. Since it is this module’s task to create display
objects for the full abstract representation from the internal linear representation of
SPARCL programs, it is not surprising that this module uses SPARCL DE Edit Object,
SPARCL DE Create Object, and SPARCL DE Database. SPARCL Visual Transform
uses display_new_program_elements/1 of SPARCL Display to show the newly cre-
ated display objects.

SPARCL Interp Unify is used by the SPARCL Visual Transform module (as
shown in Figure 6. 6) in the creation of term table display objects. The term that is the
collection of rows is either an N-tuple or a set. If it isn’t an N-tuple, then “parti-
tion_structured_unify(Term, set(Contents), c([], []), C1)” is used to convert the term
to a strict set (“set(Contents)”). Internally to SPARCL (i.e. not where the SPARCL pro-
grammer can see it) there are two representations of sets; strict (“set(List)”) and union
(“u(List)”). Both kinds of sets are represented by lists of items. For a strict set, all of
the items in the list are presumed to be distinct (i.e. not mutually unifiable). For a
union set, some of the items in the list may be mutually unifiable. The term that is the
collection rows for a table may be a union set or a set partitioning (“p(Parts)”, where
each Part in the Parts list is a set-like term). Since strict sets are much easier to work
with, we use partition_structured_unify/4 to convert the term (if necessary) from a
union set or set partitioning to a strict set. Since there can be many different ways to
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convert a union set to a strict set, if the union set contains any unbound variables, the
conversion to a strict set is backtrackable. The conversion to a term table should fail if
there are multiple ways to do the conversion (i.e. due to strategically placed unbound
variables), but it currently doesn’t check for this. Thus, the term conversion may pro-
duce a term table of a particular configuration that requires imposing some constraints
on the linear form being converted.

SPARCL Readable Linear contains two utility predicates which are used for test-
ing and debugging in SPARCL Visual Transform; test_sparcl_program/3 and psl_por-
tray/2. The test_sparcl_program/3 predicate defines various SPARCL linear form pro-
grams associated with identifiers. Some of these “identified” programs are shown in
Figure 6. 7.

The psl_portray/2 predicate writes an internal linear form program in readable lin-
ear form. The internal linear form programs of Figure 6. 7 are shown in Figure 6. 8 as
written out by
psl_portray/2.

SPARCL
Interaction
Log. The
module
dependency
graph for the
modules used
by SPARCL
Interaction
Log is shown
in Figure 6. 9.
This module
uses SPARCL
DE Database
for determin-
ing what kind
of interactions
are allowed,
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Figure 6. 6: Module dependency graph for selected modules used by
SPARCL Visual Transform.
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what the current “record interac-
tion” mode is, and the current
SPARCL user name. The allowed
interaction type list is stored
directly by SPARCL DE Database
and the “record interaction” mode
and the SPARCL user name are
stored as preferences. The main
predicate in SPARCL Interaction
Log is “record_interaction(Action,
Argument)”. An interaction is
described as an action applied to
one or more arguments. There are
several specialized versions of
record_interaction/2, where these
specialized versions simply
package information and invoke
record_interaction/2: 

record_menu_selection(MenuName, Option) for a selection of Option from menu MenuName.

record_window_activation(ProgramName) for the activation of the ProgramName window.

record_general_tool_activation(Window) for the activation of the “general tool” in Window.

record_general_tool_close_edit(NewSymbol, ProgramName) for the closure of the text edit box for the window

for ProgramName, with NewSymbol as its contents at closure.

record_general_tool_popup(Object, MenuName, Option) for selecting Option from menu MenuName “popped

up” over display object Object.

record_connect_tool_activate(Window) for the activation of the “connect tool” in Window.

record_connect_tool_link(Object1, Object2, ProgramName) for the linking of Object1 and Object2 in program

ProgramName.

record_script_control_button(Button, NextStep, CurrentScript) for selecting Button of the script control window

where NextStep is the next step of the current script CurrentScript.

SPARCL Halstead. The module dependency graph for SPARCL Halstead is shown in
Figure 6. 10.This module implements various simple software measurements for
SPARCL programs. These measurements are described in chapter 8 (“Objective Analy-
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member :
u([nt([nt([ur(m), X, p([u([X]), _])]), 
       u([ur(success)])])])

multiset1:
u([nt([nt([ur(data), X]),
       u([nt([ur(is), X,
              nt([ur(+), ur('1'), ur('4')])
             ])])]),
   nt([nt([ur(data), X]),
       u([nt([ur(is), X,
              nt([ur(+), ur('2'), ur('3')])
             ])])]) ])

multiset2:
u([nt([nt([ur(data), X]),
       u([ur(success)])]),
   nt([nt([ur(data), Y]),
       u([ur(success)])])])

union:
u([nt([nt([ur(u),
           p([X, Y]),
           p([Z, Y]),
           p([X, Y, Z])
          ]),
       u([ur(success)])])])
Figure 6. 7: Some linear form programs
defined by test_SPARCL_program/3.



sis”). The measurements are done
against the partial abstract representa-
tion produced by SPARCL Trans Disp
Obj.

SPARCL Log Analysis. The SPARCL
Log Analysis module is largely self-
contained. It implements several tools
for analyzing the interaction log and
the system comment file. The results
of most of these analyses are used in
chapter 9 (“Usability Testing”).

SPARCL Script. The dependency
graph for selected modules used by
SPARCL Script is shown in
Figure 6. 11. This module uses several
other modules of SPARCL to implement the script commands and there is a script com-
mand for every possible user interaction involving program editing or inspection. The
SPARCL Dialogs module implements a variety of dialogs used by different parts of
the SPARCL IDE. The primary dialog in SPARCL Dialogs for SPARCL Script is “script
control”. This dialog gives the user control over stepping through scripts and choos-
ing among available scripts. It also contains various pieces of information about the
state of the current script (what the current script does, what the next step in the cur-
rent script will be, how it will be accomplished, and a log of the steps taken up to this
point). This dialog and the script mechanism in general are presented in chapter 9.
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member:
U{((m => X => {[ U{X} , _ ]})
    => U{success})}

multiset1:
U{((data => X)
   => U{(is => X => (+ => '1' => '4'))}
  ),
  ((data => X)
    => U{(is => X => (+ => '2' => '3'))}
   )}

multiset2:
U{((data => X) => U{success}),
  ((data => Y) => U{success})}

union:
U{((u
    => {[ X , Y ]}
    => {[ Z , Y ]}
    => {[X , Y , Z ]}
   )
   => U{success})}
Figure 6. 8: Readable linear form of SPARCL
programs in Figure 6. 7.
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Figure 6. 9: Module dependency graph for the modules
used by SPARCL Interaction Log

Figure 6. 10: Module dependency graph for
SPARCL Halstead.
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Figure 6. 11: Dependency graph of selected modules used by SPARCL Script.
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The Display System.

The display system provides both two- and three-dimensional concrete represen-
tations of SPARCL programs. There are actually three distinct three-dimensional
representations, one for each three-dimensional scene display technology which it
supports (Apple Macintosh QuickDraw3D, SGI OpenInventor, and the POV Team’s
POV-Ray). These three-dimensional representations differ due to differing capabili-
ties of the display technologies. The SPARCL display system implements the automated
layout of the canonical representation to create the concrete representation. This lay-
out algorithm is incremental for the two-dimensional representation, it is a batch pro-
cess for the three-dimensional representation. When an already-displayed program is
re-displayed by the two-dimensional algorithm, it limits the portion of the concrete
representation which it re-constructs and it has ways in which it makes as small a
change as possible to the existing layout to accommodate changes in the canonical
display representation.

Aside from the incremental nature of the two-dimensional algorithm, the basic
strategy employed by the layout algorithm is the same for all of the concrete
representations (the two-dimensional representation and the three three-dimensional
representations). A SPARCL program is displayed clause-by-clause. There are two
phases to the layout of a clause: laying out the parts of the clause except for the coref-
erence links, then laying out the coreference links. The clause and its parts as related
by containment form a tree. The layout process in the first phase is to start at the root
of the containment tree with a top/left position for that container (the clause itself),
then to do a sizes-only layout (no actual display) of the contents to determine how to
position elements of the container, then layout and display the elements of the con-
tainer, then finally construct the display of the container itself. Each element in the
tree of objects to be displayed is either a container type object or not. For container
type objects, the above layout process is repeated and for non-container type objects
they are directly displayed. There is an obvious inefficiency in the layout algorithm as
described here in that it is executed twice, once to get sizes of elements and a second
time to actually display them in position. This will be changed eventually to cache the
results of the sizes-only layout pass in position-independent terms, allowing the dis-
play pass to retrieve the encached terms and simple display them.
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The layout of items within a container is referred to as “sibling” layout. There are
six different sibling layout algorithms used in the two-dimensional representation of
SPARCL and three such algorithms used in the three-dimensional representation. The
sibling layout algorithms for the three-dimensional representation are discussed in
chapter 5 (“Three-dimensional Representation of SPARCL”). The six sibling layout
algorithms for two-dimensional representations are for: (1) clause and literal
arguments; (2) N-tuple elements; (3) partitioned set parts; (4) partitioned set part
members and clauses in a program window; (5) clause literals; and, (6) term and fact
tables. 

(1) As is the case for the three-dimensional argument sibling layout algorithm, the
two-dimensional sibling algorithm for arguments places the given arguments in order
in a vertical stack (i.e. along the y-axis, which is vertical when seen from the default
front view), with the first argument at the top of the stack. There is a “gutter” between
the arguments.

(2) The sibling layout algorithm for N-tuples places the elements of an N-tuple in
a horizontal row, with an “arrow” graphical element between elements.

(3) The partitioned set parts are stacked similarly to the arguments (algorithm 1).
Differences are that there is no gutter between parts and all parts are forced to the
same width (size in the X direction).

(4) Partitioned set part members and clauses in a program window use the “com-
pact rectilinear” sibling layout algorithm described in chapter 5.

(5) The algorithm for clause literals  places them in columns such that all of the
columns have three literals, except for the right-most which may contain fewer than
three literals.

(6) The table layout algorithm is given rows of items, where there is the same
number of items in each row. This algorithm arranges these items such that items in
the same row are placed horizontally left-to-right in the order given, and items in the
same relative position in different rows are aligned vertically. The algorithm deter-
mines how deep (size in the Y direction) each row needs to be and how wide (size in
the X direction) each column must be such that each item can be aligned with its row
and column siblings.

The coreference link (or “hyperedge”) phase of the layout algorithm proceeds
hyperedge-by-hyperedge. The hyperedge layout algorithm is given two kinds of
information: a counter of how many hyperedges have been displayed so far in this
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phase and the possible “attachment points” for each item which the hyperedge is to
join. These attachment points are generated in the container phase of the layout algo-
rithm, each linkable object of the clause has one or more possible attachment points
associated with it. The hyperedge layout algorithm generates a collection of segments
make up the concrete representation of the link. The display representation of a
hyperedge which joins N items is composed of 2(N - 2)+1 segments. In the two-di-
mensional representation, hyperedges are assigned one of six colors. In the three-di-
mensional representations, there are 20 different colors. The relatively small number
of colors in the two-dimensional representation is due to those colors being faster to
display. There is no particular meaning to the assignment, it is done only to help the
viewer distinguish between them. As discussed earlier, the segments are designed so
that they join smoothly to form a single hyperedge representation. Segments which
cross and are not part of the same hyperedge are likely to not cross “smoothly”, help-
ing the viewer to recognize that they are parts of different hyperedges.

SPARCL Display. The module dependency graph for SPARCL Display is shown in
Figure 6. 12. The four modules on which it depends are SPARCL DE Database, as
mentioned above, SPARCL Pgm Window Name, SPARCL Display Util, and
curve_to_lines. SPARCL Pgm Window Name implements the utilities for relating the
name of a program and the name of the window with which that program is associ-
ated. The name of the window for a program includes the program name, program or
term set indicator, and a “modified” indicator if the program has been modified since
the last save of that program. This is a basic utility module which is used by many
other modules. Generally, we do not show it in the dependency graphs displayed in
this chapter in order to simplify those graphs. SPARCL Display Util implements vari-
ous basic utilities for working with the display of a program. These utilities are
extracted from SPARCL Display to allow other modules to use them. The
curve_to_lines module implements the conversion of a Bézier curve to a polyline (a
sequence of line segments defined by a sequence of points). This conversion is used
to display coreference hyperedges.

Picture DB. Figure 6. 12 shows some of the dependency structure of the Picture DB
module. This module relies on the Containment Tree DB module, which in turn uses
the Picture DB Utilities module. The Picture DB module is implemented in this three
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module form to make it easy to try different organizations of the picture database.
Since the picture database is used in a search among potentially hundreds of objects
that takes place between the depressing of the mouse button and the popping up of an
appropriate menu, it is important that the picture database search mechanism be fast.
We studied several different approaches to the organization of the picture database.
Our Containment Tree DB module was much the fastest. Other picture database orga-
nizing modules were: Four Dimensional X Tree DB, List Structured DB, Simple Tree
Structured DB, and Tree Picture DB.

SPARCL to 3D Model. The module dependency graph for selected modules used by
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Figure 6. 12: Module dependency graph for SPARCL Display.
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SPARCL to 3D Model is shown in
Figure 6. 13. This module creates a spe-
cially formatted file that describes the
geometry of a three-dimensional model
of a SPARCL clause. The specially format-
ted file is used by POV-Ray,
QuickDraw3D, or OpenInventor to
create a rendering of the model. POV,
QD3D, and Inventor each has its own
model geometry file format. Also, these
three systems have different modeling
abilities. Thus, the formatting of the
geometry file and the details of the spec-
ification of the geometry of the model
depend on the system used to render to
the model. There is a single program that
converts SPARCL display objects to an “abstract” model. The basic abstract-model gen-
erating predicate is model_id/4, and the model-file-writing predicate is
write_clause_file/4. These are invoked by the write_clause_model/2 predicate of the
SPARCL DE Program module:

write_clause_model(ClauseObject, ModelType) :-
          object_id(ClauseObject, ID),
          translate_display_clause_for_modeling(ID, ClauseObject, IOs, []),
          model_id(ID, IOs, ModelType, info(Model, Max, _)),
          clause_display_object_name(ClauseObject, Name),
          write_clause_file(Name, ModelType, Model, Max).

The model_id/4 literal in the definition of write_clause_model/2 has “info(Model,
Max, _)” as its fourth argument. The model_id/4 predicate actually generates an
abstract model “info” term that contains three elements: the abstract model, the maxi-
mum size in each dimension of the model, and the “attachment points” for the model.
(The attachment points are not used in the predicate. They are used when generating
the hypertubes representing the coreference links; they are the possible locations
where a hypertube segment may be attached to an element of the model.) The
write_clause_model/2 predicate writes the Model to a file with a name starting with
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Figure 6. 13: module dependency graph
for selected modules used by SPARCL to
3D Model.
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“Name”, using the ModelType file-writing predicate. The “Max” value is used in the
POV file to position the camera and lights. The camera and light positioning is done
automatically by QD3D and Inventor.

The type-specific file-writing predicate for pov is implemented by SPARCL POV
Model, for qd3d by SPARCL QD3D Model, and for inventor by SPARCL Inventor
Model. The different modeling systems use very different approaches for including
common model information (such as the texture of a variable) and Inventor provides
built-in support for character models while POV and QD3D do not. These differences
require major differences in the file-writing predicates. To deal with characters in
POV is not too difficult since POV comes with a file defining models for characters.
However, QD3D doesn’t even provide this much help. So, we implemented QD3D
models for all of the (upper-case) characters using the POV models as guides. This
put the QD3D character modelling situation on the same footing as that of POV, we
only needed to include references to these models to get characters into our QD3D
models.

The Interpreter.

The interpreter implements the semantics of SPARCL. It interprets the internal lin-
ear representation of programs. The results of the interpreter are indicated by success
or failure of the interpretation, and the binding of variables in the query being evalu-
ated.

SPARCL Interpreter. The module dependency graph for selected modules used by
SPARCL Interpreter is shown in Figure 6. 14. The bulk of the semantics of SPARCL are
implemented in SPARCL Interpreter and SPARCL Interp Unify. The interpretation
procedure, as described in chapter 3 (“Design Elements”), is primarily implemented
in SPARCL Interpreter with the exception of the unification algorithm and constraint
checking. The various SPARCL built-in predicates are implemented in SPARCL Inter-
preter. The unification algorithm and constraint checking is implemented in SPARCL
Interp Unify. The SPARCL Readable Linear module supports an alternative form of
the internal “linear” form of SPARCL programs. This “readable” linear form is used in
the trace output of the SPARCL interpreter, as the form written by the write/1 and
grounded_write/1 SPARCL built-in predicates, and in specifying a program “directly”
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to the interpreter (rather than defining a
program as a collection of display
objects). Specifying a program directly to
the interpreter is only done when debug-
ging the SPARCL interpreter. The Binary
Tree module is used by the SPARCL
Interpreter, SPARCL Readable Linear,
and Tree Picture DB  modules. (The Tree
Picture DB  module is one of the picture
database organizations compared to con-
tainment tree db, and not used.) It sup-
ports a binary tree structured term for
reasonably fast access to “leaf” terms and
fast maintenance of the tree. The
SPARCL DE Clause DB module provides
some simple utilities for working with
the database of SPARCL program clauses.
The SPARCL Interpreter implementation
is largely independent of the rest of the
SPARCL IDE; the access to the SPARCL program clauses is one of the few points where
SPARCL Interpreter must rely on other parts of the SPARCL DE Program portion of
the SPARCL IDE. The other two modules in the SPARCL Interpreter dependency graph
of Figure 6. 14, SPARCL Output Window and SPARCL Interp Kernel, have already
been discussed.
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Figure 6. 14: Module dependency graph
for selected modules used by SPARCL
Interpreter.
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A summary of the interpre-
tation algorithm implemented
in the SPARCL Interpreter
module is discussed in chapter
3 (“Design Elements”) and in
the tutorial in appendix 1
(“Tutorial Introduction to
SPARCL”). There is also a met-
acircular interpreter definition
given by the SPARCL program
‘Self Interpreter’/1 in chapter 7
(“Subjective Analysis”). The
‘Self Interpreter’/1 suppresses
many of the details of the inter-
preter since it is written in
SPARCL and thus implicitly uses
the SPARCL interpreter and uni-
fier. The internal linear form
that the interpreter evaluates is
built from the terms presented
in Figure 6. 15.

A call graph for selected predicates used by SPARCL_solve_goals/6 is shown in
Figure 6. 16. This is the
main predicate for the
SPARCL interpreter. It
takes a list of goals that
all must be solved
“simultaneously”, takes
the first one in the list
and processes it and the
rest of the goals. This
first goal can be
delayed, in which case
another of the goals is
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set(S) a strict set, where S is a list of the elements of the set. S
may also be a variable, a list with an unbound tail, or a
partition data structure. No two elements of S may be
(or become) identical. s([S1, ..., Sn]) is semantically
equivalent to p([s([S1]), s([S2]), ..., s([Sn])]) .

u(S) a union set, where S is a list of the elements of the set.
S may also be a variable, a list with an unbound tail, or
a partition data structure. Elements of S may be
identical.

p(P) a set partitioning, where P is a list of the parts of the
partitioning. The elements of the partitioning may be
variables, sets, or set partitionings. P may be an
unbound variable. It may not be an “open” list (a list
with an unbound variable as its tail).

nt(NT) an N-tuple, where NT is a list of the elements of the N-
tuple. An N-tuple is a special kind of set. The nt(NT)
data structure is used to improve efficiency and to
make the interpreter easier to use (since the nt(NT)
structure is much more compact and therefore easier to
read than the corresponding set(S) structure).

ur(U) an “ur” element where U is any PROLOG term (gener-
ally an atom).

c(Vs, Ps) a constraint set, where Ps is a list of partition structures
and Vs is a list of subterms of Ps. The Vs start out as
(all of the) unbound variables in Ps. As partition-
unifications are performed, some of the Vs may be
bound to nonvariable terms. The Vs are used as an
indicator that allows the constraint checker to skip
some unnecessary checks.

Figure 6. 15: Term structures in the internal linear
form.

Figure 6. 16: Selective call graph for SPARCL_solve_goals/6.
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selected for processing. In addition to a list of
goals to solve and goals infos identifying all of
the other goals to solve, there is a “state” of
the  interpreter that carries the active
(unsolved) constraints and control information
for the debugger.

The processing is done using a combina-
tion of SPARCL_solve_goal/8 and
SPARCL_solve_goals_infos/4. (The edge
between SPARCL_solve_goals_info/5 and
SPARCL_solve_goals/6 in Figure 6. 16 is a
“back” edge; it completes a recursion loop.) The “goals info” structure is described in
Figure 6. 17. SPARCL_solve_goals_infos/4 processes a list of “active” goals info struc-
tures and another list of delayed goals info structures.  SPARCL_solve_goals_infos/4
gives SPARCL_solve_goal/8 the same delayed goals info list it received and an active
goals infos list that is the same as that it received minus the selected goal. 

A selective call graph for SPARCL_solve_goal/8 is shown in Figure 6. 18.
SPARCL_solve_goal/8 produces updated active and delayed goals info structure lists in
one of three ways based on the goal that it processes. If the goal is solved by finding a
matching “fact” (bodiless clause), then the active and delayed goals info structure
lists are returned unchanged, effectively removing the goal from the active goals
infos. If the goal is solved by finding a matching “rule” (clause with a nonempty
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Ancestors-BodyGoals
the Ancestors are the literal (goals) for
which attempted solutions lead to
instantiating a clause with body Body-
Goals.

delay(ID, Goal, Ancestors)
the literal Goal was delayed at some
earlier point in the operation of the
interpreter and then “activated” (found
to no longer satisfy any delay
specification). This literal (Goal) was
given the unique identifier ID when it
was delayed and its “proof tree parents”
are Ancestors.

Figure 6. 17: Goals info structure
forms.

Figure 6. 18: Selective call graph for sparcl_solve_goal/8.
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body), then the active goals infos list is extended (at
the “front”) with a new goals info structure that holds
the matched clause body. Again, the goal given to
SPARCL_solve_goal/8 is “removed” from the active
goals infos, but the active goals infos is extended with
the body goals of the matched clause. Essentially, the
given goal is replaced by the matched clause’s body
goals. The remaining case is where the given goal is
delayed. In this case, a delay-type goals info structure
is created for the delayed goal and this structure is
added to the delayed goals infos list. Again, as in the
other two cases, the given goal is removed from the
active goals infos list.

The main sequence of predicates used in the
implementation of SPARCL_solve_goal/8 as shown in
Figure 6. 18 are SPARCL_solve_goal/9,
SPARCL_solve_elements/10, and SPARCL_solve_opera-
tor/10. These various predicates do “bookkeeping” for
the goal, such as assigning it a unique identifier and
updating the constraints, finally having
SPARCL_solve_operator/10 organize the solution of the
goal.  SPARCL_solve_operator/10 uses two different
approaches to solving a goal, either the goal is deter-
mined to be a reference to a built-in predicate (by
SPARCL_builtin_operator/1) in which case it is solved
by sso_builtin/10, or the goal is solved by using the
clause database using SPARCL_state_clause/4.

A selective call graph for sso_builtin/10 is shown
in Figure 6. 19. The several builtin predicates are gen-
erally solved by specialized predicates called by
sso_builtin/10. The built-in SPARCL predicates with a

simple relationship to interpreter predicates are: setof/3 is solved by
SPARCL_state_setof/10, multisetof/3 is solved by SPARCL_state_multisetof/10,  fails/1
is solved by sso_builtin_fails/7, and succeeds/1 is solved by sso_builtin_succeeds/7.
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Figure 6. 19: selective call
graph for sso_builtin/6.
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A selective call graph for
SPARCL_state_clause/4 is shown in
Figure 6. 20. The main predicate used
here is psli_clause/4. The clause data-
base is one of two forms, either it is a
collection of clauses stored in PROLOG

database clauses managed by SPARCL
DE Database or it is stored as a binary
tree term in the interpreter state.
psli_clause_db/2 is used to access the
SPARCL DE Database form of the
SPARCL clauses, given the goal and its
database key. sparcl_clause_key/2
determines the key to use in searching
for matching clauses. partition_struc-
tured_unify/4 is used to unify the goal
with the head of candidate clauses. This
database search is an area of the interpreter that can be greatly sped up. It is currently
simply a linear search through the clauses that match the key. The key helps restrict
the search greatly, but more can be done. The SPARCL clause database is searched by
find_tree_items/3 when it is stored as a binary tree term in the interpreter state. The
clause database can be stored in the interpreter state when debugging the SPARCL

interpreter, allowing us to simplify the execution environment by getting rid of the
editing and display systems of SPARCL.

SPARCL Interp Unify. The SPARCL Interp Unify module relies on few other
modules, primarily the SPARCL Interp Kernel module. The central predicate of
SPARCL Interp Unify module is partition_structured_unify/4. This predicate is used
at two points in SPARCL Interpreter: it’s called by sso_builtin/10 (in Figure 6. 19) and
psli_clause/4 (in Figure 6. 20). This predicate is also used in SPARCL DE Factor
Table (in Figure 6. 5) and SPARCL Visual Transform (in Figure 6. 6).

A selective call graph for partition_structured_unify/4 is shown in Figure 6. 21.
The major call path through this call graph is through partition_unify/4, atom-
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Figure 6. 20: Selective call graph for
SPARCL_state_clause/4.
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ized_partition_unify/4, and
unify_atomized_partition_ele-
ments/5. There are several special
cases that partition_struc-
tured_unify/4 handles. The fully gen-
eral unification algorithm is invoked
by calling partition_unify/4. The
other major case for unification is the
unification of two N-tuples. This is
handled by ntuple_elements_unify/4.
The partition_unify/4 predicate
prepares the terms for unification by
“atomizing” them. atomized_parti-
tion_unify/4 does constraint processing and invokes the core of the unification
algorithm as implemented by unify_atomized_partition_elements/5.

A selective call graph for unify_atomized_partition_elements/5 is shown in
Figure 6. 22. The main sequence of predicate calls that this predicate uses to unify two
atomized set partitioning terms is: unify_apes/5, unify_ape/4, unify_appl/7 or
unify_aps/6, and finally a
recursive invocation of
partition_struc-
tured_unify/4. The
unify_apes/5 predicate
unifies two atomized
partition element lists.
The unify_ape/7 predi-
cate unifies two atomized
partition elements.
unify_ape/7 unifies its
two given terms in two
different ways, either the
first term is a (strict) set
or it is a set partitioning.
The second argument
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Figure 6. 21: Selective call graph for parti-
tion_structured_unify/4.

Figure 6. 22: Selective call graph for unify_atomized_par-
tition_elements/5.
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may be either of these kinds of terms in either case. If the first argument is a set parti-
tioning, then unify_appl/7 is called. This unifies an atomized partition element set
partitioning’s parts list with the second term. If the first argument is a set, then
unify_aps/6 is used. This unifies an atomized partition  set’s element list with the sec-
ond term.

Since the element lists which are used to call unify_apes/5 have been “atomized”
(which flattens sub-partitions), the only partitioned sets present as elements when
unify_aps/6 is called are those which were introduced via partition_skeletons/2
(which was called by unify_atomized_partition_elements/5). These “introduced” par-
titioned sets only have unbound elements. Further, these partition skeletons have
already been connected to all of the partition skeletons in the “other” element list and
these connected partition skeleton elements have been removed, so the remaining
partition skeleton elements are to be bound with sets in the “other” element list, or
bound to empty sets.

So, consider that the first argument of unify_aps/6 (call it “E1”) is a singleton set.
Let the second argument be “E2”. If E2 is a partition of more than one element, let
E2a be one element and E2r be the other elements, then E1 is unified with E2a and
replace p(E2) with p(E2r) in the Elements2 list still to be unified. Otherwise, E2 is
either a partition of one element or a set (of one element) and E1 is unified with E2.
The unification rules that unify_aps/6 implements as they are given in chapter 4
(“Partitioned Set Unification”) are:

Rule 12

Rule 13
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ptn R{ }{ } ∪ P( ) ˙ = ptn ptn X{ }{ } ∪ S( ){ } ∪Q( ){ } ∪ Λ;Γ;V;Σ
R ˙ = X ,ptn P( ) ˙ = ptn ptn S( ){ } ∪Q( ){ } ∪ Λ;Γ;V;Σ

where ptn R{ }{ } ∪ P( ) ˙ = ptn ptn X{ }{ } ∪ S( ){ } ∪Q( )( )∉Λ

ptn R{ }{ } ∪ P( ) ˙ = ptn ptn X{ } ∪ S( ){ } ∪Q( ){ } ∪ Λ;Γ;V;Σ

σ / ptn P( ) ˙ = ptn ptn S( ){ } ∪Q( ){ } ∪ Λ( );σ /Γ;V;Σ oσ

where var X( )∧σ = X / R{ }

∧ ptn R{ }{ } ∪ P( ) ˙ = ptn ptn X{ } ∪ S( ){ } ∪Q( )( ) ∉Λ



Rule 14

There is an additional clause for unify_aps/6 that handles a special cases of Rule 12
and Rule 13 where S is empty. {R} is our E1 and {X} is our E2 or E2a.

There are two cases for unify_appl/5, either the elements are empty or they are
not. In the second case, the first element is unified with an empty set or with some
element of the second list. The unification rules that unify_appl/5 implements as they
are given in chapter 4 (“Partitioned Set Unification”) are:

Rule 15

Rule 16

A selective call graph for ntuple_elements_unify/4 is shown in Figure 6. 23. This
predicate puts the two N-tuples to be unified into a canonical form and then the corre-
sponding elements of the two canonical form N-tuples are unified.

Discussion.

In this section we provide a
summary of the presentation of the
implementation and an assessment
of the implementation.

Summary. The SPARCL implemen-
tation is functionally divided into
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Figure 6. 23: Selected call graph for ntu-
ple_elements_unify/4.
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three major parts: the interpreter, the display system, and the editing system. The
interpreter interprets an internal form of SPARCL. The editing system handles all of the
interactions with the user and it maintains the canonical display representation of the
program. The display system generates a concrete representation from the canonical
display representation. To evaluate a query, the editing system converts the canonical
display representation into the internal form, invokes the interpreter, converts the
resulting internal form back to the canonical display representation, and finally uses
the display system to present this result to the user. 

The SPARCL application is implemented in LPA MacProlog32 to run on an Apple
Macintosh with MacOS 7.1 or greater. The source is divided into 62 modules varying
in size from 2312 logical source lines (Halstead volume of 154419) to 71 logical
source lines (Halstead volume of 210). The median  logical source lines is about 350
and the median volume is 13353. The total logical source lines is 28650.

The main module is SPARCL Dev Env. Other crucial modules are: SPARCL Dis-
play, which presents the two-dimensional representation of SPARCL programs;
SPARCL to 3D Model, which creates a file that defines the three-dimensional repre-
sentation of SPARCL programs; SPARCL Interpreter, which interprets SPARCL

programs; SPARCL Interp Unify, which implements the partitioned set unification
algorithm; and the three modules SPARCL DE Create Object, SPARCL DE Edit
Object, and SPARCL Factor Table, which together manage the creation and editing of
SPARCL programs.

The Editing System. The “editing system” refers to all of the services of SPARCL

except the program interpreter and the program representation display. It provides the
program development environment, it manages the interactions with the user, main-
tains the canonical visual program representation, and provides various tools to aid in
developing and maintaining SPARCL programs. The editing system implements the
structured semantic editing approach discussed in chapter 3 (“Design Elements”).
There are two kinds of interactions: through the menus on the main menu bar or
through the program window object popup menus. Examples of these interactions are
given in appendix 1 (“Tutorial Introduction to SPARCL”). The popup menus enforce
the structured semantic editing paradigm. The editing system also provides the inter-
action logging, the integrated scripting/tutorial facility, and various interaction log
analysis tools. The SPARCL Dev Env module pulls together all of the services of
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SPARCL. The non-editing system services (program interpretation and display) are
accessed through SPARCL DE Program.

There are four program representations used internally by SPARCL. The primary
representation is a collection of “display objects”. This is a geometry-independent
definition of the visual representation of a SPARCL program, the “full abstract” repre-
sentation. A simplified form of the full abstract representation, the simplified abstract
representation, is used when creating the 3D model of a clause instead of the full
abstract representation. The other two forms of SPARCL programs are the internal lin-
ear representation and the readable linear representation. The internal linear represen-
tation is used by the interpreter. The readable linear representation is a linear textual
representation of the internal linear representation that we use in debugging the inter-
preter, tracing the interpretation of SPARCL programs, and writing terms from SPARCL

by the write/1 and grounded_write/1 builtin predicates. SPARCL programs are stored
“across user interactions” using both the full abstract representation and the internal
linear representation.

The full abstract representation is converted to the internal linear representation
for the interpreter. The internal linear representation of the terms of the persistent
term table and the results of a successful query are converted to the full abstract rep-
resentation for presentation to the user. These two representations are not simply
semantically equivalent, so these conversions are program transformations. The full
abstract representation is a higher level program specification that SPARCL Linear
Transform converts to the lower level internal linear representation. The interesting
parts of the conversion involve reducing term tables and coreference links to the sim-
pler mechanisms available in the internal linear representation. SPARCL Visual
Transform converts the other way, from the internal linear representation to the full
abstract representation. This conversion is similar to inferring a specification in going
from the lower level form to the higher level form. This inference treats coreference
simply. Multiple uses of the same variable in the linear representation creates a hyper-
edge among multiple variables in the abstract representation. We would like to make
this more sophisticated by replacing some of the unify/2 literals in a clause by coref-
erence links. This would be inverting the process that  SPARCL Linear Transform
uses.

The SPARCL DE Database module manages most of the data that must be
remembered across user interactions (this includes data that must be remembered
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across invocations of the SPARCL application) excepting “file” data such as saved
SPARCL programs, interaction logs, and system comments, and “picture” data that is
attached to the windows in which the pictures reside. Because most modules use
some cross-interaction data, most modules use SPARCL DE Database.

SPARCL DE Database stores data with two mechanisms: direct and preferences.
Some of the directly stored data is registered with the checkpoint facility, which is
implemented in  SPARCL DE Database. This provides a general mechanism to
restore the state of the database to an earlier state, for the checkpointed part of the
database. The checkpoint facility is used to implement the “undo” service. Data that
is stored as preferences is remembered across invocations of SPARCL.

The editing system includes the basic editing operations of selection, copying,
pasting, and deletion for display objects similar to those the user is familiar with from
a text processing application, but with some interesting differences in copying and
pasting. The copying of an object copies the coreference links that connect to objects
inside of the object being copied. This may produce hyperedge copies that are smaller
than their originals. When pasting from “the clipboard” to a text selection, the clip-
board text replaces the selected text. In contrast, pasting a the clipboard object to a
selected object puts the clipboard object inside the selected object. SPARCL determines
where the pasted object goes inside the selected object based on the types of the two
objects, this is not specified by the user.

The editing system also factors (and expands) term tables at the user’s request.
This is a complex process; it needs to operate in two different ways depending on
whether the rows are N-tuples or functions.

The Display System. The display system provides both two- and three-dimensional
concrete representations of SPARCL programs. There are actually three distinct three-
dimensional representations, each based on a different display technology. The
SPARCL display system implements the automated layout of the canonical representa-
tion to create the concrete representation. This layout algorithm is incremental for the
two-dimensional representation, it is a batch process for the three-dimensional repre-
sentation. When an already-displayed program is re-displayed by the two-dimensional
algorithm, it limits the portion of the concrete representation which it re-constructs
and it has ways in which it makes as small a change as possible to the existing layout
to accommodate changes in the canonical display representation.
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Aside from the incremental nature of the two-dimensional algorithm, the basic
strategy employed by the layout algorithm is the same for all of the concrete
representations (the two-dimensional representation and the three three-dimensional
representations). However, the implementations of the 2D and 3D layout algorithms
are entirely distinct. We would like to combine them in the future.

The Picture DB module implements the picture database. The picture database is
used by the editing system in deciding which type of object the mouse is over when
the user depresses the mouse button. The object type determines the popup menu to
present to the user. Since the picture database is frequently used in a search among
potentially hundreds of objects that takes place between the depressing of the mouse
button and the popping up of an appropriate menu, it is important that the picture
database search mechanism be fast. We studied several different approaches to the
organization of the picture database. Our Containment Tree DB module was much the
fastest.

A 3D model of a clause is generated in two steps. First, the “abstract” 3D model
(specialized for one of the three modelling systems; POV, QD3D, or Inventor) is gen-
erated using a common implementation. This common implementation handles all of
the topology and geometry calculations. Second, the a 3D-model-file-writing system
is invoked that is specific to the target mechanism. One of the ways in which these
file-writing mechanisms most diverge is their handling of references to common or
predefined aspects of models. These aspects can be just predefined constants, or they
can be complex models such as those for characters.

The Interpreter. The central algorithm implemented by this interpreter is given in
chapter 3 (“Design Elements”) and in appendix 1 (“Tutorial Introduction to SPARCL”).
The interpreter uses a list of “goals info” structures to keep track of information about
the goals to be solved. Goals are grouped in the same regular goals info if they are lit-
eral instantiations from the same clause body instantiation. Each goals info structure
also records the ancestors of the goals in that goals info structure, the ancestors being
goals in the proof tree path leading to the clause instantiation that “created” the goals
in that goals info structure. The list of goals infos is managed as a stack, implement-
ing a depth-first search through the proof tree if there are no delayed goals. A delayed
goal is recorded in a special goals info structure that records the unique identifier the
goal was given, the goal being delayed, and the ancestors of that goal. The goals info
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structure for a delayed goal is added to the end of the goals infos list when that goal
“becomes active” again.

The interpreter solves a goal in one of two ways, either the goal uses a builtin
predicate or it doesn’t. There is special code to handle each of the builtin predicates,
the most complex of these being setof/3 and multisetof/3. When a goal is not a buil-
tin, then SPARCL solves it using the SPARCL clause database. We divide the search of
this database up by clause predicate name, then do a linear search through the clause
heads with the same predicate name, trying to unify each head to the given goal. This
is an area where substantial performance improvements are possible by an indexing
scheme for the clauses based on their arguments, and by specializing the unification
procedure for each clause head.

The unification algorithm is formalized and analyzed in chapter 4 (“Partitioned
Set Unification”). Unification is a central procedure in SPARCL; it’s used in two places
in SPARCL Interpreter, and once each in SPARCL DE Factor Table (in Figure 6. 5)
and SPARCL Visual Transform (in Figure 6. 6). The rules given in the formalization of
partitioned set unification in chapter 4 have some close correspondences with the
implementation of unification. Rules 11 through 14 are discussed in some detail. The
implementation of unification deviates from the formalization in providing for special
cases of the rules and in implementing N-tuple unification.

Assessment. The implementation of SPARCL is extensive. It provides a wide variety of
services: event-driven human-computer interaction management, database manage-
ment (including checkpoint and rollback), structured-program editing, programming-
in-the-large, program transformation, program interpretation, (partitioned set) unifica-
tion,  two-dimensional and three-dimensional representation with automated layout,
three-dimensional geometric modelling for multiple modelling/rendering systems,
computer-based training, activity logging, and software measurement.

We believe that LPA’s MACPROLOG32 has been a great help in creating SPARCL.
The wide variety of services listed above is implemented in 3667 procedures span-
ning 28650 logical source lines, with a total token count 191012. The large number of
(obviously small) procedures is normal for PROLOG, implementations of which are
usually optimized for executing procedures such that there is almost no overhead
introduced by a procedure call compared to “inline” code. It has an extensive “high
level” integrated graphics system that connects with the Apple Macintosh QuickDraw
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Toolbox utilities that greatly simplifies many aspects of working with graphics. Simi-
larly, its menu,  dialog, and window facilities provide a very convenient “high level”
wrapper for the standard  Macintosh Toolbox utilities.

One awkwardness we encountered was in the window handling. MacProlog32
identifies a window by its name, which is the same as its title. We associate a window
in SPARCL with each SPARCL program. The SPARCL program name is extended to create
the window name. The window name is modified with a check mark to indicate if the
associated program has been changed since it was last saved. Thus, there is an unfor-
tunately complex bit of code needed to keep track of the relationship between SPARCL

programs and their windows. This is the job of the SPARCL Pgm Window Name
module.

The other drawback to LPA’s MACPROLOG32 is the lack of any development
library management tools, and the lack of programming-in-the-large support in gen-
eral (e.g., there is no “make” facility for creating applications). We implemented our
own library system to make up for this lack.

The performance of SPARCL overall is inadequate for use as a real programming
language. The editing system is adequate and the display system is mostly adequate,
although it can degrade seriously when there are a lot of clauses loaded. This is dis-
cussed in chapter 9 (“Usability Testing”) in the section on response time. The major
performance problem is the interpreter. There are many things we can do to improve
the performance of the interpreter. One common optimization is to compile to a byte-
code or even assembler. However, there are several algorithmic improvements that
we expect to investigate before we consider moving the run-time of SPARCL out of
PROLOG. In a communication in the PROLOG news group (comp.lang.PROLOG), an
implementor of a logic programming language noted that they had moved their run-
time out of PROLOG and into a byte-code interpreter, and that he later regretted the
change. The interpreter became much more complex, and therefore harder to change,
and they no longer automatically benefited from improvements to PROLOG implemen-
tation performance without copying these improvements explicitly into their own sys-
tem.
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Chapter 7
Subjective Analytic Assessment of SPARCL

1. Introduction and the Classify Examples problem.

This chapter presents SPARCL programs which solve several programming prob-
lems. For the classify_examples problem we also present solutions in LISP and PRO-
LOG. We explain the implementations, building on the introduction to SPARCL given in
chapter 3 (“Design Elements”),  and argue that the SPARCL solution is a comparatively
more understandable approach. There is no measurement involved in this argument,
but rather a reliance on the reader’s subjective assessment when allowed to inspect
the program. The next chapter (Chapter 8) presents a more objective analytic assess-
ment of these languages for selected programming problems (which include the clas-
sify_examples problem). Chapter 9 presents an empirical assessment of SPARCL based
on limited user testing.

In this section we present the classify_examples problem and our solutions in all
three languages. The classify_examples problem is part of the ID3 machine-learning
programming problem:

An “example” is a set of attribute name/value pairs. An example set is a set of examples
all of which have the same set of attribute names. Given an example set and a classifying
attribute name, find a classification of the examples according to their values on that attribute
name.

The SPARCL solution of this problem demonstrates both the brevity of the SPARCL

language and also the usefulness of its nonlinear representations (particularly tables).
There are four different representations of sets in the SPARCL code shown here: parti-
tioned sets, intensional sets, table of set of ntuples, and table of set of “functions”.
The table of a set of ntuples shows each N-tuple in a row of the table, the order of the
rows in the table isn’t meaningful. The table of a set of functions puts the domain val-
ues (which all of the functions share) in a header for the table and each row is the
range values for a function.  A function is a set of ordered pairs, the domain of the
function being the first element of the pairs and the range being the second element of
the pairs, and no two ordered pairs have the same first element.
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The Classify Examples/3
predicate for classifying
examples is used in the imple-
mentation of the ID3 machine
learning algorithm. The Classify
Examples Query/1 predicate is
used to “query” the Classify
Examples/3 predicate. This
query presents a table of
examples to Classify Exam-
ples/3, which (when thus que-
ried) returns a table of
tables, one for each
value of the ‘color’
attribute. These tables
are shown in
Figure 7.1. 1.

The Classify Exam-
ples program shown in
Figure 7.1. 2 is imple-
mented by a single
predicate of a single
clause. The third argu-
ment contains an inten-
sional set with an
empty body. The tem-
plate of this intensional
set is a 2-tuple: a variable and another intensional set. The second intensional set is
the set of all examples which share the same value on the given attribute. This “same”
value is coreferenced by the variable which is the first element of the outer inten-
sional set’s template. This inner intensional set contains a term which is a set within a
(part of) a set. The inner set is a little darker than the outer set to make it easier to
“read”. We can express this clause formally by:
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Query:
color size
blue big
red big
red small

Classified examples:
blue color size

blue big

red color size
red big
red small

Figure 7.1. 1: Query and classified examples
tables.

Figure 7.1. 2: Classify Examples/3  program.

unify

Classify Examples
Examples

Classifying Attribute

Classified Examples



This form of classify examples maps onto the SPARCL clause in a simple way: X is
the set of examples to be classified, Y is the name of the classifying attribute, Z is set
equal to the “outer” intensional set, and q is set equal to the “inner” intensional set.
The template of the outer intensional set is A, which is set equal to the ordered pair of
p and q, p is the classifying attribute value, and r is an example in the set of examples
(X).

Two forms of a query clause are shown in Figure 7.1. 3. They have the same
meaning; they differ in that one represents the examples to be classified using a set
containing sets of N-tuples and the other represents these same examples using a
function table. This clause is used to “query” the Classify Examples program with
some test data; the table discussed above. The N-tuple (an ordered pair) shown in
Figure 7.1. 4 is the result of running the above query and gives the classified examples
as a table of tables. The programming environment determined that the classified
examples set could (and should) be displayed in this fashion; the programmer made
no specification about how to display this “classified examples” set.
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Figure 7.1. 3: Two forms of query for Classify Examples/3  program.
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There are some “expansions” of the ‘Classify Examples’/3 clause that give an idea of
the approach SPARCL uses to solve this
query. The ‘Classify Examples’/3
clause with its arguments instantiated
to those of the literal in the query is
shown in Figure 7.1. 5. This clause is
further expanded by replacing the use
of intensional sets with ‘setof’/3 and
‘setof’/4 literals. This is shown in
Figure 7.1. 6. In this clause there is a
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Figure 7.1. 4: Result 2-tuple from evaluat-
ing the query for the Classify Examples/3
program.

Figure 7.1. 5: ‘Classify Examples’/3 clause with query values in arguments.
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‘setof’/3 literal that corresponds to
the “outer” intensional set. We
expand this literal to a clause as
shown in Figure 7.1. 7. This clause has
one literal (represented by an N-tu-
ple) in its second argument that corre-
sponds to the “inner” intensional set.
This inner ‘setof’ has four arguments.
Its second argument (the third ele-
ment of the N-tuple) is a set of two
variables. This argument specifies
existentially qualified variables: these
variables (and the variables with
which they corefer) can be bound dif-
ferently for each successful evalua-
tion of the body of the setof. In this
case these variables are being used to
existentially qualify the “rest of”
parts of the two partitioned sets. If
these parts weren’t existentially qual-
ified then they would have to have
the same value for every solution
contributing to a set of solutions.

The ‘setof’/4 literal is shown as a
clause in Figure 7.1. 8. A subtle but
important aspect of this clause is the
unlinked variable in the second argu-
ment of the ‘unify’/2 literal (repre-
sented as a 3-tuple) in the third argu-
ment of this ‘setof’/4 clause. This
variable is unlinked in Figure 7.1. 8

because its coreference is outside of
the ‘setof’/4 literal in Figure 7.1. 7.
Since this is an unlinked variable and
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Figure 7.1. 6: ‘Classify Examples’/3 with
query values and expanded intensional sets.



it is not in the existentially
qualified variables set of the
second argument, it must
have the same value for all
of the solutions used to
make the set of the fourth
argument. In this example
there are three choices for its
first binding: ‘red’, ‘red’,
and ‘blue’. There is one
choice for each of the exam-
ples in the example set.
Thus, this inner ‘setof’/4
produces three result sets
when evaluated by the outer
‘setof’/3, two of them identi-
cal (using the ‘red’ color
value). Since two of them
are identical, the outer
‘setof’/3’s result set has only
two elements, one pairing
for each color value of color
value and examples contain-
ing that color value. This is
the desired result.

This example demon-
strates two of the services
the intensional set represen-
tation provides when setting
up the translation to the
‘setof’/3 and ‘setof’/4 liter-
als: it determines how to
nest uses of ‘setof’/(3,4);
and, it determines which
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Figure 7.1. 7: ‘setof’/3 expansion from ‘Classify Exam-
ples Query’/1 evaluation.



variables need to be existentially qualified and in which ‘setof’ literals “scope”. This
is one of the program transformation operations mentioned in chapter 6 (“Implemen-
tation”) that SPARCL performs in transforming the external form of a clause to its inter-
nal form.

The PROLOG implementation of the classify examples program.

A brief solution. The program shown in Figure 7.1. 9 is a maximally concise imple-
mentation in PROLOG of a solution to the Classify Examples programming problem.

A fast solution. Another implementation of a solution to the Classify Examples prob-
lem is shown in Figure 7.1. 10 and Figure 7.1. 11. (The sort/2 and member/2 procedures
are assumed to be provided by the PROLOG implementation.) This implementation is
much faster than the “brief” solution.

The classify_examples/3 procedure uses classify_examples1/3 to build a list of
pairs, where each pair has a value in the ClassifyingAttribute as its first element and
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Figure 7.1. 8: ‘setof’/4 expansion from ‘Classify Examples Query’/1 evaluation.
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an example from Examples which contains that value for the ClassifyingAttribute.
These pairs are then sorted to put all of the same-valued pairs together. Finally, clas-
sify_examples/3 uses assemble_value_example_pairs/2 to convert this sorted list of
pairs to a list of pairs where each pair has a value in the ClassifyingAttribute as its
first element and all of the examples from Examples which contains that value for the
ClassifyingAttribute. 

The assemble_value_example_pairs/2 procedure uses the assem-
ble_value_example_pairs/4 procedure, “priming” it with the value of the first input
pair and providing the “tail” of the list of examples with that value. The assem-
ble_value_example_pairs/4 procedure “iterates” over the list of value-example pairs.
For each such pair, if the value is the same as the previous value, then it adds the
example to the list of examples for that value and passes on the tail of that list of
examples to the next step. The tail of the output pair list is passed on unchanged (as it
came in). If the value is not the same as the previous value, then it sets the tail of the
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classify_examples(Examples, ClassifyingAttribute, ClassifiedExamples) :-
          setof(V-Es,
                setof(XE,
                      (member(XE, Examples),
                       member(ClassifyingAttribute-V, XE)),
                      Es
                      ),
                ClassifiedExamples
               ).

Figure 7.1. 9: PROLOG “brief” Classify Examples  solution.

classify_examples(Examples, ClassifyingAttribute, ClassifiedExamples) :-
          classify_examples1(Examples, ClassifyingAttribute,
                             ValueExamplePairs),
          sort(ValueExamplePairs, SortedPairs),
          assemble_value_example_pairs(SortedPairs, ClassifiedExamples).

classify_examples1([], ClassifyingAttribute, []).

classify_examples1([Example|OtherExamples],
                   ClassifyingAttribute,
                   [Value-Example|OtherValueExamplePairs]) :-
          member(ClassifyingAttribute-Value, Example),
          classify_examples1(OtherExamples, ClassifyingAttribute,
                             OtherValueExamplePairs).

Figure 7.1. 10: PROLOG “fast” Classify Examples solution, part 1: classify_exam-
ples/3  and classify_examples1/3 predicates.



list of examples for the previous value to empty (it “closes” the previous value’s list
of examples), it starts a new pair of value and examples list, and passes on the tail of
this new examples list and the new tail of the output pair list. This continues until all
of the pairs have been processed, when the tail of the previous value’s example list is
closed and the tail of the output pair list is closed.

Discussion. The first PROLOG solution closely parallels the SPARCL solution and is
very similarly brief. It is an unusual use of PROLOG - the nesting of setof/3 predicates
is rare, and the obvious inefficiency of the program (in that it calculates each class
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assemble_value_example_pairs([Value-Example|OtherPairs],
                             [Value-[Example|OtherValueExamples]
                              | OtherClassifiedExamples]
                            ) :-
          assemble_value_example_pairs(OtherPairs, Value,
                                       OtherValueExamples,
                                       OtherClassifiedExamples).

assemble_value_example_pairs([], _, [], []).

assemble_value_example_pairs([Value-Example|OtherPairs],
                             RefValue, ValueExamples,
                             ClassifiedExamples
                            ) :-
          (Value = RefValue
            -> ValueExamples = [Example|OtherValueExamples],
               ClassifiedExamples = OtherClassifiedExamples
          ;
          % For this case, Value ≠ RefValue
          ValueExamples = [],
          ClassifiedExamples = [Value-[Example|OtherValueExamples]
                                | OtherClassifiedExamples]
          ),
          assemble_value_example_pairs(OtherPairs, Value,
                                       OtherValueExamples,
                                       OtherClassifiedExamples
                                      ).

Test query:
:- classify_examples([[color-red, size-big],
                      [color-red, size-small],
                      [color-blue, size-big]
                     ],
                     color,
                     ClassifiedExamples).
Figure 7.1. 11: PROLOG Classify Examples solution, part 2: assem-
ble_value_example_pairs/3, assemble_value_example_pairs/4,  and classify_exam-
ples/3 query.



once for each example in the class instead of once for each value defining a class).
This same inefficiency is found in the SPARCL implementation, so this solution is an
interesting comparison with the SPARCL solution.

The second solution is substantially longer than the first PROLOG solution and the
SPARCL solution. Its advantage is that it is a great deal more efficient than both of
these solutions. It is less desirable than these other two solutions in ease of
understanding. Much more “reading” is required to determine how the terms of the
arguments are used in the literals; particularly, one must read and parse the code to
find the variable references and to determine the coreferences. Since there are many
fewer elements in the SPARCL implementation there is much less to read and parse;
fewer procedures to track down, fewer arguments to “connect” (between the head and
body literals), and fewer terms overall to interpret.  Further, the coreferences are
immediately obvious in the SPARCL code due to the coreference link representation.

The PROLOG solutions don’t offer any convenient graphical representation of the
data: it is input and output as a list. The “set” nature of the collection of examples is
nowhere explicitly apparent in the code, since PROLOG offers no way to work
“directly” with sets. One could write additional code to format the data, but this
would further complicate the implementation.  Some PROLOG implementations have
set-handling libraries. Such a library could help with the input/output format issue,
but would make little difference in the structure of the rest of the solution.

The LISP implementation of the classify examples program.

An implementation in LISP of a solution to the classify examples programming
problem is shown in Figure 7.1. 12. This program was extracted from a LISP implemen-
tation of ID3 with a few changes to simplify it for comparison with the other two
solutions. In the version used by the ID3 program it actually goes beyond the basic
programming problem to include counts of the “decision” attribute (assumed to be the
first attribute/value pair in an example) and to “trim” the classifying attribute out of

the classified examples.

Discussion. The SPARCL solution of the classify examples problem uses an unusual
nested construction of intensional sets. We have “short” and “long” versions of the
PROLOG solution, where the short version is slower than the long version. The long
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version is typical of how a PROLOG programmer would solve this problem in order to
get the improved performance. The SPARCL and short  PROLOG solutions are structur-
ally similar, but the SPARCL solution is (we claim) more readily understood. This
claimed relative ease of understanding of the SPARCL solution depends on the reader
having a thorough understanding of the intensional set semantics of SPARCL. Such an
understanding may be difficult to acquire “passively” from reading an exposition
such as this thesis, we believe it generally requires experience with constructing and
using programs that use intensional sets.

The coreference links contribute to the concision of the SPARCL solution by allow-
ing the programmer to refer to various parts of a complex data structure, an example
within a set. The “example within a set” is the second argument of the ‘unify’/2 literal
in the “inner” intensional set, in Figure 7.1. 2. There are three links to different parts of
this structure, making it easy to see what aspects of this structure are referenced else-
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(defun classify (name examples)
  (classify1 name examples nil))

(defun classify1 (name examples classes)
  (cond ((null examples) classes)
        (t (classify1 name
                      (rest examples)
                      (extend classes
                              name
                              (get-attribute-value name (first examples))
                              (first examples) )))))

(defun extend (classes name value example)
  (cond ((null classes)
         (list (list value
                     (list example) )))
        ((equal value (first (first classes)))
         (cons (list value
                     (cons example (second (first classes))) )
               (rest classes)))
        (t (cons (first classes)
                 (extend (rest classes) name value example) ))))

(defun get-attribute-value (name attributes)
  (attribute-match name attributes))

(defun attribute-match (name attributes)
  (cond ((equal name (first (first attributes))) (second (first attributes)))
        (t (attribute-match name (rest attributes)))))

Figure 7.1. 12: LISP Classify Examples solution.



where in the clause, and exactly where those references are.
The LISP solution is similar to the long PROLOG solution. It is much more complex

than the SPARCL solution. The explicit representation of sets in SPARCL (and the lack of
this in the other languages) contributes to its classify examples solution being easier
to understand than the solutions in the other languages. The representation of the data
for input and output is better in SPARCL than in LISP or PROLOG since SPARCL provides a
familiar and concise representation for tables that is entirely appropriate to the clas-
sify examples problem, where LISP and PROLOG don’t provide any diagrammatic repre-
sentations of data. Since SPARCL selects the table representation for the output data
without direction from the programmer, this gives the programmer the appropriate
representation without any output-representation-specific code in the SPARCL solution,
keeping it simpler than otherwise.

230



2. The ID3 program.

The ID3 problem incorporates the classify examples problem as a subproblem.
The ID3 algorithm of Michalski is a basic machine learning algorithm. The version of
the problem used here is simplified from that presented by Ross Quinlan in
[Quinlan 1982]. The ID3 algorithm is based on the CLS (Concept Learning System)
of Earl Hunt, presented in [Hunt et al. 1966]. We retain the basic element of inferring
a decision tree from a given collection of examples. An example is as described
above for the classify examples problem, a collection of attribute-value pairs where
one of the attributes is the “decision”. A concise description of the CLS/ID3 algo-
rithm is given in page 407 of [Cohen&Feigenbaum 1982]:

The CLS algorithm starts with an empty decision tree and gradually refines it, by adding decision
nodes, until the tree correctly classifies all of the training instances. The algorithm operates
over a set of training instances, C, as follows:
Step 1. If all instances in C are positive, then create a YES node and halt.

If all instances in C are negative, create a NO node and halt.
Otherwise, select (using some heuristic criterion) a feature, F, with values V =
{v1, ..., vn} and create a decision node labeled F with a branch for each of these
values.

Step 2. Partition the training instances in C into subsets C1, ..., Cn according to the values
of V.

Step 3. Apply the algorithm recursively to each of the sets Ci.

The ID3 algorithm of Quinlan uses a heuristic criterion for step 1 which chooses
the feature that most strongly discriminates between positive and negative instances.
He defines “most strongly discriminates” to be the feature that “leads to the greatest
reduction in the estimated entropy of information of the training instances in C.”1 The
ID3 algorithm was an extension of the CLS algorithm which was meant to handle
very large sets of training instances. This aspect of the algorithm is not used in our
simplified version of the ID3 problem. We are using the CLS algorithm with ID3’s
choice of heuristic criterion as our “ID3 problem.”

The solution to this problem in SPARCL is presented below, the solutions in LISP

and PROLOG are given in appendix 3.

SPARCL solution. The SPARCL solution of the ID3 problem uses 12 predicates, which

1. p. 408 in [Cohen&Feigenbaum 1982].
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relate to each as other as shown in Figure 7.2. 1. The definitions of the predicates are
presented in the following figures.

The ‘ID3 Trees’/4 predicate is defined in Figure 7.2. 5. This predicate takes a set of
independent attribute names, dependent attribute name, a set of example
classifications, and returns a set of “decision trees” that summarize the relationship
between independent attribute values and dependent attribute values. The set of deci-
sion trees is a decision tree determined by ‘ID3 Tree’/4 for each entry in the example
classification set. An entry in the example classification set is an ordered pair of a
classifying value and the set of examples which share that value in the classifying
attribute. (The classifying attribute is not present, or necessary, in this predicate.)

The ‘ID3 Tree’/4 predicate defined in Figure 7.2. 2 finds a “decision tree” given a
set of independent attribute names, the dependent attribute name, and an ordered pair
associating a classifying value and a set of examples which all have that value in
some attribute. This ordered pair is one entry in an example classification for an
attribute. If the given examples all have the same value for the dependent attribute
(i.e. they are homogeneous on that attribute), then a “leaf” decision tree node is con-
structed. This node is a triple of the classifying value, the dependent attribute name,
and the common dependent attribute value.

If the examples do not all have the same dependent attribute value (i.e. they are
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Figure 7.2. 1: Overview of the predicates in the SPARCL solution of ID3 problem. A
predicate  has a clause in its definition which has a literal for another predicate if
two predicates are connected in the graph and the first predicate is “to the left” of
the second predicate. For example, ‘ID3 Tree’/4 uses as literals in one or more of
the clauses that define it the predicates ‘ID3 Tree’/4, ‘Select Attribute’/5,
‘Heterogeneous Examples’/2, and ‘Homogeneous Examples’/3. Not displayed in
this graph: ‘ID3 Tree’/4 and ‘ID3 Trees’/4 are mutually recursive.
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heterogeneous on that attribute),
then ‘Select Attribute’/5 is used to
select an independent attribute on
which to “split” the examples, and
‘ID3 Trees’/4 is used to construct
a set of subtrees, one for each of
the classifications of the given
examples on the values of the
splitting attribute.

The first argument of the
upper clause for ‘ID3 Tree’/4, the
set of independent attribute
names, contains an interesting use
of a partitioned set. Three portions
of this complex term are used in
three different coreference hyper-
edges. The variable in the upper
part of the partitioned set corefers
with the variable which will be
bound to the independent attribute
chosen by ‘Select Attribute’/5.
Since this is the only element in
the upper part of the independent
attribute names set, the other part

of the partitioned set is all of independent attribute names except the selected attribute
name. A distinct coreference is where this other part of the independent attribute
names set corefers with the variable in the first argument of the ‘ID3 Trees’/4 literal;
this is the set of independent attribute names from which ‘ID3 Trees’/4 will split the
classification on the selected attribute name of the input example set and produce the
subordinate decision trees. The final distinct coreference is where the independent
attribute names set as a whole corefers with the variable of the first argument, the
independent attribute names set, of the ‘Select Attribute’/4 literal.

There is an example of a query of ‘ID3 Tree’/4 and the result of that query in
Figure 7.2. 3. The classified examples are given to ‘ID3 Tree’/4 as an ordered pair in
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Figure 7.2. 2: ‘ID3 Tree’/4 clauses.
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the third argument. They have
an artificial root value of ‘top’
in the first element and the
example (function) table of
interest as the second ele-
ment. This function table rep-
resents a set of two examples,
where each example is a set
of three ordered pairs. The
result ordered pair has as its
second element the term built
by evaluating ‘ID3 Tree’/4
with the given data. The
“decision tree” is a triple that
has the artificial root value,
‘top’, as its first element, a
selected attribute as the sec-
ond element (‘cost’), and the

subtree for that selected attribute’s values as the third element. The subtree was built
in evaluating the ‘ID3 Trees’/4 literal in the “heterogeneous” clause of ‘ID3 Tree’/4.
This subtree is displayed as a table of ordered triples, where the first column is a
‘cost’ value, the second column is the dependent attribute name (‘decision’), and the
third column is the expected value of this dependent attribute given the independent
attribute values encountered in descending the tree. Thus, this result table specifies
that a high cost has a decision of ‘no’ and a low cost has a decision of ‘yes’.

The ‘*DELAY*’/2 clauses in Figure 7.2. 4  cause the interpretation of ‘ID3 Tree’/4
literals to be delayed whenever any of the first three arguments are unbound vari-
ables. Thus, this predicate is only interpreted when the set of independent attribute
names, the dependent attribute name, and the classified examples entry are at least
partially instantiated (i.e. non-variable).

The definition of ‘ID3 Tree’/4 is shown in Figure 7.2. 5. It classifies a set of exam-
ples on some selected attribute’s values and uses ‘ID3 Trees’/4 to process each of
these classified sets of examples, which will recursively invoke ‘ID3 Tree’/4. ‘Select
Attribute’/5 chooses an attribute which has the lowest “entropy”, calculated by
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Figure 7.2. 3: ‘ID3 Tree Query’/1 clause and the
result of evaluating this clause.
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‘Determine Entropies’/4. 
There is a potentially massive

inefficiency in the way SPARCL

interprets the upper clause of
Figure 7.2. 2. The unification of
the first argument of an ‘ID3
Tree’/4 literal with the first argu-
ment of this clause will bind the
variable in the upper portion to

some attribute name and bind the lower portion to the attribute names which are the
rest of the set. If this attribute name does not satisfy the ‘Select Attribute’/5 literal
when it is interpreted, then SPARCL

will backtrack all the way back to
the unification of the literal with
the clause and make another choice
such that some other attribute name
is bound to the variable and the
subset of the independent attribute
names without this newly chosen
attribute name is bound to the
lower part. This backtracking could
happen many times, until an
attribute name satisfactory to
‘Select Attribute’/5 is finally cho-
sen. All of this backtracking could
be avoided if the unification of the
parts of the partitioned set was
delayed until some portion of it
was needed. Since we have
‘*DELAY*’/2 specifications for
‘Select Attribute’/5  and ‘ID3
Trees’/4, we know that the
“selected attribute” need not be
bound before ‘Select Attribute’/5
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Figure 7.2. 4: ‘*DELAY*’/2 clauses for ‘ID3 Tree’/4

 

Figure 7.2. 5: ‘ID3 Trees’/4 and its ‘*DELAY*’/2
clauses.

ignorevariableignoreignoreID3 Trees

ignoreignorevariableignoreID3 Trees

ignoreignoreignorevariableID3 Trees

*DELAY*

ID3 Tree

unify

Decision Trees

Classified Examples

Dependent Attribute

Independent Attributes

ID3 Trees

ignorevariableignoreignoreID3 Tree

ignoreignorevariableignoreID3 Tree

ignoreignoreignorevariableID3 Tree

*DELAY*



can be interpreted. Also, we know that the “nonselected independent attribute names”
set must be bound before the ‘ID3 Trees’/4 literal can be interpreted. Thus, the pariti-
toned set unification should be done after ‘Select Attribute’/5 is interpreted and
before ‘ID3 Trees’/4 is interpreted. We imagine that SPARCL could do this kind of
analysis as part of its literal ordering, but it does not do so currently.

The definition of ‘Select Attribute’/5 is shown in Figure 7.2. 6. It finds an indepen-
dent attribute from the given independent attributes that has minimal entropy over the
given example set when compared to the all of the other given independent attributes
over that example set. It uses ‘Determine Entropies’/4 to develop an “entropy triple”
for each independent attribute, then the fails-unify-less constrains the specified triple
to be one for which there is no other triple with a lower entropy. Each triple consists
of an attribute name, the example classification for that attribute, and the entropy for
that attribute. There is a potential ordering bug in this clause. The fails/2 literal must
be interpreted after the ‘Determine Entropies’/4 literal, but there is nothing in the pro-
gram to enforce this. To fix this, the fails/2 literal can be placed in a new predicate’s
clause (say ‘Minimal Entropy Triple’/2) and this new predicate have a delay
specification that causes the appropriate ordering by delaying interpretation if either
argument is an unbound variable (i.e. (variable => ignore) and (ignore => variable)).

This clause demonstrates some of the expressiveness of partitioned sets. The par-
titioned set in the fourth argument of the ‘Determine Entropies’/4 literal is used to
simultaneously select an element from a set and to specify the subset of that set minus
the selected element. The ‘fails’/1 literal imposes a constraint on the relationship
between the selected element and the remaining subset. SPARCL solves this constraint
by searching through all of the possible choices of elements until one is found that is
acceptable (and remains prepared to keep looking if the later steps of the interpreta-
tion should fail).

The definition of ‘Heterogeneous Examples’/3 is shown in Figure 7.2. 7. It deter-
mines if a given set of examples contains at least two examples that have different
values for a given attribute.

The definition of ‘Homogeneous Examples’/3 is shown in Figure 7.2. 8. It deter-
mines if all of the given examples have the same value for a given attribute and
returns that common value. It uses the failure of ‘Heterogeneous Examples’/3 to
determine the homogeneity of the examples. Since all of the examples have the same
value on the given attribute, one of these examples is selected by the nested sets of
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the first argument and the value in this example is used as the returned value.
This predicate could be implemented more efficiently by making it gather the set

of all values on the given attribute and unify that set with a singleton set. The single
element in the singleton set is the common value. This is more efficient that the
implementation shown in that there are no “choice points” left behind in the interpre-
tation of this alternative implementation, but there is a (useless) choice point in the
implementation of Figure 7.2. 8, the selected example in the first argument. On back-
tracking, the interpreter would unify the “selected example” with each of the different
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Figure 7.2. 6: ‘Select Attribute’/5 predicate definition.
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examples of the given example set, getting the
same attribute value each time.

The definition of the ‘Determine
Entropies’/4 predicate is shown in Figure 7.2. 9

and Figure 7.2. 10. This predicate builds the set
“entropy triples” using an intensional set term
in its fourth argument. This term is the set of
all entropy triples such that the ‘unify’/2,
‘Classify Examples’/3, and ‘DE - Attribute
Values’/4 literals are simultaneously satisfied.
The ‘unify’/2 literal is true once for each ele-
ment of the given set of attribute names.

‘Classify Examples’/3
gives the example classifi-
cation for the attribute
name “selected” by the
‘unify’/2 literal. Finally,
‘DE - Attribute Values’/4
the entropy of the selected
attribute with respect to
the given dependent

attribute name using the example classification for the selected attribute. 
The literals in the intensional set are an example of ordering interpretation using

the ‘*DELAY*’/2 specifications. Since ‘Classify Examples’/3 is delayed if either of
its first or second arguments are unbound, it must be interpreted after the ‘unify’/2 lit-
eral. Since ‘DE - Attribute Values’/4 is delayed if any of its first three arguments are
unbound, it must be interpreted after ‘Classify Examples’/3.

The definition of the ‘DE - Attribute Values’/4 predicate is shown in
Figure 7.2. 11. The entropy for an attribute is the sum of the sub-entropies. There is
one sub-entropy for each entry in the given example classification of that attribute.
The sub-entropies are calculated by the ‘DE - Attribute Value’/4 predicate. The sub-
entropy values are collected in a multiset instead of a simple set so that duplicate val-
ues are “preserved” and thus all values calculated contribute to the sum of the sub-en-
tropies.
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Figure 7.2. 7: ‘Heterogeneous
Examples’/3 clause.

Figure 7.2. 8: ‘Homogeneous Examples’/3 clause.
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The definition of the ‘DE -
Attribute Value’/4 predicate
is shown in Figure 7.2. 12.
This predicate calculates the
local (or “sub”) entropy for
an entry of an example clas-
sification. The local entropy
is the product of three val-
ues; the “decision negative

entropy”, -1, and the ratio of the size of this classification entry’s example set to the
complete example set for which the entropy is being calculate. The “decision negative
entropy” calculation relies on the classification of the given example set on the
dependent attribute and is calculated by the ‘DE - Attribute Decisions’/3 predicate.

There is almost a bug in this clause. The ‘is’/2 literal’s second argument expres-
sion is the product (‘*’) of a set of values. This should be a multiset of values. It hap-
pens to be impossible for the three values to coincide, but if they did, the replication
due to this coincidence would be lost. Thus, if the “decision negative entropy” could
be -1, then the set of values becomes just {-1, Ratio} instead of the desired {-1, -1,
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Figure 7.2. 9: ‘Determine Entropies’/4 predicate definition (except delays).

Figure 7.2. 10: ‘*DELAY*’/2 clauses for ‘Determine
Entropies’/4.
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Ratio}. This produces dramatically different results. This can be fixed by replacing
the expression with nested multiplication ordered pairs, such as “* => DNE => (* =>
-1 => Ratio)” (DNE is the “decision negative entropy”). That the coincidence of these
values is impossible can be shown as follows: -1 and the ratio of two positive num-
bers can never coincide; and, the decision negative entropy must be negative and
must be greater than -1, and thus it cannot be the same as either of the other values in
the set.

The definition of the ‘DE - Attribute Decisions’/3 predicate is shown in
Figure 7.2. 13. The decision negative entropy is the sum of the decision classification
negative entropies. The multiset in the expression argument to the ‘is’/2 literal gathers
the decision classification negative entropies, one for each classification of the exam-
ples on the decision attribute (the first argument of ‘DE - Attribute Decisions’/3).

The definition of the ‘DE - Attribute Decision’/3 predicate is shown in
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Figure 7.2. 11: ‘DE - Attribute Values’/4 predicate definition.
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Figure 7.2. 14. This
predicate calcu-
lates the decision
classification neg-
ative entropy
given a set of
examples from a
decision (depen-
dent) attribute-
based classifica-
tion of an entry in
an independent
attribute-based
classification and
the cardinality of
the independent
attribute-based
classification
entry’s example
set. Let D be the
cardinality of the
set of examples in
the decision
attribute-based
classification entry
and A be the car-

dinality of the example set of the independent attribute-based classification entry. The
decision classification negative entropy (DCNE) is:

The definition of the ‘Cardinality’/2 predicate is shown in Figure 7.2. 15. This
predicate determines the cardinality (size) of a given set. The calculation is neither
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Figure 7.2. 12: ‘DE - Attribute Value’/4 predicate definition.
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iterative nor recursive.
An intensional multiset is
used in an unusual fash-
ion to count the number
of elements in the given
set. The body of the
intensional multiset is a
‘unify’/2 literal which
will be satisfied once for
each element of the given
set. The unusual aspect
of the intensional multi-
set is that there is no con-
nection between the tem-
plate and the body. There

will a ‘marker’ ur constant term in the resulting multiset for each solution of the
‘unify’/2 literal, thus the repetition Counter of the “‘marker’=>Counter” ordered pair
in the resulting multiset gives the cardinality of the given set.

This predicate definition is included here
because of its unusual use of the intensional
multiset and as an example of set processing
which is neither iterative nor recursive. SPARCL

should have ‘Cardinality’/2 as a built-in so that
its performance can be optimized, since it is a
commonly used application-independent predi-
cate.

Discussion. We defined the ID3 problem and
presented the SPARCL solution. The LISP and
PROLOG solutions are given in appendix 3. This
problem includes the classify examples
problem as a subproblem. This is substantially
larger solution than that for classify examples
alone: the ID3 solution uses 12 predicates
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Figure 7.2. 13: ‘DE - Attribute Decisions’/3 predicate def-
inition.

Figure 7.2. 14: ‘DE - Attribute
Decision’/3 predicate definition.
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implemented by 15 regu-
lar clauses and 18
‘*DELAY*’/2 clauses.

In the discussion of
the ‘ID3 Tree’/4 clause of
Figure 7.2. 2 we note that
SPARCL can interpret this
clause very inefficiently.
This is due to SPARCL uni-
fying parts of a parti-
tioned set before they are
“needed”, a kind of eager
unification. There is an
opportunity of a substantial performance improvement in some predicates if we
develop an appropriate notion of lazy unification for partitioned sets.

This clause demonstrates some of the expressiveness of partitioned sets in that it
uses a partitioned set to simultaneously select an element from a set and to specify the
subset of that set minus the selected element. The selection is arbitrary “don’t know”-
style nondeterminism—there is some element that satisfies an associated constraint,
but the programmer doesn’t know which one it is ‘a priori’. SPARCL applies the con-
straint to each element until if finds one that is satisfactory.

The literals in the intensional set of ‘Determine Entropies’/4, shown in
Figure 7.2. 9, are an example of ordering interpretation using the ‘*DELAY*’/2 speci-
fications. The delay specifications for ‘Classify Examples’/3 and ‘DE - Attribute
Values’/4 have the effect of forcing the interpreter to interpret the ‘unify’/2 literal
first, then the ‘Classify Examples’/3 literal, and finally the ‘DE - Attribute Values’/4
literal. This ordering in this particular clause need not have been considered by the
programmer, the programmer only needed to consider each of the component proce-
dures independently (when implementing those procedures) and make appropriate
delay specifications considering only the semantics of the procedure. This is a simpli-
fication over languages requiring explicit ordering where the programmer must deter-
mine the proper ordering herself in every grouping of literals. In SPARCL, the system
uses the programmer’s delay specifications to determine the proper ordering. This
provides the programmer a more abstract approach to ordering execution.
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Figure 7.2. 15: ‘Cardinality’/2 predicate definition.
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The ‘DE - Attribute Values’/4 predicate definition, in Figure 7.2. 11, shows a use
of an intensional multiset in an arithmetic expression. In this use it provides a very
compact expression of the sum of all of the values having a particular property (being
the result of a ‘DE - Attribute Value’/4 literal). The ‘DE - Attribute Value’/4 predi-
cate definition, in Figure 7.2. 12, shows that a partitioned set can be used as the argu-
ment to a commutative operator (‘*’ in this case), but that one must carefully analyze
whether the elements of the set might possibly take on the same value (and thus “dis-
appear” from the calculation). In this case we show that the three elements can not
take on the same value.

The definition of the ‘Cardinality’/2 predicate is shown in Figure 7.2. 15. This
predicate is should be implemented as a built-in in SPARCL, since it is semantically
simple, commonly useful (not problem domain specific), and could be enormously
speeded up by building it in. We show it here because this definition makes an
unusual use of the intensional multiset. It is used to count the elements of a set. It is
unusual because there is no connection between the intensional set template term (an
ur constant ‘marker’) and the literal in the body of the intensional set. There is one
instance of ‘marker’ in the resulting multiset for each solution of the body. Since
there is exactly one solution of the for each member of the set for which we want the
cardinality, then the count of ‘marker’ in the result multiset is the cardinality of inter-
est.

Coreference links provide various aids to the programmer in the various clauses
of the ID3 solution. As in the Classify Examples problem, they make it easy to con-
nect interior portions of complex data structures, and to readily see and understand
these connections. An example of this can be seen in Figure 7.2. 6 and the various con-
nections between elements in N-tuples in different sets. Different aspects of the same
complex structure can participate in different links, which helps to keep the represen-
tation compact. This can be seen in Figure 7.2. 2  in the first argument of the “hetero-
geneous” clause of ‘ID3 Tree’/4 where the partitioned set as a whole, an element of
the partitioned set, and a part of the partitioned set all are used in coreference links.
The number of uses and their locations of a term can be easily seen by “following”
the coreference link that connects to it, if any. It is apparent at a glance that all of the
coreferences in ‘Select Attribute’/5 in Figure 7.2. 6 are “simple” (i.e. only involve two
terms). In more complex coreferences such as those of “heterogeneous” clause of
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‘ID3 Tree’/4 in Figure 7.2. 2, it is still easy to see that the dependent attribute name in
the second argument is referenced in exactly four places, and where those four places
are.
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3. The WARPLAN Program.

David H. D. Warren devised the WARPLAN planning algorithm [Warren 1974]
specifically to take advantage of the abilities of PROLOG. This is an elegantly logical
approach to planning which he designed with the PROLOG programming language in
mind. It is readily adaptable to other logic programming languages such as SPARCL.
However, since it relies on the backtracking search and unification machinery of logic
programming, it is relatively difficult to implement in non-logic programming lan-
guages such as LISP. WARPLAN is an extension of the STRIPS approach to planning
[Fikes&Nilsson 1971], which in turn is based on Green’s resolution-based planner
[Green 1969] and makes use of the means-ends analysis pioneered by GPS (General
Problem Solving) [Ernst&Newell 1969].

WARPLAN solves planning problems—given a world model, a goal, and some
initial conditions, it finds a sequence of actions which achieve the goal from the ini-
tial conditions. The world model defines the types of actions possible and the possible
world states. A world state is a collection of facts (which are relations between
objects). A goal is a set of facts. An action is an instance of an operator (a type of an
action). The application of an action changes the world state to a new state. An opera-
tor is defined in three parts: the preconditions, the additions, and the deletions. Each
of these parts is a collection of (possibly nonground) facts. Typically the facts in these
three parts share some variables (e.g., doing an action may delete some fact in its pre-
condition). Instantiating an operator involves binding all of the variables in that
operator’s definition. This grounded form of the operator defines the action.

The standard example planning problem is the Blocks World. The world model is
very simple: there are four objects, blocks A, B, and C, and the floor; there is one
operator—move a block from one place to another; and there are two kinds of
facts—a block is on something, and a block is clear; there are three impossible types
of combinations of facts—a block can’t be clear and having something on it, a block
can’t be on two different things, and a block can’t be on itself. A simple interesting
initial state places A on the floor, C on A, and B on the floor. A classic goal to
achieve from this state is to have A on B, B on C, and C on the floor.

The WARPLAN algorithm builds a plan incrementally which “solves” each fact
in the goal. If a fact “holds” in the current plan, then it considers that fact solved. If a
goal fact is not solved, then it finds an action which adds that goal fact (i.e. the goal
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fact is in the additions part of the action’s definition), and then it finds a way to add
that action to the current plan such that that actions precondition facts are solved by
the portion of the plan preceding the action.

There are two ways to add the action to the current plan, either at the end (to
extend the plan), or inserting the action somewhere before the end of the plan. Adding
the action at the end is fairly simple (if possible at all); the major complication being
to avoid “deleting” any of the goal facts which have already been solved. Inserting
the action at an earlier point in the plan is more complicated: the current plan is
“retraced”, extending the set of solved facts to be protected so that the retraced
portion of the plan won’t be “broken” by the action(s) being inserted. When trying to
add an action, WARPLAN must ensure that the preconditions of that action are all
solved by the plan preceding the action. In doing this, WARPLAN may need to recur-
sively invoke the planner to find action sequences which solve some of the precondi-
tion facts.

The implementation of WARPLAN is complicated by allowing operator defini-
tions to have variables. These variables should be instantiated as late in the planning
process as possible, making the current plan actually represent a set of current plans
(all of the different plans which could be created by different instantiations of the
variables in the current plan). A plan with variables can be considered a play type.
This use of variables can substantially reduce the size of the space WARPLAN must
search since it can do much of its searching in the plan type space instead of directly
in the plan space.

The solution of the WARPLAN problem in SPARCL is discussed below, the solu-
tion in PROLOG is given in appendix 3 (“Example Programs”).

SPARCL solution. The SPARCL solution to the WARPLAN problem uses 20 predicates
which relate to each other as shown in Figure 7.3. 1 and Figure 7.3. 2. The overview
graph is split in two parts, with both parts showing the nodes for ‘Achieve’/5,
‘Retrace 1’/4, and ‘Equivalent’/2. The general WARPLAN solution is all of the predi-
cates shown in the overview except for ‘Can’, ‘Add’, ‘Del’, ‘Given’, and
‘Impossible’. These five predicates define a particular “world”. The versions of these
predicates for the “blocks world” definition are shown in Figure 7.3. 20, Figure 7.3. 21,
Figure 7.3. 22, and Figure 7.3. 23. A query clause which poses a blocks world planning
problem is shown in Figure 7.3. 24.
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Figure 7.3. 1 shows most of the ‘Retrace’/3 subgraph of the overview. One predicate
used by ‘Retrace’/3, ‘Consistent’/2, is in Figure 7.3. 2 instead. The ‘Achieve’/5 and
‘Retrace 1’/4 predicates use themselves (direct recursion). The ‘Retrace’/3 predicate
implements the retracing discussed above, splitting up the task among three other
predicates, ‘Retrace 1’/4, ‘Retrace 2’/4, and ‘Retrace 3’/4.

Figure 7.3. 2 shows the ‘Plan’/4 and ‘Preserves’/2 subgraphs of the overview.
‘Plan’/4 and ‘Holds’/2 are directly recursive, in addition ‘Achieve’/5 and ‘Retrace
1’/4 mentioned above. ‘Implied’/2 uses ‘Inconsistent’/2 as well as being used by
‘Inconsistent’/2. ‘Solve’/5 uses ‘Achieve’/5 (instead of the other way around as pic-
tured).
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Figure 7.3. 1: Overview of the SPARCL WARPLAN problem solution, part 1.
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The ‘Achieve’/5 “plan” clause is shown on the left side of Figure 7.3. 3. The
‘Achieve’/5 predicate finds a plan extending the given plan which achieves the given
action while preserving the given protected facts, where the “achieving” plan supports
the given action’s precondition. The given action’s precondition is specified by the
‘Can’/2 literal. The preservation of the given protected facts by the given action is
checked by the ‘Preserves’/2 literal. The action-enabling precondition facts and the
protected facts must be consistent (i.e. not be an impossible conjunction). This consis-
tency is checked by ‘Consistent’/2. Note that the second argument is the union of the
precondition facts and the protected facts, while the first argument is the precondition
facts. This separate set of precondition facts is for a performance enhancement of
‘Consistent’/2.

The “retrace” clause of the ‘Achieve’/5 predicate is shown on the right side of
Figure 7.3. 3. This clause retraces the given plan, making the last action of the given
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Figure 7.3. 2: Overview of SPARCL WARPLAN problem solution, part 2.
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plan the last
action of the
result plan
and finding
a plan which
achieves the
given action
based on the
retraced
plan. The
retraced
action is the
one which is
the last
action of the
given plan
and is the
last action of
the result
plan. Since
this action
will be done
after the
plan which
achieves the
given action,

there is a danger that the retraced action will undo the given goal which the given
action is supposed to be achieving. The ‘Preserved’/2 literal is used to ensure that this
doesn’t happen. The protected facts of the recursive use of ‘Achieve’/5 literal are the
given protected facts and precondition facts of the retraced action. Protecting the
retraced action’s precondition facts ensures that the retraced action can be done after
the resulting plan from the recursive ‘Achieve’/5 literal. The adjustment of the pro-
tected facts is done by the ‘Retrace’/3 literal.
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Figure 7.3. 3: ‘Achieve’/5 predicate definition.
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The definition for the ‘Plan’/4 predicate is shown in
Figure 7.3. 4. The given goals to be solved are solved one
at a time by recursive invocations of ‘Plan’/4. Each goal
solution is found by ‘Solve’/5 which produces updated
versions of the protected facts and plan. 

An example query of the ‘Plan’/4 predicate and the
result of that query are shown in Figure 7.3. 5. This query clause is used to query
‘Plan’/4 to find a plan which goes from the “start” initial state to a state which
includes “a is on b” and “b is on c”. The initial
state is “a is on 1”, “b is on 2”, “c is on a”, “c is
clear”, “b is clear”, and “3 is clear”. The num-
bers indicate places on the floor at which blocks
may be put. The letters are names of blocks. The
state and operation definitions are the “blocks
world” defined later in this section. This plan-
ning problem is referred to as the “Sussman
Anomaly”.  [Rich&Knight 1991] (p.344)
attributes this naming to the extensive analysis
of this problem in [Sussman 1975]. The result
shows a plan that achieves the goal state in a
table that is an N-tuple of N-tuples. The “root”
element of the table is ‘start’ (the “zero-th” ele-
ment  of the N-tuple of rows). The next 3 ele-
ments are “move c from a to 3”, then “move b
from 2 to c”, then “move a from 1 to b”.
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Figure 7.3. 4: ‘Plan’/4
predicate definition.

Figure 7.3. 5: Query for the
‘Plan’/4 predicate and the result
of evaluating this query.
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The definition for
the ‘Solve’/5 predicate
is shown in Figure 7.3. 6.
‘Solve’/5 is true for a
given goal if either that
goal “holds” for the
given plan or if there is
an action which “adds”
the given goal and
which can be “achieved”
with the given plan and
protected facts. The
“holds” clause uses a
‘Holds’/2 literal to
determine that the given
goal is satisfied by the
given plan. The
“achieves” clause uses
the ‘Add’/2 literal to
find an action which

adds the given goal, then uses the ‘Achieve’/5 literal to find a modification of the
given plan which includes the new action while preserving the given goal and the
given protected facts. For both clauses, the resulting protected facts are the given pro-
tected facts plus the given goal.

The definition of the ‘Holds’/2 predicate is shown in Figure 7.3. 7. The given fact
(goal) holds if the last action in the plan “adds” it, if the given goal is preserved by
the last action in the plan and the given goal holds for the preceding portion of the
plan, or if the given plan is a single item which is the name of a given state and the
given goal is in that state.

Retracing is implemented in four predicates. The ‘Retrace’/4 predicate definition
is shown in Figure 7.3. 8.  ‘Retrace’/4 produces a set of protected facts from given pro-
tected facts and a given action which preserves precondition facts for that given
action. The ‘Can’/2 literal provides precondition facts for the given action. The
‘Consistent’/2 literal ensures that the combination of the reduced preserved facts and
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Figure 7.3. 6: ‘Solve’/5 predicate definition.
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the precondition facts is consistent.
The definition of the predicate ‘Retrace 1’/4 is

shown in Figure 7.3. 9. ‘Retrace 1’/4 processes each
given protected fact recursively (directly or indi-
rectly through ‘Retrace 2’/5). Each given protected
fact is checked if it is added by the given action. If
it is, then it is not put in the resulting protected
facts, and ‘Result 1’/4 is invoked on the remainder
of the given protected facts. If the selected given
protected fact is not added by the given action, then
it is processed by ‘Retrace 2’/5, which ultimately
recursively invokes ‘Retrace 1’/4 on the remainder
of the given protected facts.

Figure 7.3. 10 shows the ‘*DELAY*’/2 facts for
the ‘Retrace’/3 and ‘Retrace 1’/4 predicates. The
delay facts for ‘Retrace’/3 specify that
interpretation of ‘Retrace’/3 literals is to be delayed
if either of the first two arguments are unbound
variables. The delay facts for ‘Retrace 1’/4 specify

that interpretation of ‘Retrace
1’/4 literals is to be delayed if
any of the first three arguments
are unbound variables.
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Figure 7.3. 7: ‘Holds’/2 predi-
cate definition.

Figure 7.3. 8: ‘Retrace’/4 predicate definition.
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The definition
of the ‘Retrace 2’/5
predicate is shown
on the right of
Figure 7.3. 11. This
predicate checks if
the given selected
protected fact is
equivalent to one of
the given precondi-
tion facts (fourth
argument to the
clause). If it is equivalent, then it is not put in the reduced protected facts and ‘Retrace
1’/4 is used to process the rest of the given protected facts. If the given selected pro-
tected fact is not equivalent to a precondition fact, then ‘Retrace 3’/5 is used to add
this fact to the result reduced protected facts and process the other given protected
facts.

The definition of ‘Retrace 3’/5 is shown on the left of Figure 7.3. 11. This predi-
cate simply puts the given selected protected fact in the result reduced protected facts
and uses ‘Retrace 1’/4 to process the other given protected facts to produce the rest of
the result reduced protected facts.

The definitions of the
‘Preserved’/2 and ‘Preserves’/2
predicates are shown in
Figure 7.3. 12. These two predi-
cates do essentially the same
thing, with the difference that
‘Preserved’/2 takes a single
fact as its first argument and
‘Preserves’/2 takes a set of
facts as its first argument. Both
predicates check that the given
action does not “delete” the
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Figure 7.3. 9: ‘Retrace 1’/4 predicate definition.

Figure 7.3. 10: ‘*DELAY*’/2 facts for ‘Retrace’/3 and
‘Retrace 1’/4 predicates.
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given fact or
facts. Thus, the
given fact (or
facts) is pre-
served by the
given action
(i.e. not
deleted). The
delay specifica-
tions cause lit-
erals of either
predicate to be
delayed if either
their first or
second argu-
ments are
unbound vari-
ables.

The defini-
tion of the
‘And’/3 and
‘And 1’/3 predi-
cates are shown
in Figure 7.3. 13.
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Figure 7.3. 11:‘Retrace 2’/5 and ‘Retrace 3’/5 predicate definitions. 

  
Figure 7.3. 12: ‘Preserved’/2 and ‘Preserves’/2 predicate definitions.
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‘And’/3 combines a given
goal (or “fact”) and a given
set of protected facts to
produce a new set of pro-
tected facts. The given goal
is combined with the given
protected facts if it is not
equivalent to some fact in
the given protected facts.
‘And 1’/3 adds the given
goal to the given fact set.

The definition of
‘Consistent’/2 is on the left
of Figure 7.3. 14. It checks
that there are no impossible
combinations in the given
combined facts. It deter-
mines this by checking if
‘Inconsistent’/2 fails.

The definition of the ‘Inconsistent’/2
predicate is on the right Figure 7.3. 14. It is
true when there is an impossible combina-
tion of facts in the given combined facts.
The given new facts (which are included
in the given combined facts) are used to
limit the number of impossible combina-
tions which are checked—only impossible
combinations which include a new fact are
tried. This predicate assumes the facts in
the combined facts that are not the new
facts have already been checked for con-
sistency and thus that any impossibility
which is to be discovered must include
one or more new facts. ‘Inconsistent’/2
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Figure 7.3. 13: ‘And’/3 and ‘And 1’/3 predicate defini-
tions.

Figure 7.3. 14: ‘Consistent’/2 and
‘Inconsistent’/2 predicate definitions.
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uses ‘Relevant Impossible’/2 to find an impossible fact “pattern” (set of impossible
facts which may contain unbound variables, i.e. be nonground). It uses ‘Implied’/2 to
see if the relevant impossible fact set is “implied” by the given combined facts.

The definition of the ‘Relevant Impossible’/2 predicate is shown in Figure 7.3. 15.
It finds an impossible fact set which is “rel-
evant” to the given new facts. It uses the
‘Impossible’/1 literal to find impossible fact
sets. The ‘Relevant’/2 literal determines if
the given new facts are “relevant” to an
impossible fact set.

The definition of the ‘Relevant’/2 predi-
cate is shown in Figure 7.3. 16. It is true if
the given new fact set has some fact in com-
mon with the given impossible fact set.
‘Relevant’/2 determines this using an
‘Intersect’/2 literal. The ‘Intersect’/2 literal
is “wrapped” by two ‘fails’/1 predicates.
This is logically similar to the ‘Intersect’/2
literal by itself, that is the ‘fails’ of ‘fails’ of
‘Intersect’ is true exactly when ‘Intersect’
alone is true. The difference is that using
the double ‘fails’ construction undoes any
variable bindings which the interpretation
of the ‘Intersect’/2 literal may have made.
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Figure 7.3. 15: ‘Relevant Impossible’/2 and ‘Relevant’/2 predicate definitions.

Figure 7.3. 16: ‘*DELAY*’/2 facts for
‘Consistent’/2, ‘Inconsistent’/2,
‘Intersect’/2, ‘Relevant’/2, and
‘Implied’/2.
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This is a performance optimization
which avoids the need for a choice point
in ‘Intersect’/2. The binding isn’t neces-
sary since the later use of the
‘Implied’/2 predicate will do whatever
bindings are required to establish an
impossibility. The ‘Intersect’/2 and
‘Implied’/2 predicate definitions are
shown in Figure 7.3. 17.

The definition of the ‘Equivalent’/2
predicate is shown in Figure 7.3. 18. This
predicate establishes that two terms are
equivalent if they cannot be unified with
terms which are in different parts of a
partitioned set. Since parts of a partitioned set are disjoint, the terms in the different
parts must be different. The only way they can not be different is if they are identical.
Thus for two terms to be equivalent they must be identical—if they contain variables,
the same variable must be in cor-
responding positions of the
terms. Two terms may unify and
not be equivalent—they may
have some different variables but
in positions that make some
equivalence-inducing substitu-
tion possible. If two terms are
equivalent then they are unifi-
able, but not the converse. The
delay specification causes the
interpretation of an
‘Equivalent’/2 literal to be
delayed if either of its arguments
are unbound variables.

The definition of the ‘Union
Facts’/3 predicate is shown in
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Figure 7.3. 17: ‘Implied’/2 and
‘Intersect’/2 predicate definitions.

Figure 7.3. 18: ‘Equivalent’/2 predicate defini-
tion.
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Figure 7.3. 19. The
‘Union Facts’/3 pred-
icate is the same as
the ‘Union’/3 predi-
cate discussed in
chapter 3 (“Design
Elements”), except
that ‘Union Facts’/3
has a delay specifica-
tion. This delay spec-
ification causes the
interpretation of
‘Union Facts’/3 to be delayed if either of its first two arguments are unbound vari-
ables.

The definition for the ‘Add’/2 predicate of the blocks world is shown in
Figure 7.3. 20. These clauses specify that “move A from B to C” adds the facts “A is
on C” and “B is clear”. An ‘Add’/2 literal is delayed if both of its arguments are
unbound variables.

The definition of the ‘Can’/2 predicate of the
blocks world is shown in Figure 7.3. 21. This predicate
specifies that we can “move A from B to C” if “A is
on B, A is clear, and C is clear”, where B and C must
be different.

The definition of the ‘Del’/2 predicate is shown
in Figure 7.3. 22. This predicate specifies that “move
A from B to C” deletes the facts “A is on B”, and “C
is clear”. A ‘Del’/2 literal is delayed if its first argu-
ment is an unbound variable.

The definition of ‘Given’/2 for the blocks world
is shown in Figure 7.3. 23. This associates an initial
state with the name “start”. The initial state is “a is on
1”, “b is on 2”, “c is on a”, “c is clear”, “b is clear”,
and “3 is clear”. The numbers indicate places on the
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Figure 7.3. 19: ‘Union Facts’/3 predicate definition.

Figure 7.3. 20: ‘Add’/2 predi-
cate definition.
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floor at which blocks
may be put. The letters
are names of blocks.
Interpretation of a
‘Given’/2 literal is
delayed if the first argu-
ment is an unbound vari-
able.

The definition of the
‘Impossible’/1 predicate
for the blocks work is
shown in Figure 7.3. 24.
The clauses for this
predicate define three
different impossible fact patterns: “A on B” and “clear B”; “A on X” and “A on Y”
where X and Y are different; and “A on A”.

Discussion. In this section we have presented the WARPLAN problem and discussed
the SPARCL solution of it. This implementation is substantially larger than that for ID3:
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Figure 7.3. 21: ‘Can’/2 predicate definition.

Figure 7.3. 22: ‘Del’/2 predicate
definition. Figure 7.3. 23: ‘Given’/2 predicate definition.
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the WARPLAN “planner” has 15 predicates imple-
mented by 23 regular clauses and 34 ‘*DELAY*’/2
clauses (compared to ID3’s 15 regular clauses and 18
‘*DELAY*’/2 clauses). There are an additional five
predicates defined in specifying the “blocks world”
domain for the planner. These are implemented by 7 reg-
ular clauses and 4 ‘*DELAY*’/2 clauses.

The implementation of WARPLAN in SPARCL is a
meta-interpreter for planning. The SPARCL implementa-
tion differs from the PROLOG one in several ways, one is
that the SPARCL implementation works with unordered
sets of facts, where in the PROLOG implementation the
facts are ordered. The SPARCL implementation works with
these sets in several places: ‘Solve’/5, ‘Holds’/2,
‘Retrace 1’/4, ‘Retrace 2’/5, ‘Preserved’/2, ‘Preserves’/2,
‘And’/3, ‘And 1’/3, ‘Intersect’/2, ‘Implied’/2, ‘Union
Facts’/3, ‘Can’/2, ‘Del’/2, and ‘Given’/2. In each of these
places it allows for a simpler expression compared to the
ordered representation of facts.

The ‘if’/3 built-in predicate is used in the definitions of ‘Retrace 1’/4 and ‘Retrace
2’/5, shown in Figure 7.3. 9 and Figure 7.3. 11. This allows us to implement a “case”
where the cases are tested only once, rather than testing a case and then testing its
negation, which a “purely” logical approach in SPARCL would require.

The ‘Preserves’/2 predicate in Figure 7.3. 12 provides an example of using a parti-
tioned set in a ‘*TERM*’/1 literal to specify that two sets must be disjoint. The
‘*TERM*’/1 literal is a “dummy” that is there simply to provide a place to put the
constraining partitioned set. The ‘*TERM*’/1 predicate is a built-in that is always
true. It was defined for just this purpose, as a holder for terms. The partitioned set is
only interesting in this clause for the requirement that its parts be disjoint, the union
of the parts is not used. We are considering modifying the representation of
‘*TERM*’/1 literals so that only the term in its argument is displayed “free floating”
among the literals of the clause body. This would require various mostly minor
adjustments to the editing and display systems.
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Figure 7.3. 24:
‘Impossible’/1 predicate
definition.
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The ‘Equivalent’/2 predicate in Figure 7.3. 18  shows another use of a partitioned
set for the disjointness constraint on its parts. This predicate essentially implements
the ==/2 (“identical” terms) predicate of PROLOG. without introducing any new “extra-
logical” predicates. This says that two terms are identical if it is not possible to unify
them with two terms which could possibly be distinct. The “two terms which could
possibly be distinct” portion of the predicate is provided by the partitioned set in the
argument to ‘*TERM*’/1.

The ‘Can’/2 predicate in Figure 7.3. 21 is a final example of the use of a parti-
tioned set for its part-disjointness constraint, where we require that the block that is
being moved must be different from the place to which it is being moved.

A full use of the partitioned set constraints, both disjointness and union, is seen in
the definition of ‘Impossible’/1 in Figure 7.3. 24. We use the union constraint to
require that two “on” facts are in the same set of facts. The disjointness constraint is
used to require that the third elements of these are different. They must be different
since the other two elements are specified to be the same (same name for the first ele-
ments and a coreference link for the second elements) and the two facts are in differ-
ent parts of the partitioned set.

The use of coreference links provides the same services in the WARPLAN solution
as it did in the ID3 solution: easy decoding of links involving several terms such as
the four term links in the “plan” clause of ‘Achieve’/n in Figure 7.3. 3, easy recogni-
tion that all links are simple such as in ‘Plan’/4 in Figure 7.3. 4, and connections
between interior portions of complex data structures as in Figure 7.3. 21. The clauses
of this solution did not make any use of connecting to multiple aspects of the same
complex term.
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4. Self Interpreter.

SPARCL is designed to help in using exploratory programming to find solutions to
complex programming problems. A major technique for working on a complex prob-
lem is to create a new programming language specialized for that problem. This is
called metalinguistic abstraction by Sussman and Abelson. If we have an implementa-
tion of a language and write an interpreter for a second language in the first language,
then the second language is an embedded language. If the interpreter is for the lan-
guage in which it is written, then it is a metacircular interpreter since the language is
now embedded in itself.1

Metacircular interpreters, or simply “meta-interpreters”, are a powerful program-
ming technique particularly appropriate to exploratory programming. Leon Sterling
and Ehud Shapiro describe the value of meta-interpretation as follows:

The ability to write a meta-interpreter easily is a very powerful feature a programming
language can have. It enables the building of an integrated programming environment and
gives access to the computational process of the language.2

A meta-interpreter in a logic programming language can be considered an imple-
mentation of a meta-level architecture for a reasoning system. Meta-level
architectures are a popular approach to implementing reasoning systems because they
separate the domain information from the control information, and because the con-
trol information is explicitly represented instead of being implicit in the implementa-
tion of the system. Advantages stemming from this separate and explicit representa-
tion of control information are summarized by [van Harmelen 1989]. Thus another
value of the ability to write a meta-interpreter easily is that it makes implementing
meta-level architectures easier. A classification of meta-level architectures is given in
[van Harmelen 1989].

A “self” interpreter is the most basic of meta-interpreters, it is an interpreter
which interprets the language in which it is written without adding to it or changing it
in any way. A debugger written in the language for which it is a debugger is an exam-
ple of a more complex kind of meta-interpreter, one that interprets the language in
which it is written and adds additional services such as printing out execution traces

1. See pages 294-295 of [Abelson et al. 1985].
2. p. 303 in [Sterling&Shapiro 1986].
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or interactive control of program interpretation. In this section we present a self inter-
preter for SPARCL. Since self-interpretation poses unique problems for each program-
ming language in which it is solved (and it cannot be solved “easily” in all program-
ming languages), we have not provided solutions in PROLOG or LISP (although self-in-
terpreters are certainly possible in those languages).

The classification of meta-level architectures by van Harmelen divides them into
three kinds based on “where” they do inferences: object-level inference, mixed-level
inference, and meta-level inference. The meta-level inference category is divided into
three sub-categories: monolingual, amalgamated, and bilingual. The ‘Self
Interpreter’/1 predicate implements a monolingual meta-level inference system. A
monolingual implementation uses the object-level language as the language in which
the meta-level inference is implemented. In this case no distinction is made between
object-level and meta-level expressions. A different approach to Self Interpreter could
have used meta-level constants to represent object-level variables and provided some
naming scheme to translate between meta-level and object-level expressions. This
would be a bilingual approach. The amalgamated approach is one where the two lan-
guages are the same, but there is still a naming distinction.

The overview of the self interpreter is shown in Figure 7.4. 1. This version of the
self interpreter does not quite do the whole language, although it is simple to extend
it. The extensions are all in the ‘Self Interpreter Simple’/1 predicate.

The self interpreter is mostly contained in the predicates ‘Self Interpreter’/1, ‘Self
Interpreter Literal’/1, ‘Self Interpreter Literal 1’/1, and ‘Self Interpreter Simple’/1.
The other predicates are all part of the handling of delaying literals. The ‘Self
Interpreter’/1 predicate is directly recursive. The ‘Self Interpreter Literal 1’/1 predi-
cate uses ‘Self Interpreter’/1. Other directly recursive predicates are ‘Analyze
Literal’/3 and ‘Match Type NTuples’/2.
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Figure 7.4. 1: Overview of the implementation of the SPARCL self interpreter.
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The definition of the ‘Self
Interpreter’/1 predicate is shown in
Figure 7.4. 2. This predicate is true
when all of the given literals are
solved. It solves a set of literals by
solving any one of them with a
‘Self Interpreter Literal’/1 literal
and solving the rest of them with a
‘Self Interpreter’/1 literal. If there
are no literals to solve, then ‘Self
Interpreter’/1 is true.

The definition of the ‘Self Inter-
preter Literal’/1 predicate is in Figure 7.4. 3.
A literal is solved if the literal is not delayed
and ‘Self Interpreter Literal 1’/1 holds for
that literal. The ‘Self Interpreter Literal 1’/1
predicate holds in one of seven ways: (1)
there is a clause with a head that unifies with
the literal, and the body of that clause is
solved (in Figure 7.4. 4); (2) the literal is a

“simple” (built-in) literal; (3) the literal is a 2-tuple with ‘fails’ as the first element,
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Figure 7.4. 2: ‘Self Interpreter’/1 predicate def-
inition.

Figure 7.4. 3: ‘Self Interpreter
Literal’/1 predicate definition. 

Figure 7.4. 4: ‘Self Interpreter Literal 1’/1 predicate definition, part 1.
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and ‘fails’/1 of ‘Self
Interpreter’/1 applied
to the second ele-
ment of the literal
holds (in
Figure 7.4. 4); (3) the
literal is a 5-tuple
with ‘setof’ as its
first element and
‘setof’/4 holds with a
first argument the
same as the second
element, second
argument same as
the third element,
third argument a set
containing an
ordered pair of ‘Self
Interpreter’ and the
fourth element, and
the fourth argument same as the fifth element (in Figure 7.4. 5); (5) the same approach
as for (4), but with ‘multisetof’ instead of ‘setof’ (in Figure 7.4. 5); (6) the literal is a
4-tuple with its first element ‘if’, and ‘if’/3 holds with first argument the a set contain-
ing a 2-tuple of ‘Self Interpreter’ and the second element of the literal, the second
argument is a set containing a 2-tuple of ‘Self Interpreter’ and the third element of the
literal, and the third argument similarly wraps the fourth element of the literal (in
Figure 7.4. 6); and, (7) the literal is a 3-tuple with ‘ordered_disjunction’ as its first ele-
ment and ‘ordered_disjunction’/2 holds with its first argument a set containing a 2-
tuple of ‘Self Interpreter’ and the second element of the literal and its second argu-
ment a set containing a 2-tuple of ‘Self Interpreter’ and the third element of the literal.

The ‘Self Interpreter Simple’/1 predicate is shown in Figure 7.4. 7. This predicate
defines several of the “built-in” predicates of SPARCL. We show a selection of the
built-ins; those that are used by the Self Interpreter and two additional common ones
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Figure 7.4. 5: ‘Self Interpreter Literal 1’/1 predicate definition,
part 2.
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(‘unify’/2 and ‘is’/2).
The definition of the

‘Not Delayed’/1 and
‘Delay’/1 predicates are
shown in Figure 7.4. 8. A
literal is “not delayed” if
there is no delay specifica-
tion that matches it. The
‘Delay’/1 predicate tries to
find a delay specification
that matches the given lit-
eral. It uses ‘Analyze
Literal’/3 to extract the
predicate name and the lit-
eral argument types from
the given literal. It uses
‘Match Types’/2 to deter-
mine if there is a delay
specification for the
extracted predicate name
with matching types.

The definition of the
‘Analyze Literal’/3 predicate is shown in Figure 7.4. 9. ‘Analyze Literal’/3 processes
each of the given literal argument types to determine the appropriate type (“variable”,
“nonground”, or “ground”). The result, in the third argument, is a list of argument
types corresponding to the literal argument terms (i.e. an N-tuple with first element of
“empty_list”).

The definition of the ‘Argument Type’/2 predicate is shown in Figure 7.4. 10. This
predicate determines if the given term in the first argument is “variable”, “ground”, or
“nonground”. It uses the two built-in predicates ‘is_variable’/1 and ‘is_ground’/1 to
do this.

The definition of the ‘Match Types’/2 predicate is shown in Figure 7.4. 11. This
predicate is true if there is a delay specification for the given predicate name that has
argument type specifications matching the given literal argument types. The delay
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Figure 7.4. 6: ‘Self Interpreter Literal 1’/1 predicate defini-
tion, part 3.
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specification is found by the ‘clause’/1 predicate
with a suitably constructed clause term. The argu-
ment type matching is done by ‘Match Type
NTuples’/2.

The definition of the ‘Match Type NTuples’/2
predicate is shown in Figure 7.4. 12. This predicate
is true when each of the corresponding elements of
the literal argument types list and the type specifi-
cations N-tuple match. A literal argument type and
an argument type specification match if ‘Match’/2
is true of them.

The definition of the ‘Match Type’/2 predicate
is shown in Figure 7.4. 13. A literal argument type
and a type specification match if they are the same
or if the specification is “ignore”.

Figure 7.4. 14 shows the ‘*DELAY*’/2 facts for
the predicates of the sparcl self  interpreter. ‘Self
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Figure 7.4. 7: ‘Self Interpreter Simple’/1 predicate definition.

Figure 7.4. 8: ‘Not Delayed’/1
and ‘Delay’/1 predicate defi-
nitions.

Match Types

Analyze Literal

Delay

fails
Literal

Not Delayed

Delay

Self Interpreter Simple

unify unifyisis

Self Interpreter Simple

Self Interpreter Simple

is_ground is_ground

Self Interpreter Simple

is_variable is_variable

Self Interpreter Simple

fails_unifyfails_unify
Self Interpreter Simple

clause clause



Interpreter’/1, ‘Self Interpreter Literal’/1,
and ‘Not Delayed’/1 literals are delayed
if their single argument is an unbound
variable. An ‘Analyze Literal’/3 literal is delayed if its first argument is an unbound
variable. A ‘Match Type NTuples’/2 literal is delayed if either of its arguments is
nonground, i.e. is a term that contains an unbound variable.

Discussion. The SPARCL self
interpreter is reasonably
short, but perhaps not as short
as one might expect. A self-
interpreter for “pure” PROLOG

is just three short clauses as
shown in Figure 7.4. 15.
But a PROLOG interpreter that
handles the control predicates
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Figure 7.4. 9: ‘Analyze Literal’/3 pred-
icate definition.

Figure 7.4. 10: ‘Argument Type’/2 pred-
icate definition.

Figure 7.4. 11: ‘Match Types’/2 predicate definition.
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of the language, particularly cuts (“!”),
is much longer. This is shown in
Figure 7.4. 16.

This solution for the PROLOG self
interpreter relies on the underlying
PROLOG system implementing ancestor
cut “!(Goal)”, which is not the case in
Edinburgh-type PROLOGs. For an Edin-
burgh-type PROLOG (such as LPA’s
MACPROLOG32) the implementation of

cut is substantially more complicated. The additional length of ‘Self Interpreter’/1 is
due to the implementation of the
SPARCL meta-predicates and
delays.

The coreference links help to
make it easy to see the “wrap-
ping” of the elements of the
meta-predicates in the implemen-
tation of ‘Self Interpreter Literal
1’/1 by connecting a variable for
an element with another variable
buried in an N-tuple in a part of a
partitioned set in an argument of
a literal. This can be seen in
Figure 7.4. 4, Figure 7.4. 5, and
Figure 7.4. 6.

The ‘Argument Type’/2 pred-
icate introduces the
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Figure 7.4. 12: ‘Match Type NTuples’/2 pred-
icate definition.

 
Figure 7.4. 13: ‘Match Type’/2 pred-
icate definition.

Figure 7.4. 14: ‘*DELAY*’/2 facts for the ‘Self
Interpreter’/1, ‘Self Interpreter Literal’/1, ‘Not
Delayed’/1, ‘Analyzed Literal’/3, and ‘Match
Type NTuples’/2 predicates.
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‘is_variable’/1 and ‘is_ground’/1 built-in predicates.
These are extra-logical predicates are necessary to look
at the current “state” of the interpretation for determin-
ing whether or not to delay a literal’s interpretation.

5. Assessment

This chapter presents SPARCL programs solving the ID3, WARPLAN, and Self
Interpreter problems. Also, solutions in LISP and PROLOG (as well as SPARCL) are pre-
sented for the classify examples portion of the ID3 problem.

We argue that comparing the SPARCL

solutions to those in LISP and PROLOG

shows the SPARCL solution to be more
understandable than the solutions in the
other two languages. This improved
understandability is due to its visual rep-
resentation of coreference, its special-
ized representation and handling of sets,
and its comparative brevity. The SPARCL

solutions of the other example problems
provide additional evidence of SPARCL’s
brevity and understandability.

We discussed the value of meta-in-
terpretation in the presentation of the
‘Self Interpreter’/1 predicate, which is a
metacircular interpreter for SPARCL. This
proves the ability of SPARCL to fully
describe itself. Since SPARCL is a logic
programming language, this shows that
a variety of meta-level architectures for
reasoning systems can be fairly directly
implemented in SPARCL. The WARPLAN
system is an example of a meta-inter-
preter that implements a meta-level
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solve(true).
solve((A, B)) :-
          solve(A),
          solve(B).
solve(A) :-
        clause(A, B),
         solve(B).
Figure 7.4. 15: Self-in-
terpreter for “pure” PRO-
LOG.

solve(true).
solve((A, B)) :-
          solve(A),
          solve(B).
solve(!) :-
          !(reduce(A)).
/* ‘\+’/1 is the “not” or “fails”
predicate in Edinburgh-type PROLOG.
*/
solve(\+ A) :-
        \+ solve(A).
/* Vars is a list of the existentially
qualified vars in A.
*/
solve(setof(X, Vars^A, Xs)) :-
          setof(X, Vars^solve(A), Xs).
/* if-then-else construct. There is an
implicit cut after If.
*/
solve((If -> Then ; Else)) :-
          solve(If)
             -> solve(Then)
          ;
         solve(Else).
solve((A; B)) :-
          solve(A)
          ;
         solve(B).
solve(A) :-
         reduce(A).

reduce(A) :-
         clause(A, B),
         solve(B).
Figure 7.4. 16: Self-interpreter for full
PROLOG. (Supposing the PROLOG sup-
ports ancestral cuts “!(Goal)”.)



architecture for reasoning about problems in planning actions.
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Chapter 8
Objective Analytic Assessment of SPARCL

There are many programming languages and it is difficult to determine the effec-
tiveness of any one of them, absolutely or with respect to other programming lan-
guages. This is a notoriously difficult problem for programming languages with tex-
tual representations. The problem is additionally difficult for those visual representa-
tions. This chapter develops and applies two techniques for objectively analytically
assessing programming languages. These are program size and diagrammatic appro-
priateness. We first argue for the use of program size for solutions to selected pro-
gramming problems as a rough indicator of comparative quality of the programming
languages in which those solutions are implemented. Then, we argue for the impor-
tance of diagrammatic appropriateness in assessing the quality of a visual representa-
tion. The rest of the chapter develops these two approaches, applies them, and draws
some conclusions about SPARCL based on this application.

Programming language quality and program size. We base our assessment of pro-
gramming language quality on some very general ideas of what attributes a program-
ming language should have. Ravi Sethi [Sethi 1989] provides a concise description of
this:

The language must help us write good programs, where a program is good if it is easy to read,
easy to understand, and easy to modify.1

With this idea of what is “good” in programming languages, we can determine what
to measure. Norman Fenton [Fenton 1991a] provides a framework for software mea-
surement which we can use in developing our assessment techniques. Fenton refers to
[Finkelstein 1984] and [Krantz et al. 1971] for the mathematical foundations of mea-
surement theory on which his framework is based. Fenton’s framework is as follows2:

1. p. 4 of [Sethi 1989].. Performance is not in this list, although one might expect it to be. Perfor-
mance is primarily an attribute of an implementation of a programming language. It is only very
indirectly an attribute of a language definition.

2. p.14 of [Fenton 1991a]
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...we know that the first obligation in any software measurement activity is to identify the
entities and attributes of interest which we wish to measure. In software, there are three
classes of entities whose attributes we may wish to measure. These are:

• Processes which are any software related activities: these normally have a time factor.
• Products which are any artefacts, deliverables or documents which arise out of the

processes.
• Resources which are the items which are inputs to processes.
Anything that we are ever likely to want to measure or predict in software is an attribute

of some entity of the above three classes.
We make a distinction between attributes which are internal and external:

• Internal attributes of a product, process, or resource are those which can be measured
purely in terms of the product, process, or resource itself.

• External attributes of a product, process, or resource are those which can only be
measured with respect to how the product, process, or resource relates to its environ-
ment.

Our goal in this chapter is to measure the quality of a programming language. A pro-
gramming language is neither a process nor a product. However, programs written in
a programming language are products, and working with programs written in a pro-
gramming language is a process. In Fenton’s framework, the programming language
is a resource, an input to the process of working with programs. A programming lan-
guage is an abstract notion, so perhaps the programming language definition and
program development environment are more accurately resources for the process of
working with programs. The programming language definition (understood broadly
as including the formal specification of the language as well as the description of the
implementation of the language) is used by a programmer when creating a
program—this is how the programmer knows what can and cannot be done within the
programming language. The program development environment is used by the pro-
grammer whenever a program is viewed or modified.

Sethi’s definition of what a language should provide provides a definition of a
high quality language—the extent to which a language fulfills Sethi’s criteria is the
quality of that language. We do not know how to measure the quality of a program-
ming language directly, so we use Sethi’s definition to provide an indirect measure-
ment of programming language quality. Thus, the measurement of the quality of a
language is based on the measurement of the attributes of three processes: ease of
reading programs, ease of understanding programs, and ease of modifying programs.
Since the quality of a programming language and these three process attributes all
involve people interacting with the object being measured, these attributes are all
external attributes.
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We have identified the external attribute we need to measure (quality) and the
object (programming language) and object type (resource) with which the attribute is
associated. Also, we have determined that this measurement must be indirect; it is
based on measurements of three external process attributes (readability, understand-
ability, and modifiability). Our next step is to consider analytic versus experimental
approaches to measurement of these process attributes.

Two main approaches used in assessing programming languages are the analytic
and experimental approaches. In the analytic approach, one analyzes descriptions of a
programming language and programs written in that language. In the experimental
approach one runs empirical studies involving users using (one or more implementa-
tions of) the programming language.

Each of these approaches has its strengths and weaknesses. The experimental
approach has the advantage that is measures the desired attributes of a programming
language in a fairly direct fashion. However, this approach is very sensitive to the
particular implementation of the target programming language and the hardware and
software environment in which the experiments are conducted. These aspects of the
experiments are difficult to factor out to develop a critique of the “underlying” pro-
gramming language. Also, this approach is expensive in several ways: it is time con-
suming for the researchers organizing and administering the experiments and for the
people who are the subjects of the experiments; also, it requires a highly “polished”
implementation to minimize the negative environmental effects.

The analytic approach is much less subject to programming language implementa-
tion details than the experimental approach. However, the analytic approach produces
only indirect measures. Thus, we must infer assessments, a process fraught with diffi-
culties of its own. However, this approach is appealing for its broad and relatively
easy application. 

Using Sethi’s definition of a good programming language and Fenton’s frame-
work for software measurement, we identified three process attributes which give us a
measurement of the quality of a programming language. Since these are attributes of
processes, they can only be measured directly (if at all) by appropriately constructed
experiments. There is no static object which can be measured to provide direct assess-
ments of readability, understandability, and modifiability. Further, people’s actions
and responses must be involved in any direct assessment of these attributes, and this
also prohibits the direct analytic measurement of these attributes. Thus, to have an
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analytic measurement of these attributes, we must base the definition of these mea-
surements on some other attribute. The attributes we offer for this purpose are the size
of a program and the diagrammatic/linguistic effectiveness.

The attributes which we will measure must have certain qualities: they must be
analytic, they must apply to programming languages of either visual or textual repre-
sentation, they must apply to programming languages of any paradigm (e.g., logic,
functional, data-flow, imperative/procedural, concurrent), and they must relate to the
three process attributes (readability, understandability, modifiability). There are many
measurements of programs which have been proposed. Generally, these are not
usable for our purposes. Measurements which rely on particular program abstractions
such as control flow graphs, search trees or data flow graphs are not applicable across
all programming paradigms: control flow graphs apply to procedural/imperative lan-
guages but not to logic programming languages, search trees apply to logic program-
ming languages but not to procedural/imperative programs, data flow graphs and vari-
able set/use analyses are inappropriate for logic programming. Also, measurements
that rely on program abstractions and are thus insensitive to the concrete representa-
tion of a program do not distinguish between visual and textual representations. Thus,
if one has a visual PROLOG and a textual PROLOG such that the visual PROLOG has a
simple mapping into the textual PROLOG, then a concrete-representation-insensitive
measurement would show no difference between these visual and textual representa-
tions of a PROLOG program. The only thing which programs in all programming lan-
guages must share is that they have some intended-for-human-manipulation concrete
representation and that they are executable. So, an attribute which can be measured
for a program (as opposed to the process of that program’s execution) in any pro-
gramming language must be an attribute of the intended-for-human-manipulation
concrete representation of that program. One of the most basic attributes of the con-
crete representation of a program is its size. There is an approximately inverse mono-
tonic relationship between the size of the concrete representation of a program and
the three process attributes of interest: the larger the concrete representation of a pro-
gram, the less readable (since there is more to read), the less understandable (since
there is more to understand), and the less modifiable (since there may be more to
change, and it is more difficult to determine the ramifications of a proposed change).

The step from the desired process attribute measurements for some programs to
the programming language quality measurement is a large one. This is a generaliza-

276



tion from some examples
to the programming
languages as wholes.
Any generalizations we
draw in this fashion are
at best provisional and
must be heavily
qualified. The best we
can hope for in this
chapter is to provide evi-
dence for some conclu-
sions about relative
qualities of a few pro-
gramming languages in a
few programming problem domains.

An attribute of the programming language definition that we measure is the dia-
grammatic/linguistic appropriateness. This is also concerned with the concrete repre-
sentation of programs: to what extent are visually concretely represented languages
diagrammatic and textually concretely represented languages linguistic? This is an
isolated assessment—a programming language is measured in isolation rather than
relative to other languages.

Selected programming problems. This chapter presents the various approaches to
measurement in detail using the solutions to the example problem of the previous
chapter, classify examples, and the union problem. Also, summary results are pre-
sented and discussed for some larger problems, ID3 and WARPLAN. The classify
examples problem was explained in the previous chapter. The union problem is to
find the set which is the union of two other sets. 

The solutions in the three languages are shown in chapter 7 (“Subjective Analy-
sis”) and appendix 3 (“Example Programs”). First, we analyze the diagrammatic
appropriateness of the SPARCL representation; then, we analyze the sizes of the exam-
ple solutions.
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Figure 8. 1: Classify Examples SPARCL program.
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Related Work
Software measurement theory. There are many works on the application of mea-
surement theory to software measurement, such as the work of Norman Fenton
[Fenton 1991a; Fenton 1991b], Peter Bollman, V.S. Cherniavsky, and Horst Zuse
[Bollman&Cherniavsky 1981; Zuse&Bollman 1987]. Zuse has written an extensive
history of software measurement, [Zuse 1996], which includes the application of
measurement theory. A recent review and critical analysis of the use of measurement
theory in software measurement is [Briand et al. 1996]. Briand et al. generally
approve of this approach, but caution that the very strict approach to measurement
theory advocated by some, such as Zuse and Fenton, eliminates demonstrably useful
applications of certain software measures having to do with software complexity.

Visual programming languages. There is little work in assessing a particular
approach to representing solutions in programming languages, particularly for com-
paring linear and nonlinear approaches. What work there is concentrates on user test-
ing—having people use particular programming approaches and evaluating their
experiences. 

Glinert discusses some approaches to metrics for “nontextual” programming envi-
ronments in [Glinert 1990]. The development and application of various metrics for
comparing visual and textual representations is reported in [Nickerson 1994b].
Nickerson’s work also extends that of Glinert. Work on assessing an aspect of a
visual programming language (writing matrix manipulation programs) is reported in
[Pandey&Burnett 1993]. The relative merits of two input devices for editing graphic
diagrams is reported in [Apte&Kimura 1993].

Sun-Joo Shin  presents a unique approach to comparing diagrammatic and lin-
guistic representations of logic in [Shin 1994]. She is concerned with the logical sta-
tus of diagrams; in particular, can one reason validly using only diagrams? Histori-
cally, mathematicians have believed that one cannot. Shin shows that two diagram-
ming systems (based on Venn diagrams) are logically sound and complete, in the pro-
cess showing how to approach proving soundness and completeness for diagramming
systems in general. She also provides an analysis of some essential differences
between diagrammatic and linguistic representations.
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Linear programming languages.There is considerable work on assessing programs
written in linear languages. The vast majority of this work is focused on proce-
dural/imperative languages with destructive assignment, such as PASCAL, FORTRAN, C,
and COBOL. A good summary of this work is in [Conte et al. 1986].

Diagrammatic Versus Linguistic Representation

Shin’s analysis of the differences between diagrammatic and linguistic representa-
tions in [Shin 1994] provides a starting point for an assessment of the extent to which
SPARCL’s representation takes advantage of its visual nature. That is, to what extent its
representation is diagrammatic versus linguistic. This is an important issue in evaluat-
ing a visual language. Since a visual approach is more complex to implement and
more computationally intensive than a textual approach, there must be some compen-
satory benefit to the visual approach to justify using it.

Shin provides three ways in which diagrammatic and linguistic representations
differ: relations among objects, conjunctive information, and tautologies and contra-
dictions. She is clear that a representation is not necessarily diagrammatic simply
because it is visual, neither is a representation necessarily linguistic because it incor-
porates text.

A linguistic visual representation is essentially no more than an illustration for
some textual representation, where the information in the visual representation is pre-
sented in essentially the same fashion as in the corresponding textual representation.
A rebus puzzle is a common example of a visual representation which is essentially
linguistic instead of diagrammatic. In such a puzzle some of the words of a phrase are
replaced by pictures which are evocative of the replaced words meaning or pronunci-
ation.

Distinguishing between diagrammatic and linguistic representations. One of
Shin’s key distinctions between diagrammatic and linguistic texts is diagrammatic
texts rely more on the reader’s  “perceptual inferences” for understanding than do lin-
guistic texts. Linguistic texts rely more instead on the conventions of the associated
representation system being known to the reader. Generally a visual representation
system is not wholly diagrammatic or linguistic, but is some of each.
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Perceptual inference is the information one extracts more or less directly by the
act of perception—no symbol system is involved. Perceiving that a picture is of a
known person is a perceptual inference; interpreting a string of characters as a mes-
sage is not a perceptual inference but rather relies on conventions.

One way in which a representation relies on perceptual inference (instead of con-
vention) is by using spatial relations to model relations among objects. The connec-
tion between a spatial relation and some other relation is a matter of convention, but
the understanding of the spatial relation is a perceptual inference. Shin notes that if
the ”member of” relation is modeled by putting a dot in a box (the dot being a mem-
ber of the set represented by the box), then:

‘...this isomorphism between the spatial arrangement and the “member of” relation is more
perceptually obvious than any linguistic symbol that a linguistic representation adopts, since
no extra convention involving syntactic devices is required.’3

Conjunctive information is Shin’s second way in which a representation may rely
more on perceptual inference. In a diagrammatic representation, the conjunction of
facts is represented by simply representing the facts to be conjoined in the same text,
no additional representational device is required. In a linguistic representation, there
must be some kind of device to represent conjunction (such as ‘&’, ‘and’, or ‘ ’).
Thus, conjunction is a perceptual inference in a diagrammatic representation but is a
matter of convention in a linguistic representation.

The third distinction between diagrammatic and linguistic representations is in
their handling of tautologies and contradictions. As Shin says: “Tautological informa-
tion is vacuously true and contradictory information is always false.”4 She claims that
diagrammatic systems represent tautologies and contradictions in a more perceptually
obvious way than linguistic systems do. A diagram which contains no representing
fact is tautologous. However, in a linguistic system a tautology must be represented
by a nonempty string, and thus is less obviously “vacuously” true. A contradiction is
revealed in a diagram by a violation of some basic rule for valid diagrams, such as no
two elements may be in the same location in a diagram, or the same element may not
be represented in two different places in the same diagram. Such a violation is easy to
perceive. In a corresponding linguistic representation it can be fairly subtle to identify
a contradiction, requiring reasoning about properties of the represented relations
3. page 162 of [Shin 1994].
4. p. 167 in [Shin 1994].
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(such as transitivity and symmetry). The implications of these properties are “percep-
tually inferred” in the diagrammatic representation.

SPARCL as a Diagrammatic System

To assess SPARCL’s diagrammatic nature, we apply each of Shin’s three distinc-
tions. To simplify this discussion we look only at the “basic” form of SPARCL, without
the multiple set representations.

Diagrammatic assessment: relations of objects. Since SPARCL is a thoroughly set-
based language, the primary object relationship in SPARCL is that of set membership.
We adopt the convention that a set is assigned to a certain kind of basic region, a
closed curve in the shape of a rectangle, or a variable represented by a small circle. At
this point, the representation is purely conventional and thus linguistic. However, the
choice of primitive objects in SPARCL is more constrained than in a linguistic system
in that the non-variable representation of sets is limited to closed curves, so that the
representation creates an interior and an exterior. However, in a linguistic system any
distinguishable symbol may be used.

The membership relationship is represented in SPARCL by the convention that any
“term” spatially in the representation of a set is a member of that set. This convention
connects membership to a spatial relation. Although somewhat arbitrary (other spatial
relations can be used for membership, as Shin notes5), this is less arbitrary than a
purely linguistic device of introducing a symbol/operator such as ‘ ‘. The use of the
spatial relation “appeals to our natural perceptual ability”6. Several other membership
relationships in SPARCL are represented using the “spatial inside” relationship, includ-
ing: clauses in programs, literals in clause bodies, predicate name in clause and literal,
and arguments in clause and literal.

Another essential relationship in SPARCL is that of the partitioning of a set, such as

, a partitioned set with two parts. A partitioning conveys two kinds of informa-
tion: that the union of the parts equals (covers) the entire set being partitioned, and
that the parts are pairwise disjoint. The representation of sets which are parts of a par-
5. On page 171 of [Shin 1994], Shin mentions a system by Lambert [Lambert 1990] where a set is represented by a line (seg-

ment) and all of the points on  the line are in the corresponding set..
6. p. 171 in [Shin 1994].
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titioning of a set is diagrammatic in SPARCL. The relation “part of a partitioning” is
represented by a dotted box (the part) being inside a set (a solid box). All of the parts
of a partitioning are next to each other so that they completely cover (“tile”) the area
of the representation of the set: No elements of the SPARCL language can be placed
outside of all of the parts of a partitioning but inside of the set being partitioned. This
represents in a diagrammatic way that the union of the parts of a partitioning cover
the partitioned set. It is a matter of convention that the dotted boxes are sets which are
parts of a partitioning. Thus, the representation of the pairwise disjointness relation-
ship is conventional.

Aside from the subset relation as embodied by the parts of a partitioning, SPARCL

does not provide direct representation of relationships between sets such as union,
intersection, and difference. One can use the partitioned set representation to con-
struct these relationships, but it is not as immediately understandable as a direct repre-
sentation would be, such as one finds in Shin’s VENN-I and VENN-II. For these rela-
tionships in SPARCL one must fall back on coreference links and other more linguistic
representations: defining a SPARCL predicate which implements the relationship and
using a literal to refer to this predicate. However, the use of partitioned set and coref-
erence links does provide a somewhat diagrammatic representation of these “other”
set relationships (union, difference, and intersection). One can compare the represen-
tations of Figure 8. 2 and Figure 8. 3  to see the set relationships in VENN-I and SPARCL.

The identification of a term as a predicate name is made by the convention of the
term being in the upper left corner of the clause or literal box.The connection of a lit-
eral to the clauses defining that literal’s predicate is by a convention using the names
of the literals and clauses. Variables are represented by convention as small circles.
Ur constants are represented by themselves (i.e. text strings). The empty set constant
is represented by convention by a small solid black square.  This empty set represen-
tation is partially diagrammatic in that it is a rectangle, such as any (potentially) non-
empty set, but it is filled in so that no term can be placed inside of it—spatially repre-
senting that it has/can have nothing in it.

Syntactically distinct terms can “refer” to semantically the same term. This is
term coreference. This is represented in SPARCL by coreference links: lines drawn con-
necting the coreferencing terms. This is a diagrammatic representation that relies on
the perceptual inference of seeing the connections. This connecting of arbitrary terms
is relatively clumsy in linguistic representations. One might use a convention such as
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that done with feature structures7 where each part
of the structure may be labeled (a linguistic con-
stant followed by a colon (‘:’) followed by the
substructure being labeled). Those features with
the same label are coreferencing features.

The ordering relationship of elements of an
N-tuple and arguments of a literal or a clause is
represented diagrammatically. For N-tuples, the
elements are horizontally adjacent with interven-
ing arrows. For arguments, the elements are verti-
cally adjacent.

Diagrammatic assessment: conjunction. This
aspect of diagrammatic representation is not much used by SPARCL. Additional “facts”
are added to a representation by adding additional clauses, much as is done in a lin-
guistic representation. No additional syntax is needed, however; the additional clauses
are simply visible and thus known to be in conjunction with with the existing facts.
This is more diagrammatic than the linguistic approach, but it is not a particularly
strong use.

Shin gives an example of drawing such inferences using her VENN-I system. As
shown in Figure 8. 2, the facts “Every unicorn is red” and “No unicorn is red” are con-
junctively combined to get a diagram from which it is obvious that there are no uni-
corns. This problem can be represented in SPARCL using partitioned sets, clauses, and
literals as shown in Figure 8. 3. In this example, ‘Red Unicorns 1’/2 expresses “Every
unicorn is red” and ‘Red Unicorns 2’/2 expresses “No unicorn is red”. The combina-
tion of these statements is shown by ‘Red Unicorns’/1.

Diagrammatic assessment: tautologies and contradictions. Tautologies in general
receive no special handling in SPARCL, and in this regard SPARCL is not specifically
diagrammatic. An exception to this regards partitioning. It is vacuously true that a set
can be partitioned, since all sets (even empty ones) can be partitioned. This is dia-
grammatically represented by “vacuous” parts of a partitioning having no contents,

7. pp. 105-108 in [Knight 1989].
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Figure 8. 2: The “red unicorns”
problem in the VENN-I language.
The circles are sets. U = set of uni-
corns, and R = set of red items.
Shaded areas are parts of sets
with no members. D’ is the unifica-
tion of D1 and D2.

U R U R

U R

D1
D2

D’



but having room in which to place terms (which is different from the empty set
which, being a solid square, has no place to put anything).

Some contradictions receive a diagrammatic representation in SPARCL. Some of
them are invalid SPARCL representations. Contradictions with partitioned sets would
be either the parts not covering exactly the partitioned set (too large or too small), or a
term appearing in more than one part of a partitioning. In the first case, the SPARCL

programming environment does not allow such a construction, but it would be easily
perceived should it occur. In the latter case, one can easily see that the same term is
present in different parts, since the parts are spatially close together, as long as the
total number of terms and parts is not large. In a linguistic representation there is no
“spatial locality”, and thus the invalid sharing of a term is less readily apparent.

Another contradiction is when two terms which are not mutually unifiable (such
as two different constants) are said to corefer. Since coreference is perceptually obvi-

ous in SPARCL, due to the use of con-
necting lines, then this contradiction
is fairly easy to see. This is much
harder to realize when reading a lin-
guistic representation of coreferenc-
ing.

Diagrammatic assessment: sum-
mary. SPARCL is appropriately dia-
grammatic in several important
aspects. Thus, the visual representa-
tion of SPARCL is beneficial com-
pared to a strictly textual and there-
fore linguistic representation. None-
theless, there are areas where more
diagrammatic representation is pos-
sible; for instance, in the relation-
ships between sets.
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Figure 8. 3: Clauses defining the ‘Red
Unicorns’/1 predicate.

The clause modesl the "fact" that  "No 
unicorn is red."
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This clause models the "fact" that 
"Every unicorn is red."
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*TERM*

This clause finds the set of red unicorns as specified 
by the two "facts" modeled by Red Unicorns1/2 and 
Red Unicorns 2/2. The correct answer is that the set of 
Red Unicorns is empty.

Red Unicorns 2

Red Unicorns 1
Red Unicorns

Red Unicorns



Measuring Program Size

Two of the sets of measurements with the best experimental verification for linear
programming languages are those based on “lines of code” and the basic Halstead
Software Science8 (SS) size measurements ( vocabulary, size, and volume). Since
lines of code are not measurable for visual programming languages, we use an
approach based on SS. The key concepts for Software Science (SS) measurements are
“token”,  “operator”, and “operand”. The tokens are “the basic syntactic units distin-
guishable by a compiler.”9 Halstead’s original differentiation between operators and
operands was:

“...based on the fact that all programs can be reduced into a sequence of machine language
instructions, each of which contains an operator and a number of operand addresses.”10

Fenton presents a brief analysis of Halstead’s basic size measurements (size, vocabu-
lary, and volume) and determines that, from a measurement theory point of view,
these are “reasonable measures of three internal program attributes which reflect dif-
ferent views of size.”11 Program size has been shown to inversely correlate with read-
ability, understandability, and modifiability, as discussed in [Kitchenham et al. 1990]
and [Conte et al. 1986], particularly for large programs.

We present two different methods to develop token counts. Both of these are
based on the concrete representation: one for visual (or graphical) representations
(such as SPARCL) and the other for textual representations (such as LISP and PROLOG).
The visual-representation token counting is an extension of the graphic token count of
Jeffrey Nickerson as initially presented in [Nickerson 1994a]. We have adapted his
approach to produce operator and operand counts. The textual-representation token
counting involves two adaptations of the common Halstead approach, one each for
LISP and PROLOG.

Another set of token counting techniques was developed in the course of the
research on which this chapter reports, but it has been discarded. It was an approach
which relied on converting the concrete representation into a canonical “base”
representation, then this base representation was analyzed for operator and operand

8. See pages 80-87 in [Conte et al. 1986].
9. p. 37 in [Conte et al. 1986].

10. p. 37 in [Conte et al. 1986].
11. p. 19 of [Fenton 1991a].
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tokens. A special base representation was developed for each programming language,
and a special volume (‘V’) formula was developed for each language. We have dis-
carded this approach because it was not based on the concrete representation of the
programming language and different concrete representations (particularly visual and
textual representations) could be “reduced” to the same base representation. The ear-
lier discussion of measuring the quality of programming languages pointed out that it
is important for a measurement to be sensitive to the concrete representation.

In the following discussion we use the standard Software Science notation:
is the number of unique operators (operator types),

is the total number of operators,

is the number of unique operands (operand types),

is the total number of operands,

is the vocabulary (the sum of  and ),

is the Software Science “size” (the sum of  and ),

is the volume: 

Graphic Token-based Metrics

Jeffrey Nickerson in [Nickerson 1994b] presents four graphical metrics: graphic
token count, diagram class complexity, confusion count, and (graphic) token density.
We propose the following definitions based on the graphic token count and diagram
class complexity:
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The “total” counts,  and , are simple analogs of  and , respectively. The
terms of these equations are based on three basic attributes of graphic representation:
adjoinment for number_of_adjoinments, linkage for number_of_edges and num-
ber_of_nodes, and containment for number_of_enclosures.12 This approach to graphic
token counting only measures the “relationships of objects” aspects of diagrammatic
representation identified by Shin. No explicit counting is done for Shin’s other two
aspects of diagrams (conjunctive information and tautologies and contradictions).

The following definitions are used to adapt Nickerson’s general approach to
SPARCL:

Node—the term which is an endpoint of an edge
Node Type—the type of term which is a node. If the term is an Ur constant then

the type of the term is the value of the constant.
Edge—a coreference hyperedge or an arrow connecting terms of an N-tuple. Each

coreference hyperedge counts as 1, regardless of the number of segments.
Edge Type—there are two edge types: hyperedge and N-tuple arrow.
Textual Token—any Ur constant, clause name, or literal name.
Textual Token Type—distinct Ur constant, clause name, or literal name.
Enclosure—any display object which contains other display objects, except argu-

ments. A set contains parts; a part may contain any number of terms (if it con-
tains no terms it does not count as an enclosure); an N-tuple contains 2 or more
terms (which are ordered by arrows); an intensional set body contains N-tuple
literals, an intensional set template contains a term; a clause contains a head
(arguments and name) and literals.

Enclosure Type—the type of the enclosing display object (e.g. clause, set, part of
partitioned set).

Adjoinment—arguments are adjoined, term table rows/columns are adjoined,
intensional set template and body are adjoined.

Adjoinment Type—the type of the display objects being adjoined (e.g. argument or
N-tuple elements).

Graphic token counts for the SPARCL examples. The Union/3 program in Figure 8. 4

has the following basic graphic token counts:

12. Nickerson’s method doesn’t seem to count the use of “similar appearance” (such as same color to
indicate a “connection”). Since this is not used in SPARCL, it’s not an issue here.
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nodes 7 7 endpoints of hyperedges
node types 1 1 set part
edges 3 3 hyperedges
edge types 1
textual tokens 1
textual token types 1
enclosures 4 3 nonempty sets, 1 clause
enclosure types 2
adjoinments 2 2 clause arg adj.
adjoinment types 1

These counts yield the following values for the basic Hal-
stead measures:

Abstract syntax token counting for SPARCL. The more traditional approach to defin-
ing a token counting scheme is to ignore the concrete syntax and concentrate on ele-
ments of the abstract syntax. As discussed above, we consider this approach less
attractive for our purposes in this chapter as it is insensitive to details of the concrete
representation; whether the concrete representation is diagrammatic or linguistic, for
instance. We can define “abstract” token counts for  SPARCL as:
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Figure 8. 4: SPARCL
Union/3 program.
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η = 6
N =17
V =17log2 5( ) = 44

η 1 =1 + 0 +1 + 2 = 4
η 2 =1 +1 = 2
N1 = 3 + 4 + 2 = 9
N2 = 7 +1 = 8



The *Present variables are 1 if an item of that kind is present in the clause and 0 oth-
erwise. These definitions give the following counts for the ‘Union’/3 example:

 

Token counting for Prolog. Edinburgh-syntax PROLOG (much the most common syn-
tax for PROLOG) allows for programmer-defined operator-precedence syntax. This
notion of “operator” has nothing to do with functional evaluation, it is a purely syn-
tactic notion. The programmer may define that a particular token OP has a particular
precedence PRED (an integer in an implementation-dependent range, commonly 0 to
1024), and a particular associativity and position AP. The associativity determines
how unparenthesized sequences of OP associate, and the position indicates whether
the OP is a prefix, suffix, or infix operator. For example, ‘xfy’ specifies an infix oper-
ator (the operator replaces the ‘f’) with right-associativity (‘a OP b OP c’ = ‘a OP (b
OP c)’). Operator syntax is used as an alternative to the basic structure syntax—struc-
tures written in operator syntax are semantically identical with structures written
basic structure syntax. There are several operator definitions which are in the default
environment, such as:

op(1200, xfx, ‘:-’).
op(1000, xfy, ‘,’).
op(500, yfx, ‘+’).

 The member program in operator syntax is:

member(X, [X|_]).
member(X, [_|T]) :- member(X, T).

This can also be written without operator syntax:

member(X, cons(X, _)).
:-(member(X, cons(_, T)), member(X, T)).
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η = 7
N =19
V =19log2 7( ) = 53

η 1 =1 +1 +1 +1 + 0 + 0 + 0 = 4
η 2 = 3 + 0 + 0 + 0 = 3
N1 =1 + 3 + 7 +1 + 0 + 0 + 0 =12
N2 = 7 + 0 + 0 + 0 = 7



Since the operator syntax
affects the concrete representation,
the token count must be sensitive
to it. The natural approach is to
consider those tokens which are
used syntactically as operators as
operator tokens. Additional opera-
tors are the enclosing syntactic
items: ‘()’, ‘[]’, and ‘{}’. We can
construct a table which defines the
token counting method for PROLOG

using the definitions of , ,
, and  found in

[Bieman et al. 1991]:  is the
sequence of operator token types in the program,  is the set of operator token
types in the program,  is the sequence of operand token types in the program, and

 is the set of operator token types in the program. A PROLOG program source is a
sequence of clauses, where each clause is a term followed by a ‘.’ (period). A term is
an atom, number, variable, or structure. A structure has a functor and one or more
arguments. The arguments are terms. The table defining the token counting scheme is
shown in Table 8. 1.

Using this counting scheme for the member/2 example:
= [tperiod, t(), tcomma , t[], t|, tperiod, t:-, t(), tcomma, t[], t|, t(), tcomma  ]
= {tperiod, t(), tcomma, t[], t|, t:-}
= [tmember, tX, tX, tunderscore, tmember, tX, tunderscore, tT, tmember, tX, tT]
= {tmember, tX, tunderscore, tT}

Using this token analysis of the member/2 program, we get the following counts
and size measurements:
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term additions to additions to 
, , 

_ tunderscore
[] tnil
symbol tsymbol
functor(term-list) t() tfunctor
(term) t()
term OP term tOP
OP term tOP
term OP tOP
[term-list] t[]
[term-list | term] t[], t|
{term} t{}
term . tperiod
term , term-list tcomma

Table 8. 1: Token counting scheme for PROLOG.
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We apply this counting technique
to the union/3 solution as follows:

Clause 1a:
= [tperiod, t:-, t(), tcomma,

t[], t|, tcomma, tcomma,
t(), tsemicolon, t->, t(),
tcomma, t=, t=, t[], t|, t(),
tcomma, tcomma]

= {tperiod, t:-, t(), tcomma,
t[], t|, tsemicolon, t->, t=}

= [t union, tH, tX, tY, tZ, t

member, tH, tY, tZ, tT, tZ,
tH, tT,  t union, tX, tY, tT]

= {t union, tH, tX, tY, tZ, t member, tT}

Clause 2a:
= [tperiod, t(), tcomma , tcomma]
= {tperiod, t(), tcomma}
= [t union, tnil, tY, tY]
= {t union, tnil, tY}

Combined values for these clauses:
= [tperiod, t:-, tcomma, t(), tcomma, t[], t|, tcomma, tcomma , t(), tsemicolon,

t->, t(), tcomma, t=, t=, t[], t|, t(), tcomma, tcomma]
+ [tperiod, t(), tcomma , tcomma]

= {tperiod, t:-, t(), tcomma, t[], t|, tsemicolon, t->, t=}  {tperiod, t(), tcomma}
= {tperiod, t:-, t(), tcomma, t[], t|, tsemicolon, t->, t=}
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Operator concrete representation:

union([H|X], Y, Z) :-
(member(H, Y)

      -> Z = T
    ;
    Z = [H|T]
    ),
    union(X, Y, T). % Clause 1a

union([], Y, Y). % Clause 2a

Base representation:

:-(union(‘.’(H, X), Y, Z),
‘,’(‘;’(‘->’(member(H, Y),

                 ‘=’(Z, T)),
            ‘=’(Z, ‘.’(H, T))),

union(X, Y, Z))). % Clause 1b

union([], Y, Y). % Clause 2b

Figure 8. 5: Original and Base repres-
entation form of the PROLOG union/3 pro-
gram.
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= [t union, tH, tX, tY, tZ, t member, tH, tY, tZ, tT, tZ, tH, tT,  t union, tX, tY,
tT]

+ [t union, tnil, tY, tY]
= {t union, tH, tX, tY, tZ, t member, tT}  {t union, tnil, tY}
= {t union, tnil, tH, tX, tY, tZ, t member, tT}

Using the combined , , , and  values determined above, we can cal-
culate the various token counts and size measurements:

We can compare the above measures for the union/3 program represented using the
operator syntax (and the special list syntax) with the measures for the same program
written in the “base” syntax, without the operator syntax or the special list syntax.
The counts for the base notation version are:

Clause 1b:
 = [tperiod, t(), tcomma , t(), tcomma, tcomma, t(), tcomma, t(), tcomma, t(),

tcomma, t(), tcomma, t(), tcomma, t(), tcomma, t(), tcomma, tcomma]
 = {tperiod, t(), tcomma}

 = [t:-, t union, t’.’, tH, tX, tY, tZ, t’,’,t’;’,t’->’,t member, tH, tY, t’=’,tZ,tT,
t’=’,tZ,t’.’,tH,tT,
t union, tX, tY, tZ]

 = {t:-, t union, t’.’, tH, tX, tY, tZ, t’,’ ,t’;’,t’->’,t member,tT, t’=’}

Clause 2b:
 = [tperiod, t(), tcomma , tcomma]

 = {tperiod, t(), tcomma}
 = [t union, tnil, tY, tY]

 = {t union, tnil, tY}
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All clauses:
= [tperiod, t(), tcomma , t(), tcomma, tcomma, t(), tcomma, t(), tcomma, t(),

tcomma, t(), tcomma, t(), tcomma, t(), tcomma, t(), tcomma, tcomma]
(21)

+ [tperiod, t(), tcomma , tcomma] (4)
= {tperiod, t(), tcomma}

{tperiod, t(), tcomma}
= {tperiod, t(), tcomma}
= [t:-, tunion, t’.’, tH, tX, tY, tZ, t’,’,t’;’,t’->’,tmember, tH, tY, t’=’, tZ, tT, t’=’,

tZ, t’.’, tH, tT,  tunion, tX, tY, tZ] (25)
+ [t union, tnil, tY, tY] (4)

= {t:-, tunion, t’.’, tH, tX, tY, tZ, t’,’ , t’;’, t’->’, tmember, tT, t’=’}
{t union, tnil, tY}

= {t:-, tunion, t’.’, tH, tX, tY, tZ, t’,’ , t’;’, t’->’, tmember, tT, t’=’, tnil}

Using the combined , , , and  values determined above for the
base-syntax version of the union/3 program, we can calculate the various token
counts and size measurements:

This demonstrates the typical result that using the operator syntax gives a smaller
program compared to the base syntax. The total number of unique tokens does not
change (17, in this case), but the total number of tokens does (45 versus 54).

In the operator syntax there are fewer parentheses and argument-list commas than
in the base syntax. In the transformation from the operator-syntax to the base-sytnax,
each binary operator term ‘term OP term’ is replaced by ‘OP(term, term)’, one token
(the operator OP) in the first case versus three tokens (the operator OP, the parenthe-
ses, and the argument list comma) in the second case. Similarly, the unary operator
terms go from one token (the OP) to two tokens (the OP and the parentheses). The list
syntax also provides a substantial savings: ‘[term1, ..., termN]’ becomes “‘.’(term1,
‘.’(term2, ... ‘.’(termN, [])...))”. This changes N tokens in the list syntax for a list of N
terms (one for the brackets and N-1 for the commas) into 3N+1 tokens in the base
syntax (a ‘.’, a pair of parentheses, and an argument comma for each term, plus the
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‘[]’ (nil) token for the end of the
list). Depending on the program,
the size difference between the
operator/list syntax and the base
syntax can be quite large.

Token counting for LISP. We
can define the token counting
procedure for LISP in a fashion
analogous to the approach used
for PROLOG. In the syntax of
LISP, a program source is a
sequence of S-expressions. An
S-expression is either an atom or
a list. A list is a sequence of S-
expressions enclosed by paren-
theses. There are special kinds
of S-expressions, fexprs and lex-
prs. These are handled specially
by the LISP reader. We will base
our operator/operand discrimination on these special S-expressions. A list of elements
of LISP syntax and associated counts is shown in Table 8. 2.

A simple LISP program for the union programming problem is:

(defun union (L1 L2)
  (if (null L1)

(let ((x (car L1)))
(if (member x L2)

(union (cdr L1) L2)
(cons x (union (cdr L1) L2)))))

L2))

The token sets for this program are:

 = [t(), tdefun, t(), t(), tif, t(), t(), tlet, t(), t(), t(), t(), tif, t(), t(), t(), t(), t(), t()]
 = {t(), tdefun, tif, tlet}
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Element additions to additions to 

, , 

nil tnil
symbol tsymbol
(S-expression-sequence) t()
(defun atom t() , tdefun
S-expr1 S-expr2)
(defmacro atom t() , tdefmacro
S-expr1 S-expr2)
(let S-expr1 S-expr2) t() , tlet
(quote S-expr) t() , tquote
‘S-expr tquote
(do S-expr-sequence) t() , tdo
(while S-expr-sequence) t() , twhile
(if S-expr1 t() , tif
S-expr2 S-expr3)
(cond S-expr-sequence) t() , tcond

S-expr S-expr-sequence
Table 8. 2: Token counting scheme for LISP.
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 = [tunion, tL1, tL2, tnull,
tL1,  tx, tcar, tL1,
tmember, tx, tL2,
tunion, tcdr, tL1, tL2,
tcons, tx, tunion, tcdr,
tL1, tL2, tL2]

 = {tunion, tL1, tL2, tnull,
tx, tcar, tmember, tcdr, tcons}

The token and size measurements for the program are:

The summary of the union measurements is shown in Table 8. 3. The SPARCL pro-
gram is smaller than the other two language programs in all measurements (size,
vocabulary, and volume).

Programming problem: Classify Examples. The classify_examples problem has
been solved in each of the three languages discussed above. This problem is more
complex than the union problem discussed above: 

An “example” is a set of attribute name/value pairs. An example set is a set of examples all of
which have the same set of attribute names. Given an example set and a classifying attribute
name, find a classification of the examples according to their values on that attribute name.

This is basically a problem in finding equivalence classes. The three solutions for
this problem are presented and discussed in the section “Inspection: Subjective Ass-

essment of Understandability”. The measurements for each of the three implementa-
tions of the classify_examples problem are presented below.

The SPARCL Classify Examples/3 program in Figure 8. 1 has the graphic token
counts shown in Table 8. 4. These token counts yield the following size measure-
ments:
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SPARCL PROLOG LISP

39 184 152
17 45 41
5 17 13

Table 8. 3: Size measurements for all solutions
to the Union problem.
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The summary of the counts
for both of the SPARCL Union/3
and the Classify Examples/3
solutions is shown in Table 8. 5.
The summary of the size measures derived from these counts is shown in Table 8. 6.
As one would expect, the Union/3 program is much smaller than the Classify Exam-
ples/3 program in each of the derived measurements: half the “vocabulary”, less than
half the “size”, and less than one third the “volume”.

PROLOG

There are two solutions of this problem in PROLOG, the brief version and the fast
version. These are shown in chapter 7 (“Subjective Analysis”). The counts and size
measurements for the brief version are:

The counts and size measurements for
the fast version are:
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nodes 10 8 endpoints of hyperedges, 2 non-ur
N-tuple terms not in hyperedges.

node types 3 variable, set,  intenset
edges 8 4 N-tuple arrows, 4 hyperedges
edge types 2 hyperedge, N-tuple arrow
textual tokens 2 ‘unify’, ‘Classify Examples’
textual token types 2 “
enclosures 11 4 N-tuples, 2 nonempty parts, 2 non-

empty sets, 1 clause, 2 intensets
enclosure types 6 N-tuple, part, set, intenset body,

intenset template, clause
adjoinments 4 2 intenset template/body adj., 2 arg

adj.
adjoinment types 2 intenset template/body adj.,  arg adj.

Table 8. 4: Graphic token counts, annotated, for
the SPARCL Classify Examples solution.

Union/3 Classify
 Examples/3

nodes 7 10
node types 1 3
edges 3 8
edge types 1 2
textual tokens 1 2
textual token types 1 2
enclosures 7 11
enclosure types 2 6
adjoinments 7 4
adjoinment types 1 2

Table 8. 5: Graphical token counts for
‘Union’/3 and ‘Classify Examples’/3.

V =168 ⋅ log2 31( ) = 832

η1 =10
N1 = 89
η2 = 21
N2 = 79

V = N log2 η( ) = 36log2 14( ) =137

η 1 = 5
N1 =18
η 2 = 9
N2 =18

η =15
N = 35
V = 35log2 15( ) =137

η 1 = 2 + 0 + 6 + 2 =10
η 2 = 3 + 2 = 5
N1 = 8 +11 + 4 = 23
N2 =10 + 2 =12



Clearly, the fast version is much larger
than the brief version; more than twice as big
in vocabulary, four times as big in token
size, and six times as big in volume.

LISP

The counts and volume measurement for
the LISP classify examples program are:

Discussion. The above material develops token counting methods for PROLOG, LISP,
and SPARCL.  These counting methods were applied to solutions of the union and clas-
sify examples problems in all three languages.

The Classify Examples measurements for all of the solutions are shown in
Table 8. 7. For this problem, the PROLOG “brief” solution is smaller in size (N) and vol-
ume than the other two. The PROLOG “fast” solution is the largest of the four solutions,
in all three measures. The brief PROLOG solution and the SPARCL solution are both sub-
stantially smaller than the “fast” PROLOG and LISP solutions, in all measures.

Programming problem: ID3. The ID3 problem has been solved in each of the three
languages discussed above.

The counts for the SPARCL ID3 solution are shown in Table 8. 8. The summary of
the size measures for the different “views” of the SPARCL ID3 solution are shown in
Table 8. 9. The three columns correspond to three different counting regimes. The
“basic” regime is to count everything present in the SPARCL solution. The “without
*DELAY*” regime counts everything in the solution except the ‘*DELAY*’ clauses.
The SPARCL language could be modified so as to represent this control information in
a more compact fashion, and this column gives a lower bound on how much the size
of the program could be reduced by such a change to the language. Conversely, com-
paring this column and the “basic” column tells us how much of the “basic” size is
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Union/3 Classify Examples/3
4 10

9 23
2 5

8 12

6 15
17 35
44 137

Table 8. 6: Summary of ‘Union’/3
and ‘Classify Examples’/3 measure-
ments.
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devoted to ‘*DELAY*’
control information.

The “without
*DELAY* and
Cardinality” column gives
the counts for the program
without the ‘*DELAY*’ or
‘Cardinality’ clauses. The Cardi-
nality procedure is a strong can-
didate for being built in to the
SPARCL language, much as
length/2 is commonly built in to
PROLOG implementations and the
length function is commonly
built in to LISP implementations.

This table contains three
kinds of counts which we have
not previously been reporting:
Literals, Clauses, and Procedures. These counts apply to the two logic programming
languages, but are do not compare
across programming paradigms. For
instance, they are not generally
applicable to LISP. The ideas of
clause and literal are native to the
logic programming paradigm and
thus do not apply at all outside of
that paradigm. The meaning of pro-
cedure varies tremendously across
paradigms - in logic programming it
is a collection of clauses which have
heads of a particular functor and
arity, and in LISP it is a function
(defined by a “defun”, but should a
“defmacro” be considered a proce-
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SPARCL PROLOG.brief PROLOG.fast LISP

137 137 832 706
35 36 168 156
15 14 31 23

Table 8. 7: Size measurements for all solutions of
the Classify Examples problem.

basic without without both
 *DELAY* *DELAY* and

 Cardinality

nodes 163 163 158
node types 5 5 5
edges 198 133 128
edge types 2 2 2
textual tokens 176 56 51
textual token types 27 23 22
enclosures 147 115 105
enclosure types 8 7 7
adjoinments 103 66 63
adjoinment types 4 2 2

Table 8. 8: Graphical token counts for the
SPARCL solution of the ID3 problem.

Measurement Basic Without Without both
name *DELAY* *DELAY* and

Cardinality

14 11 11

448 314 296
32 28 27

339 219 209

46 39 38
787 533 515

4347 2817 2650

Literals 19 19 18
Clauses 36 13 12
Procedures 13 12 11
Table 8. 9: Size measurements for three
“views” of the SPARCL ID3 solution.
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dure?). In some object-oriented languages, pro-
cedures presumably relate in some fashion to
methods, but this relationship is tenuous.

The PROLOG ID3 solution uses the brief
solution of the Classify Examples problem.
The size measures are shown in Table 8. 10.
The LISP ID3 solution has the size measures
shown in Table 8. 11. The results for the solu-
tions of the ID3 problem in the three languages
are summarized in Table 8. 12. The SPARCL

solution, viewed as a whole, is larger than the
PROLOG solution and about the same size as the
LISP solution on nearly all size measurements. The interesting

exception is the number of literals. The complexity of the SPARCL solution is in the
number of clauses and the complexity of the terms in its arguments more so than in
the PROLOG solution. We consider the sum of the numbers of literals and clauses in
PROLOG to be the “logical source line count” for PROLOG. Comparing these sums
makes the SPARCL solution smaller than the PROLOG solution. When we consider the
“without *DELAY*” view of the SPARCL solution, it is substantially smaller than the
other two solutions. As discussed in chapter 3 (“Design Elements”) and chapter 7
(“Subjective Analysis”), the delay specifications should be more compactly  repre-
sentable. We estimate that we can reduce the size contribution of the delay specifica-
tions by about one-half to two-thirds for this example and the WARPLAN example.
The benefit of such a more compact representation are demonstrated by the “without
*DELAY*” view of the size of the SPARCL solution of the ID3 problem. The further
value of implementing ‘Cardinality’/2 as a built-in predicate is demonstrated by the
size reduction shown in the “without *DELAY* & Cardinality” as compared to the
other views of the SPARCL solution.

Programming problem: WARPLAN. The WARPLAN problem is the final program-
ming problem we study in this chapter. The counts and measures for the SPARCL and
PROLOG implementations of the solutions to the WARPLAN problem (without a
“world” specification) are shown in Table 8. 13.
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15

299
78

289

93
588

3845

Literals 62
Clauses 17
Procedures 12

Table 8. 10: Size
measurements
for the PROLOG
ID3  solution.

7

304
68

394

75
698

4348

Functions 20

Table 8. 11:
Size measure-
ments for the
LISP ID3  solu-
tion.
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The comparison
between the SPARCL

and PROLOG solutions
is surprising. We had
expected the SPARCL

implementation to
be noticeably larger
than the PROLOG

implementation, but
it is instead much the
same depending on
which measurement
one uses. The vol-
ume, which depends
on both vocabulary ( ) and size ( ), is slightly smaller for SPARCL (the SPARCL vol-
ume is 97% of the PROLOG volume). If one considers the delay-less version of the
counts, the comparison is strictly favorable for SPARCL.

We found this surprising. The WARPLAN algorithm was designed with PROLOG

in mind and is a heuristic search algorithm which requires various steps to be done in
a particular order. Ordering literal evaluation in SPARCL requires explicit direction
from the programmer, as opposed to the implicit ordering which is present in PROLOG.
Thus we expect SPARCL to not compare favorably with an implicit order language
such as PROLOG in solving a problem where ordered evaluation is an important part of
the solution. The *DELAY* clauses are the major technique in SPARCL for ensuring a
particular ordering of evaluation (if/3 and ordered_disjunction/2 being the other tech-
niques). Comparing the two SPARCL columns of the table, we see that the *DELAY*
clauses make up 57% of all clauses. The *DELAY* clauses account for 33% of the
size and 35% of the volume.

Discussion

This chapter presents methods for analyzing a visual programming language
which assesses both the benefit derived from the visual representation and the con-
ciseness of the language compared with other programming languages, both visual
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SPARCL SPARCL SPARCL PROLOG LISP

basic without without
 *DELAY* *DELAY* &

 Cardinality
14 11 11 15 7

448 314 296 299 304
32 28 27 78 68

339 219 209 289 394

46 39 38 93 75
787 533 515 588 698

4347 2817 2650 3845 4348

Literals 19 19 18 62
Clauses 36 13 12 17
Procedures/Functions 13 12 11 12 20
Table 8. 12: Size measurements for all solutions of the ID3
problem.
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and textual.

Determining what to analyze. We presented
an argument for the use of program size of
solutions to selected programming problems
in objectively comparing different program-
ming languages. The desire to compare pro-
gramming languages that differ in both repre-
sentation technique and underlying semantics
limits the kinds of comparisons that are mean-
ingful. We used Sethi’s definition of a good
programming language as our guide in com-
paring the quality of programming languages.
Working through a measurement theory-based
software measurement framework, we determined that: the external attribute we need
to measure  is quality (as defined by Sethi); the object  is a programming language; it
is a resource-type object with which the attribute is associated; the measurement must
be indirect; and this indirect measurement is based on measurements of three external
process attributes, readability, understandability, and modifiability.

We adopt the analytic approach to programming language assessment in this
chapter, we investigate an experimental approach to assessment in the next chapter.
We determined that an appropriate analytic attribute is program size. An attribute
which can be measured for a program (as opposed to the process of that program’s
execution) in any programming language must be an attribute of the intended-for-hu-
man-manipulation concrete representation of that program. One of the most basic
attributes of the concrete representation of a program is its size. There is an approxi-
mately inverse monotonic relationship between the size of the concrete representation
of a program and the three process attributes of interest: the larger the concrete repre-
sentation of a program, the less readable, the less understandable, and the less modifi-
able.

In addition to the measurement of relative sizes discussed above, we measure the
diagrammatic/linguistic appropriateness; a direct assessment of how thoroughly
SPARCL exploits the possibilities of its visual representation. We first investigated the
diagrammatic assessment of SPARCL, then we investigated the sizes of the solutions of
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SPARCL SPARCL PROLOG

basic without
 *DELAY*

11 8 10

552 373 410
36 33 84

460 306 402

47 41 94
1012 679 812
5621 3638 5322

Literals 38 38 118
Clauses 61 26 39
Procedures 21 20 19
Table 8. 13: Size measurements for
solutions for the WARPLAN pro-
gram.

V
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η

N2

η 2

N1
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the selected problems.

Diagrammatic versus linguistic analysis. Shin provides three aspects to assess for
diagrammatic possibilities: relations of objects, conjunctions, and tautologies and
contradictions. Five diagrammatic relations of objects were discussed:

1) the membership relationship is represented by the convention that any “term”
spatially in the representation of a set is a member of that set, connecting mem-
bership to a spatial relation;

2) the union of the parts of a partitioning cover the partitioned set spatially as well
as semantically;

3) the empty set representation is partially diagrammatic in that it is a rectangle,
such as any (potentially) nonempty set, but it is filled in so that no term can be
placed inside of it—spatially representing that it has/can have nothing in it;

4) syntactically distinct terms can “refer” to semantically the same term by corefer-
ence links—lines drawn connecting the coreferencing terms, this relies on the
perceptual inference of seeing the connections; and, 

5) the ordering relationship of elements of an N-tuple and arguments of a literal or
a clause is indicated by their being placed adjacent, horizontally with interven-
ing arrows for N-tuples and vertically for arguments.

Two conventional/linguistic relation representations are the pairwise disjointness
of parts in a partitioned set and the connection of a literal to the clauses defining that
literal’s predicate is by a convention using the names of the literals and clauses.

SPARCL represents the conjunction of clauses and literals diagrammatically. There
are some aids to seeing contradictions in a SPARCL program. If a set is not too large
(no more than ten elements, say), then the spatial locality of representation of its ele-
ments helps the user to see when the same element is in more than one part (which
contradicts the disjointness constraint). The connecting lines for coreference help dia-
grammatically to see coreferring terms contradict the requirement that all coreferring
terms unify (e.g. two different ur constants such as ‘this’ and ‘that’).

Size analysis. We defined size measurements for programs in three languages:
SPARCL, PROLOG, and LISP. These size measurements are all based on tokens in the
concrete representation. The SPARCL measurement is based on graphical tokens, the
other two are based on lexical tokens.
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We justify the use of our token-based size measurements based on: they are
closely related to Halstead’s size measurements (size, vocabulary, and volume); Fen-
ton determined that, from a measurement theory point of view, Halstead’s basic size
measurements  are “reasonable measures of three internal program attributes which
reflect different views of size”13; program size has been shown to inversely correlate
with readability, understandability, and modifiability, as discussed in
[Kitchenham et al. 1990] and [Conte et al. 1986], particularly for large programs; and,
the three external attributes of readability, understandability, and modifiability
provide an indication of program quality.

We developed our graphical token counting method from that of Nickerson. This
involved developing Halstead operator and operand equations from Nickerson’s
graphic token count and diagram class complexity equations, and mapping his graphi-
cal element concepts onto the concrete (two-dimensional) representation of SPARCL.
These graphical element concepts are: node, node type, edge, edge type, textual
token, textual token type, enclosure, enclosure present, adjoinment, and adjoinment
present.

Textual token counting schemes are defined based on an approach used by
[Bieman et al. 1991]. These definitions are presented for PROLOG in Table 8. 1 and LISP

in Table 8. 2. The PROLOG syntax has two forms, with and without operators. We
showed that the token counting approach is sensitive to differences in concrete repre-
sentation (as required by our uses of the software measurements based on the token
counts) by counting the tokens for an example program written in both of these
forms. As one would expect, the operator form of PROLOG is shorter than the form
without operators.

The above material develops token counting methods for PROLOG, LISP, and
SPARCL.  These counting methods were applied to solutions of the Union, Classify
Examples, ID3, and WARPLAN problems in all three languages. The tables summa-
rizing the measurements for these problems are in Table 8. 3, Table 8. 7, and .

The Classify Examples measurements for all of the solutions are shown in
Table 8. 7. For this problem, the PROLOG “brief” solution is smaller in size (N) and vol-
ume than the other two. The PROLOG “fast” solution is the largest of the four solutions,
in all three measures. The brief PROLOG solution and the SPARCL solution are both sub-
stantially smaller than the “fast” PROLOG and LISP solutions, in all measures.
13. p. 19 of [Fenton 1991a].
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The ID3 solution measurements in Table 8. 12 shows PROLOG solution the smallest
and the SPARCL and LISP solutions a little larger. With a more compact representation
of delay specifications, the SPARCL solution could be the smallest of the three in all
size measurements.

The WARPLAN solution measurements in Table 8. 13 shows the SPARCL solution a
little larger than the PROLOG solution (no LISP solution is given). The SPARCL solution
is smaller in vocabulary (47 versus 94) and “logical source lines” (99 versus 157). As
for the ID3 solutions, if the delay specifications were more compactly represented in
SPARCL then its solution could be much smaller than the PROLOG solution in all
respects. This surprised us in that WARPLAN requires a great deal of explicit inter-
pretation ordering. This ordering of the interpretation requires explicit representation
in SPARCL but is implicitly represented in PROLOG (using literal order within a clause
and clause order within a program file). Even with this explicit/implicit imbalance,
the SPARCL solution is about the same size, and would be smaller with an “improved”
delay specification representation.

Assessment. SPARCL was shown to exploit many of the diagrammatic possibilities of
its visual representation.

Our measurements of the size of SPARCL programs surprised us with how “big”
they are; our intuition on looking at these programs was that they were substantially
smaller than the corresponding PROLOG and LISP solutions. Our conclusion is that that
as SPARCL is represented now, it produces solutions that are about the same size as
those in PROLOG and LISP. The second surprise this size analysis afforded us was that
the sizes of the ID3 and WARPLAN solutions in SPARCL are very sensitive to the
design of the representation of delay specifications. This clearly motivates future
work on a more compact representation of delays.

Assessing the size analysis in more detail, SPARCL is somewhat more concise than
LISP,  but the comparison with PROLOG is complicated. For the two small problems,
SPARCL is substantially smaller in one case (union) and the same size in the other case
(classify examples). For the two larger problems, the volumes of the SPARCL solution
and the PROLOG solution are close; the SPARCL solution  volume is ±5% of the PROLOG

solution volume. Considering the delay-less measurements of SPARCL, the volume
comparison is strongly in SPARCL’S favor: the SPARCL ID3 delay-less solution is 64%
of the volume of the PROLOG solution, the SPARCL WARPLAN delay-less solution is
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63% of the volume of the PROLOG solution. While the SPARCL solutions must have
delay specifications in some form, and thus could not achieve these smaller sizes for
valid solutions, significantly more compact representations are possible that we spec-
ulate would achieve one-half to two-thirds of these size savings. Additionally, these
savings might be realized by having SPARCL determine appropriate delay specifica-
tions automatically using a process similar to mode analysis or type inferencing. This
would remove much or all of the burden of specifying delays from the programmer,
with the corresponding reduction in the size of the SPARCL programs.
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Chapter 9
Usability Testing

This chapter presents the usability testing of SPARCL. Due to resource constraints,
this testing was very limited and thus the analysis of it and the conclusions which we
may draw from it are correspondingly modest. The testing consisted of having seven
graduate students work through an online, integrated tutorial of SPARCL (a computer-
based training1 system that is part of SPARCL). Their interactions were recorded by
SPARCL, and they were encouraged to record comments freely during the course of the
tutorial. The data from the testing consists of the interaction log files, their recorded
comments, and their solutions to the exercises in the tutorial.

Usability testing demands a usable implementation. If the implementation has a
poorly implemented interface, or has prominent bugs, then the testers have a hard
time testing the underlying concepts. For this reason, we had to wait to do any testing
until our implementation of SPARCL was fairly mature. This severely reduces the
amount of time in the research project available for the testing and analysis of the test
results, much less for responding to such an analysis with changes in SPARCL. Many
programming language research projects do user testing after the project has used
many researcher-years of effort. In contrast, the SPARCL project has a user testing
component, however primitive, as a part of its initial development.

Usability testing can provide information about the processes of learning the
SPARCL language and building SPARCL programs, as well as information about the test-
ing process itself. The integrated tutorial, the interaction monitoring, and the system
commenting facility are the “instrumentation” for gathering data about these pro-
cesses. As with any complex scientific instrument, much effort must be devoted to
developing the instrument so that the data it provides is useful. We are still in the pro-
cess of refining our instrumentation, as well as the design of the “experiments” which
are to use this instrument. The information in this chapter is a presentation of this
work in progress. The conclusions we can draw about learning and using SPARCL from
the experiment we have run so far are necessarily provisional and limited in scope.
1. Computer-based training (CBT) or computer-based instruction (CBI) is briefly mentioned in

[Compeau et al. 1995]. This has a long history in computer-aided instruction (CAI), notably the
PLATO system.
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Related Work

An integrated tutorial system for SMALLTALK, MiTTS, is presented in
[Carroll&Rosson 1995].  MiTTS interactively introduces the concepts of SMALLTALK,
with many exercises. It is in many ways more sophisticated than the tutorial system
we provided with SPARCL. The MiTTS tutorial took from 4 to 6 hours to complete. A
“commercial” SMALLTALK tutorial was compared to MiTTS. It took about 12 hours to
complete. The users of MiTTS did much better on a follow-up test than did the other
users.

The monitoring of command data is discussed in [Kay&Thomas 1995]. This is
similar to the monitoring of interactions which we used in SPARCL. Kay and Thomas
studied the patterns of usage of SAM, a modeless editor with basic commands invoked
using the mouse. Their data collection was incomplete in several ways, but they
found that interesting conclusions could be drawn from it nonetheless. They deter-
mined that the monitoring information was sufficient to provide a fairly accurate pro-
file of the user’s understanding of various aspects of SAM.

The Tutorial

The tutorial is a basic introduction to SPARCL. An adaptation of the entire scripted
tutorial is given in appendix 1 (“Tutorial Introduction”). The scripted tutorial assumes
no particular knowledge of SPARCL or logic programming, but it does assume a famil-
iarity with the Apple Macintosh user interface. Much of the tutorial is focused on
logic programming, as it looks in SPARCL. About half of he tutorial presents concepts
which are unique to SPARCL. The tutorial only explains a small portion of the SPARCL

language and environment (for instance, nothing is said about projects, program over-
views, preferences, or term sets versus evaluable programs). The first portion of the
tutorial, which is about logic programming as it appears in SPARCL, is based on the
first chapter of [Bratko 1990].

The opening screens of SPARCL are shown in Figure 9. 1 and Figure 9. 2. Figure 9. 1

shows the “splash” screen which the user sees when the SPARCL application is first
opened. Figure 9. 2 shows the initial appearance of the tutorial. This is what the user
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sees directly after the splash screen if she selects the “Tutorial” button on the splash
screen.

The tutorial is organized into several parts, a preface and three chapters. Each of
the chapters is made up of several sections. The preface provides a basic introduction
to the tutorial system. In the course of explaining SPARCL, the tutorial demonstrates
the construction and use of programs. The menus which the user would “pop up” are
displayed as though the user had invoked them, and there is an “instructional cursor”
which shows (roughly) where the user would place the actual cursor were the user
doing the action being demonstrated. An example of demonstrating a popup menu is
shown in Figure 9. 3. The state of the system after the action of Figure 9. 3 is shown in
Figure 9. 4.

Tutorial preface. Information is presented to the user in several places in the course
of this tutorial. It may be disorienting at first, but after a little while the user should
find it quite usable. There are two scripting windows and there may be one or more
additional "regular" SPARCL windows. The simplest way to use the non-exercise
portion of the tutorial is to read the "comment" window, the "Next Step" and "How"
areas of the "control" window, watch the "regular" SPARCL windows as they are
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used in the course of the tutorial, and to click only on the "Do Next Step" button. A
more complete explanation of the tutorial script mechanism follows.

The two windows that are just for the script mechanism are the "comment"
window in which the user is reading this comment and the "control" window which
provides the user control over the execution of the script. Each comment in the
comment window is displayed with an "@" character at the end. This lets the user
know when she needs to scroll the comment window to get to the end of the text.

There are four buttons in the "control" window: "Do Next Step", "Verbose" and
"Brief" under the "Do Rest of Current Script Steps:" header, and "Stop Current
Script". The "Do Rest of Current Script:" buttons ("Verbose" and "Brief") tell the
system to execute the rest of the current script without stopping, "Verbose" means to
display any information that the user would have seen had she "stepped" through the
script and "Brief" means to suppress the script-associated information. The user may
interrupt the tutorial after she has told it to "Do Rest of Current Script Steps" by
clicking in a small window which appears over the "Do Next Step", "Verbose", and
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"Brief" buttons. This will put her back into "step" mode at whatever step the tutorial
was executing when she clicked in the "*Interrupt*" window.

In the control window, there are five informational areas. The script which is
currently being executed is identified as the "Current Script". The effect of the script
action which will be executed next (should the user click on the "Do Next Step"
button) is described in the "Next Step" area. The way in which the user would do the
step herself, were she to do it instead of the script doing it, is described in the "How"
section. The fourth informational area is a list of all of the "major" scripts in the
tutorial. The current "major" script is highlighted (right now, the highlighted script
should be "0.1.Preface"). The current major script may be different than the current
script. This happens when the current script is an "internal" or "helper" script which
has been invoked in the course of executing the current major script. The fifth
informational area is a log of all of the steps executed since starting the tutorial.

There are several tutorial scripts. Each script contains a sequence of comments
(such as this) and actions. The kinds of actions which the script makes are the same
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kinds of (inter)actions which the user may make with the SPARCL programming
environment. Generally, scripts create and execute SPARCL programs, with
commentary interspersed to explain the purposes of the actions.

This tutorial "disables" most of the SPARCL operations (to keep the user from
accidentally changing the SPARCL environment in such a way that the tutorial will
not work). For the exercises, the tutorial will "enable" all of SPARCL.

The scripts are organized into "chapters" and "sections". This script is the
"0.1.Preface" section (which comes before the chapters). It’s "parent" script is
"0.0.Tutorial". This parent script invokes two scripts. This one, the preface, and the
"0.2.Chapters" script. The Chapters script invokes three chapters: 1, 2, and 3. Each of
the chapters is divided into several sections.

The chapter scripts all have names which have the form "N.0.Chapter" where N is
the chapter number and Chapter is the name of the chapter. Section scripts have
names of the form "N.K.Section" where K is greater than 0. Chapter and section
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scripts may be run "independently", the user does not have to run them in order. She
may wish to exit the tutorial before completing all of the tutorial and then return at a
later time. The chapters and sections are all "major" scripts and are listed on the
"Tutorial Scripts" submenu of the "File " menu.

At various points in this tutorial the user will see references to particular "objects"
on the screen in the "How" area of the control window. These are written as
"ProgramName:Number" where ProgramName is the name of the program containing
the object and Number is an arbitrary identifier.

Tutorial contents summary. The titles of the three chapters and their sections, and
the full statements of the exercises, are as follows:

Chapter 1: Introduction
Section 1: Facts - the Parents program

Exercise 1:
In the provided "Exercise 1.1" program window, formulate in SPARCL the
following questions about the "Parent" relation (your question formulation
should be "query" clauses with names of your choosing (e.g. "Query A", "Query
B", "Query C")):
A) Who is Pat’s parent?
B) Does Liz have a child?
C) Who is Pat’s grandparent?

Section 2: Rules - extending the Parents program
Exercise 1:

In the provided "Exercise 1.2" program window, show translations for the
following statements:
A) Everybody who has a child is happy (introduce a one-argument relation

"Happy").
B) For all X, if X has a child who has a sister then X has two children

(introduce a new relation "Has Two Children").
Exercise 2:

Define the relation "Grandchild" using the "Parent" relation. Hint: It will be
similar to the "Grandparent" relation.

Exercise 3:
Define the relation "Aunt" of two arguments in terms of the relations "Parent"
and "Sister".'),

Section 3: How it works
Section 4: Declarative and procedural meaning of programs

Chapter 2: Representation and Meaning of SPARCL Programs
Section 1: Data objects

Exercise 1:
In the provided "Exercise 2.1" program window, develop a representation for
rectangles, squares, and circles as structured SPARCL objects. Use an approach
similar to that given in the "Geometry Example" program. Write single
argument clauses which have example terms of each of these in their argument
and use a comment in the argument to explain the elements of the terms (e.g. "a
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triangle is represented by a set of three (X,Y) points which are the corners of the
triangle"):
A) write a Rectangle clause of one argument which contains a term for a

rectangle with diagonally opposite corners at (1,2) and (34,-5.8)
B) write a Circle clause of one argument which contains a term for a circle

centered at (93,4) with a radius of 16
C) write a Square clause of one argument which contains a term for a square

with upper left corner at (14, 23) and sides of length 123.
Section 2: Matching
Section 3: Declarative meaning of SPARCL programs
Section 4: Procedural meaning of SPARCL programs

Chapter 3: Application of SPARCL
Section 1: “Column Sum” Example

Exercise 1:
This is a complex exercise, you may wish to work on it in multiple attempts.
You are asked to implement a "Tournament Scores" predicate which scores
players based on their performance in multiple rounds of a tournament. In
preparation for implementing this predicate (in part 3, below), you are first
asked to implement "Maximal Range Value" in part 1, and then you are asked to
implement "Maximal Pairs" in part 2. These predicates will make use of ordered
pairs (2-tuples), partitioned sets, intensional sets (and intensional multisets),
function tables, "*DELAY*" specifications, and the fails/2 metapredicate (a
metapredicate is a predicate which takes a literal as an argument and invokes the
given literal).

Write and test a "Maximal Range Value" predicate of two arguments.
A) Write a program for the predicate "Maximal Range Value" with two

arguments. The first argument is a set of pairs, with the second elements
(the range values) being numbers. The second argument is a number which
is maximal with respect to the range values of this set, i.e. a number such
that no range value is greater than it.
 HINT:

Use a fails/1 literal and use two literals in its argument, a unify/2 literal
and a less/2 literal. The unify/2 literal unifies given the pair set with a
partitioned set with an ordered pair of two variables in one part and
nothing in the other part. The less/2 literal compares the second
argument term with the second element of the ordered pair of the
unify/2 set.

B) Write a "Maximal Range Value Query" predicate of no arguments which
tests the "Maximal Range Value/2" predicate by giving it the set
"{a=>3,b=>4,c=>5}" and 5 as the maximal range value.

Exercise 2:
Write a "Maximal Pair" predicate of three arguments and a test predicate.
A) The "Maximal Pairs" predicate has a set of ordered pairs as its first

argument, its second argument is the set of maximally range-valued pairs
among the first argument’s set. Thus, for the first argument set "{a=>2,
b=>1, c=>2, d=>0}", the second argument set of maximal pairs is "{a=>2,
c=>2}".
 HINT:

This is implemented by a single clause, plus a "helper" predicate. The
second argument to "Maximal Pairs" should be an intensional set. The
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template is an ordered pair (which will become the maximal ordered
pairs). The body has two literals. One of these is a unify/2 literal which
unifies a 2-part partitioning with a variable. The first part contains a 2-
tuple, the second part is hollow. The second literal is the "helper"
predicate, "Maximal Range Value" of two arguments as implemented
in part 1 of this exercise. For "Maximal Range Value"/2 to work
correctly in "Maximal Pairs", there must be two "*DELAY*"
specifications for the "Maximal Range Value" predicate of two
arguments such that "Maximal Range Value" delays if either argument
is a variable (i.e. a delay specification for "variable=>ignore" and
another for "ignore=>variable").

B) Write a "Maximal Pairs Query" predicate of one argument to test the
"Maximal Pairs" predicate. The "Maximal Pairs Query" predicate should
return the maximal pairs found by "Maximal Pairs", given the test set
"{a=>2, b=>1, c=>2, d=>0}".

Exercise 3:
Write a "Tournament Scores" predicate and a predicate to test it.
A) The "Tournament Scores" predicate has two arguments. The first argument

is the tournament rounds scores and the second argument is a function from
player to overall score for that player. The tournament rounds scores are a
function table, where each column is a different player in the tournament
and each row is a set of scores for a round of the tournament. The overall
scoring of a player for the tournament is the number rounds in which that
player was among those with the highest score.
 HINT:

The second argument of "Tournament Scores" is an intensional
multiset, where the template is a variable (which will be the player) and
the body contains two literals. One of these literals is a unify/2 literal
which extracts a row from the rounds table. The other literal is a
"Maximal Pairs"/2 literal which finds the players with maximal scores
for that round. The second argument to this "Maximal Pairs" literal
should be a partitioned set of two parts. One of these parts is an ordered
pair with the first element of this pair being connected to the template
variable.

B) Write a "Tournament Scores Query" predicate of one argument which
returns the overall player scores from "Tournament Scores", given a table
of:
"{{a=>1, b=>2, c=>0}, {a=>2, b=>2, c=>1}, {a=>1, b=>0, c=>2}}".

The “experiment”.

The user testing experiment involved the seven graduate students enrolled in a
course on visual programming languages in the Spring of 1996. Each participant was
given a single sheet of instructions, shown in Figure 9. 5. They independently ran the
tutorial on one of two Apple Power Macintoshes in the DesignLab facility of the
Electrical Engineering and Computer Science Department of the University of Kan-
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sas. For each user there
were several files: an inter-
action log, a record of that
user’s comments (made
through the “Record Com-
ments about SPARCL...”
option of the “File “ menu
in the SPARCL application),
and the exercise programs
which that user created for
the exercises of the tutorial.

The tutorial was
entirely self-explanatory,
no other instruction or aid
was provided to the study
participants. Whenever a
user quit the SPARCL appli-
cation, it would ask that
user if she would like to
send her files to the
researchers running the
experiment. If the user said
yes, then SPARCL would
package the relevant files
into an email message and
send this message to us. If
the user said no, then no
files were sent (although
they remained on the sys-
tem so that we could “man-

ually” retrieve them later). This structure of the tutorial, complete self-explanation,
automated data gathering, and automated email delivery of the data, was developed so
that the SPARCL can be distributed freely over the Internet and a wide variety of indi-
viduals may contribute to the user testing. The Internet distribution has not yet been
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SPARCL Testing
Tuesday, August 13, 2002

for research project of: Lindsey Spratt
spratt@eecs.ukans.edu

SPARCL has an “active” tutorial built in to it. It is accessed (prima-
rily) from the “about” screen via the “tutorial” button.

For this study, please invoke the tutorial and follow it. There are a few
exercises—please attempt them.

SPARCL (currently 2D5) is on the two “big” Macs in the DesignLab
at:

HardDisk:Projects:SPARCL

When you start using it, be sure that you set your user name—this
helps the data collection for the study.

There are various programs associated with the tutorial, if you would
like to look at them outside of the tutorial, they are in a folder named
“Tutorial Scripts ƒ.X” and their names end in “ VPSL”. Other example
programs are in a folder named “Examples”. Both of these folders are
in the SPARCL application folder.

Please use the “Record Comments...” facility freely, tell me any
thoughts you have about SPARCL and the tutorial process as you are
working through it. This is on the “File “ menu and can be accessed
via command-R.

The interaction data and comments will be more interesting to me if
each of you works alone, rather than collaborating.

Finally, relax and keep in mind that you are testing SPARCL and its
tutorial—not the other way around.

Thank you for your help,
Lindsey Spratt.

Figure 9. 5: SPARCL study handout.

mailto:spratt@eecs.ukans.edu


attempted.

Results: In General.

The study participants each spent two to four hours on the tutorial. Unfortunately,
many of them only ran the first chapter of the tutorial. One participant completed all
three chapters and the four exercises. The study had 7 participants. There were two
versions of the tutorial, 0.5 and 1.0. The early version, 0.2,  was used by only one of
the participants. There were two versions of the tutorial used in the study, 2.D.5 and
2.D.6. The earlier version, 2.D.5, was used by one participant (‘vn’) for that person’s
entire participation and by another participant (‘kc’) for a very brief session. The tuto-
rial changed substantially from 0.2 to 1.0; the entire second and third chapters were
added. Participant vn needed to start early, so the tutorial was not quite ready. SPARCL

changed in various ways from 2.D.5 to 2.D.6, but these did not greatly affect partici-
pants vn or kc.

Results: Exercises.

There is a program file created by the tutorial and edited by the user associated
with each of the four exercises. If the user invokes the tutorial script for a particular
exercise multiple times, then there are multiple program files for that exercise. We
analyzed these program files to determine how successful the participants were at car-
rying out the exercise tasks.

All of the results are given in Table 9. 1. Table 9. 2 summarizes these results. There
are four “exercises”, each of which presented the user with three are more tasks. In
the exercise for section 1 of chapter 1 (‘1.1’) these tasks are labeled ‘A’, ‘B’, and ‘C’.
In the exercise  for section 2 of chapter 1 (‘1.2’), these tasks are ‘1 part A’, ‘1 part B’,
‘2’, and ‘3’. In the exercises for section 1 of chapter 2 (‘2.1’) and section 1 of chapter
3 (‘3.1’), these tasks are ‘A’, ‘B’, and ‘C’. The participants did not even attempt the
six tasks of the exercises of chapters 2 and 3, with the notable exception of ‘ca’ and
an unsuccessful attempt at the first of these tasks by ‘kc’. Generally, the seven tasks
of the first two exercises seemed to be readily achievable given the information in the
tutorial. The tasks of the second chapter exercise involved constructing mildly com-
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plex terms, with nesting of N-tuples. These seem to confuse most of the participants.
Presumably, the tutorial needs more careful presentation of this information.

Results: Interaction logs. 
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User 1.1 1.2 2.1 3.1
ag part A correct, didn’t

attempt parts B and C.
Answered all parts
correctly.

ca Answered all parts
correctly.

1ab correct. 2 nearly
correct, missing link
for grandparent. 3
correct.

all parts correct. Used
N-tuple tables to make
complex terms instead
of using ntuples
directly.

3 attempts, none
successful at any
part. Only one
attempt is
nonempty. This
contains a single
clause of the
form: ((''Maximal
Range Value''=> _
=> _) => {(fails
=> ((unify =>
new_ur) => {}))})

el Answered all parts
correctly.

1A, incorrect, fact
table of two "Happy"
people (Tom and Pat).
1B, correct.  2 is
correct. 3 is nearly
correct, arguments to
"Sister" are reversed
("Sister" arguments are
in the other order for
part 2).

jp All three parts are
correct. two attempts,
the first attempt
correctly answered
parts A and B.

Only attempted 1A,
which is correct.

kc Answered all parts
correctly.

Answered all parts
correctly.

No correct answers,
only attempted part A.
Created heavily nested
ntuples: (((({} => {})
=> [table, 1 N-tuple
row]) => 34) => 1) =>
2)

rv All parts correct. Part
C exactly correct in
that it does NOT have
an argument.

parts A and B correct,
except the clauses are
not correctly named.

[file lost]

vn A and C not attempted.
B is correct.

Table 9. 1: Exercise assessments.



There are one or more interaction logs for each participant. These logs have been ana-
lyzed in various ways, including: interaction frequencies by duration and interaction
type (e.g. one interaction type is “script_control^step with next step of ‘<< (Please
read the script commentary) >>’ and current script of ‘Rules - extending the Parents
program’), and interactions identified by type of participant’s larger activity (e.g.
“reading section 1.2”). The results of these analyses can be seen in tables in this chap-
ter and in appendix 4 (“Interaction Log Data”) (“Interaction Log Data”). The appen-
dix tables and figures are:

1. Histogram of durations in seconds for all interactions.
2. Duration statistics for all participants organized by action type.
3. Histogram of interaction type frequencies by major action type for all types.
4. Histogram of interaction type frequencies by major^minor action type for all

types of interactions.
5. Histogram of interaction type frequencies by major action type for “exercise”

interactions
6. Histogram of interaction type frequencies by major^minor action type for

“exercise” interactions.
7. Interaction type counts grouped by major action type, minor action type, first

argument, and second argument.

Response time and think time. One of our concerns in preparing for the study was
the speed of SPARCL’S responses. We were concerned that if SPARCL responded too
slowly to common actions, then the users would become frustrated and this would
inhibit their use of (and appreciation for) the system. For this reason, this was an area
in which we had spent a lot of effort. In reviewing the results of the study, we found
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Use-
r

1.1a 1.1b 1.1c 1.2:
1a

1.2:
1b

1.2:
2

1.2:
3

2.1a 2.1b 2.1c 3.1-
a

3.-
1b

3.-
1c

ag + + + + +
ca + + + + + ± + + + + -
el + + + - + + ±
jp + + + +
kc + + + + + + + -
rv + + + + + ? ? ?
vn +

Table 9. 2: Summary of exercise assessments.
(‘+’=correct, ‘-’=incorrect, ‘±’=nearly correct,’?’=missing)



that only one of the participants remarked on the responsiveness of the system. This
person complained that the updating of the display was too slow. Thus, apparently,
SPARCL was generally responsive enough to meet our goal of not frustrating the user.

One particular response-time problem on which we worked was the presenting of
the appropriate popup menu in a program window when a user presses the mouse but-
ton with the cursor over some SPARCL display object. This popup menu presentation
was initially implemented in a simple fashion which proved to be much too slow. To
explain why it was too slow and how the problem was solved, we must first explain
the general problem involved of presenting a popup menu. Each kind of display
object has a distinct menu, and the interaction processing must determine the appro-
priate kind of menu to display. This is complicated by the fact that the display objects
can be nested, for instance a variable nested in an argument box nested in a clause.
Thus, determining the appropriate object requires selecting not simply the object
under the cursor, but the object with smallest frame under the cursor.

The process for displaying a popup menu is as follows: When the mouse button is
depressed, SPARCL receives a “mouse down” event with the coordinates of the cursor
“point”. SPARCL must then determine which display objects “frame” that point and of
these display objects determine which one has the smallest frame. (If a user depressed
the mouse button while the cursor was over the variable-in-an-argument-in-a-clause,
the variable display object would be found to have the smallest frame.) Having
selected a display object, SPARCL determines the popup menu associated with the type
of the display object. Then the items of that popup menu are processed for
enabling/disabling according to the current state of the SPARCL environment. Finally,
the popup menu is presented to the user. The problematic steps in this process are
those for finding the smallest object framing the cursor point. There may be one or
two hundred display objects for even a relatively simple program window. The search
among these objects requires comparing the two values (the coordinate) of the cursor
point to one to four values (the frame) per object (at least implicitly) to determine if
that object’s frame contains the cursor point, and then it is necessary to compare each
of the containing frames to each other to determine which frame is smallest. We ini-
tially used a simple list and compared items exhaustively, but clearly this was
inadequate. It could take several seconds to determine the appropriate object. This
was solved by implementing a special index (in PROLOG) which indexes the display
objects in a window by their frames (top left corner coordinates and depth and width).
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The search of this index returns all of the containing frames, ordered from smallest to
largest so that it is trivial to determine the object with the smallest containing frame.
After implementing this special index, the popup menu appears nearly instanta-
neously even in program windows with many hundreds of objects.

The interaction log data duration analysis gives us an idea of how responsive the
system was and how much time the users spent thinking. Certain types of interactions
should have short durations. These types include most of the program window display
object popup menu actions (e.g. “Argument Ops^Insert: Variable”, “Clause Ops^Cre-
ate Argument”). To compare with the study participants experience, we conducted a
simple test of the responsiveness of the system, independent of the usability test. We
constructed a program of four clauses, each clause with a single literal. The literals
and clauses each had two or three arguments. In our use of SPARCL, we observed a
reduced responsiveness when there were many programs loaded. To test this, we ran
the simple responsiveness test once with no other programs loaded, and once with a
relatively large project loaded (ID3, 766 display objects in SPARCL’s internal database,
34 literals, 36 clauses). The test was run on an Apple Macintosh 8500/120 with
32Meg RAM, with 16Meg application memory for SPARCL. The results of this test are
given in appendix 5 (“Response Time Data”).

The durations for the “unloaded” test are summarized in Table 9. 3. This shows
that the average and median duration for several simple editing interaction types are
two to three seconds. Notable exceptions to this are the ‘Clause Ops^Create Literal’
and ‘Program Ops^Create Clause’ interaction types. The ‘Clause Ops^Create Literal’
type interactions had an average duration of 5.2 seconds and a median of 7 seconds.
The ‘Program Ops^Create Clause’ type interactions had an average duration of 3.5
seconds and a median duration of 4 seconds. Creating a literal is more time-consum-
ing due to greater complexity of modifying the representation of a clause to fit the
new literal into that clause. Creating a clause generally requires no changes to exist-
ing display objects. The “loaded” test (i.e. with the ID3 project loaded) took about
twice as long as the “unloaded” test. This is presumably due to time spent searching
the display object database, although no careful analysis has been made of this issue.

The tutorial-based study had very few “other” programs loaded when the partici-
pants were working on the exercises, and so the responsiveness of the system for
them should be compared with the “unloaded” results of the responsiveness test.

There are some types of interactions which we expect were generally part of a
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sequence of opera-
tions, where the user
followed the interac-
tion with another
interaction as rap-
idly as the system
allowed. Most of the
Argument Ops,
Clause Ops, Set
Ops, Term Table
Cell Ops, Literal
Ops, Ur Ops, Parti-
tion Ops, Variable
Ops, Term Table
Ops, and NTuple
Ops interactions are
of this type, with the
exception of the
Clause Ops/Create
Comment and
Clause
Ops/Query:Brief
interactions. Creat-

ing a comment was generally followed by a significant period of time editing the
comment being created. Executing a query could take an arbitrarily long period of
time. Table 1 of appendix 4 (“Interaction Log Data”) shows the median durations for
these “sequence” interaction types vary between 6 and 10 seconds, with the exception
of the NTuple Ops interactions, which have a median of 15 seconds.

The “sequence” type interaction median duration of 6 to 10 seconds for the study
is substantially longer than the average (with small standard deviation) durations of 2
to 5 seconds (or median durations of 2 to 7 seconds) in the simple responsiveness test.
The study participants took roughly twice as long as necessary to execute these inter-
actions.  We speculate that this difference is due to the participants needing to think
about what to do, while no “think” time was used in the simple responsiveness test. If
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operation count total avg std dev median min max

Argument Ops 19 38 2 0.9 2 0 4
     Insert:Variable 19 38 2 0.9 2 0 4

Clause Ops 12 36 3 2 2 1 7
     Create Argument 8 15 1.9 0.3 2 1 2
     Create Literal 4 21 5.2 2 7 2 7

link 10 24 2.4 1.2 2 1 5

Literal Ops 7 15 2.1 0.3 2 2 3
     Create Argument 7 15 2.1 0.3 2 2 3

window 6 13 2.2 1.1 2 1 4
     activate 6 13 2.2 1.1 2 1 4

general_tool 6 10 1.7 0.7 2 0 2
     activate 4 6 1.5 0.9 2 0 2
    **** SKIP 1 type. **** 2

Program Ops 4 14 3.5 1.1 4 2 5
     Create Clause 4 14 3.5 1.1 4 2 5

connect_tool 4 9 2.2 0.8 3 1 3
     activate 4 9 2.2 0.8 3 1 3

Table 9. 3: Selected interaction durations for the “unloaded”
responsiveness test grouped by interaction type (major
action type/minor action type).



the simple responsiveness test time is taken to be the true system response time, then
this can be subtracted from the study interaction duration to determine the think
times. The respective think times are shown in Table 9. 4. The interaction types with
the lowest common think times are “connect_tool^activate” (clicking on the “connect
tool” icon in the program window in preparation for linking two terms in that win-
dow), “Literal Ops^Create Argument” (creating an argument in a literal), “Clause
Ops^Create Argument” (creating an argument in a clause), and “general_tool^acti-
vate” (clicking on the “general tool” icon in the program window in preparation for
any nonlinking editing interaction in that window). That these interaction types have
shorter think times is what one might expect. Selecting a tool (connect or general) is
usually done with some idea of what one will do next, the action which the tool selec-
tion enables. Also, creating an argument in a clause or literal is a simple action where
the user generally has a definite idea of what to do next (e.g., create another argu-
ment, or fill in the one just created with a variable). In the middle between the four
interaction types with the shortest think times and the four interaction types with the
longest think times is the interaction type “Argument Ops^Insert:Variable”.

The four longest think times are for the interaction types “Program Ops^Create
Clause” (create a clause in a program window), “link” (link two terms together),
“window^activate” (make a window the front (active) window), and “Clause
Ops^Create Literal” (create a literal in a clause). It is reasonable to expect the user to
be somewhat more reflective following interactions of these types than for the other
interaction types. Having created a clause but before “filling it in” with arguments
and literals, the user may need to stop and consider how best to construct the clause
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operation Basic duration Study duration Think time
avg std dev median avg std dev median (study med 

- basic avg)

cnn.tl^activate 2.2 0.8 3 10.9 28 5 2.8 
LtrOp^Create Argument 2.1 0.3 2 7.2 3.9 6 3.9
ClsOp^ Create Argument 1.9 0.3 2 9.5 7.2 6 4.1
gnr.tl^activate 1.5 0.9 2 30.6 166.3 6 4.5
ArgOp^Insert:Variable 2 0.9 2 9.3 14.1 7 5
PrgOp^Create Clause 3.5 1.1 4 12.3 9.7 9 5.5
link 2.4 1.2 2 14.5 18.3 8 5.6
window^activate 2.2 1.1 2 19.1 55.7 9 6.8
ClsOp^Create Literal 5.2 2 7 15.8 13.6 13 7.8
Table 9. 4: Typical “think” times for common editing interactions.



overall—what is the purpose of the clause. A similar situation occurs when creating a
literal. The activation of a window requires a few moments for the user to view the
window and decide on the next step. An interesting result in this set of values is the
relatively long think time (5.6 seconds) for the “link” interactions. Apparently, users
typically pause some time after a link to consider the result and how to proceed; nota-
bly more so than for argument creation.

Object selection accuracy. Since the primary interaction in the editing environment
involves placing the cursor over an object to get that object’s popup menu, it is
important that the user be able to easily determine whether the cursor is over the
desired object. There are two aids for this in the editing environment. One of these
cues is simply the visual cue—the cursor looks to be over the object of interest. The
other cue is the object type name at the bottom of the popup menu. This second cue
can be ambiguous since there may be more than one object of a given type in the
region of the object of interest. Additional cues may be desirable, such as highlighting
the object which is under the cursor at each moment.

Unfortunately, the interaction logging is insufficient to shed light on the object
selection accuracy question. The logging could be extended to note each popup menu
invoked, whether or not a selection was made from the popup menu. We might infer
that the wrong popup menu was invoked if a popup menu was “popped up” but no
selection was made. Currently, only popup menu selections are recorded. Also, the
logging could be extended to track how much time the user spends moving the cursor
around. A lot of time spent moving the cursor prior to popping up a menu could indi-
cate that the user was having a hard time positioning the cursor.

Interactions by section and exercise. We analyzed these logs to group sequences of
interactions into activity “portions”, and each portion was assigned a category: read-
ing a section, working on an exercise, or “other”. The times associated with these cat-
egories are given (in minutes) in the following tables: Table 3 of the appendix 4
(“Interaction Log Data”) and Table 9. 5 of this chapter show the durations per partici-
pant per section and various statistics by section of these durations per participant,
respectively. Tables 4 and 5 of appendix 4 (“Interaction Log Data”) show the dura-
tions per participant per exercise and various statistics by exercise of these durations
per participant, respectively. Table 6 of appendix 4 (“Interaction Log Data”) and
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Table 9. 6 of this chapter show the total durations per participant per category and var-
ious statistics by category of these durations per participant, respectively.

Table 9. 6 shows the participants averaged 107.9 minutes working through the sec-
tions (with a median of 81.5), 43 minutes working on the exercises (with a median of
32.3), and 17 minutes on “other” activities (with a median of 19.9). The uncatego-
rized activity, “other”, is surprisingly high. They averaged 167.8 minutes overall on
the tutorial (with a median of 131). Their individual values in these areas are quite
varied as can be seen from the fairly high values for the standard deviations.

Since the participants differed greatly in how much of the tutorial they attempted,
it is difficult to compare their activities. There were 9 sections to read. Table 9. 5

shows the average number of sections read was 7 with a median of 9. Four partici-
pants read all 9. The sections in which most of the time was spent overall were 1.1,
1.2, 2.1 and 3.1, in order of decreasing total duration. If we consider the average or
median times spent in a section as a measure of how demanding that section was, then
Table 9. 5 shows the same four sections are the most demanding, but in a slightly
changed order: 1.1, 3.1, 1.2, and 2.1 (in
decreasing order for either average dura-
tion or median duration).

There are two ways we have mea-
sured the sizes of the scripts for the sec-
tions and exercises. One is simply the
number of bytes in the script. The other
is the number of  steps which the user
must execute to see the entire script. The
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Sections
Statistics count total 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1

Count 7 7 7 7 7 6 5 5 4 4 4
Total 49 755.4 273.4 158.6 63.1 11.9 111.1 16 11.7 6.6 103.1
Avg 7 107.9 39.1 22.7 9 2 22.2 3.2 2.9 1.6 25.8
Dev 2.4 46.3 13.4 8 5.6 0.8 14.5 1.4 1 1 11.7
Median 9 81.5 36.2 21.9 9.2 1.6 13.8 3.1 2.9 1.7 29.5
Min 3 46.2 22.4 11.9 1.8 1.4 7.7 0.9 1.7 0.5 10
Max 9 186.4 62.3 33.2 21 3.6 45.2 4.7 4.4 3.2 42.2

Table 9. 5 Participant duration statistics by section. “total” column is statistics
for total over all sections per participant. “Count” column is statistics for
count of sections per participant.

Statistics All All Other Total
Sections Exercises

Count 7 7 7 7
Total 755.4 300.7 118.8 1174.9
Avg 107.9 43 17 167.8
Dev 46.3 27.7 6.6 65.3
Median 81.5 32.3 19.9 131
Min 46.2 16 8.7 91.3
Max 186.4 101 25.5 263.7
Table 9. 6: Statistics on total times.



sections have the script sizes in
bytes and numbers of steps as
shown in Table 9. 7.

The exercises have the script
sizes shown in Table 9. 8. The
“number of steps” approach to
counting steps does not differenti-
ate between different kinds of
steps, a simple action such “open
program” is a single step just as is
a very long single comment. Since
comments can be highly variable
in length, some account for how
big a comment is should perhaps
be included in the “steps” size estimate.

There is no simple relationship between the
sizes of the sections and the amount of time the par-
ticipants spent on them. There is an approximately
monotonic increasing relationship between the aver-
age times and the size in bytes (this is not honored by sections 2.2 and 2.3). Sections
1.1 and 3.1 are much larger than the other sections because they build SPARCL pro-
grams step-by-step, and comment on many of these steps. The other sections simply
present SPARCL examples by opening saved programs, instead of building the exam-
ples in the script.

Interaction frequencies. Histograms of the frequencies of occurrence of the interac-
tions are shown in the figures 2, 3, 4, and 5 of appendix 4 (“Interaction Log Data”).
Much the most common interaction type was “script_control^step” (clicking the
“Next Step” button in the script dialog). This occurred 3106 times.

The top 10 interaction types (those accounting for more than 2% of the total of the
nonscripting interactions) divide by frequency into several clusters:

cluster 1—Argument Ops^Insert:Variable (149);
cluster 2—general_tool^close_edit (125);
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Section Bytes Visible Steps Bytes/Steps Median
Minutes

0.0 7100
1.0 3147
1.1 16446 242 68 36.2
1.2 10267 44 233 21.9
1.3 8627 45 192 9.2
1.4 2479 5 496 1.6

2.0 3000
2.1 9871 37 185 13.8
2.2 4471 22 203 3.1
2.3 4760 15 317 2.9
2.4 8029 7 1147 1.7

3.1 16978 140 121 29.5
Table 9. 7: Section sizes.

Exercise Bytes  Visible Steps
1.1ex 1251 5
1.2ex 1222 5
2.1ex 1516 5
3.1ex 5171 5

Table 9. 8: Exercise sizes.



cluster 3—Clause Ops^Create Literal (82), link (77),
File^Record Comment about System... (74);

cluster 4—Program Ops^Create Clause (53), Clause Ops^Create
Argument (51); and

cluster 5—Clause Ops^Query:Brief (41), Clause Name Ops^Edit
Clause Name (36), Argument Ops^Insert:Ur (31).

An interesting absence from this list of interaction types is “Lit-
eral Ops^Create Argument”. One might expect it to be present due
to the large number of “Argument Ops^Insert:Variable” (149) and
“Argument Ops^Insert:Ur” (31), but only 51 “Clause Ops^Create
Argument”. At one insertion per argument (and no deletions), this
leaves about 130 arguments unaccounted for. These are the literal arguments. They
are being created without an explicit interaction by the user. This is due to an optimi-
zation in the SPARCL interface. When creating a literal, the user selects a name and
arity for the new literal from a list of procedures (names and arities) currently defined
by the user. The new literal is then created with the selected name and number of
arguments already in place. This both saves the user time and reduces the number of
programming errors due to mismatched numbers of arguments.

Results: System comment files.

The numbers of system comments made by the participants are summarized in
Table 9. 9. Some of the participants also provided some comments by email directly to
the researchers. The comments were of various kinds, including problems with the
tutorial and the scripting mechanism, assessments of the tutorial and SPARCL, and
questions about the tutorial and SPARCL. There were several requests for the ability to
go back to earlier points in a script, at least to be able to go back to the previous step.
Several participants commented that they found the coreference link representation to
be very understandable and a distinct improvement over variables in PROLOG. The
term “ur” confused several people.

Discussion.
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User Comments

ag 8
ca 14
el 18
jp 9
kc 19
rv 3
vn 3
Table 9. 9:
Number of
comments
recorded by
each user.



Summary. The usability testing consisted of having seven graduate students work
through an online, integrated tutorial of SPARCL. Their interactions were recorded by
SPARCL, and they were encouraged to record comments freely during the course of the
tutorial. The data from the testing consists of the interaction log files, their recorded
comments, and their solutions to the exercises in the tutorial.

We summarized the tutorial preface and provided an outline of the tutorial’s con-
tents. We gave the exercises in full. An adaptation of the entire tutorial is given in
appendix 1 (“Tutorial Introduction”). We provided statistics characterizing the tuto-
rial section sizes in Table 9. 7 and the exercise sizes in Table 9. 8. The sizes of a sec-
tion are given in number of bytes (of the defining script file) and number of visible
steps (to execute the script for that section).

There are three kinds of data from the experiment: the interaction logs, the system
comment files, and the exercise files. In analyzing the exercise files, we observed that
exercise groups 1.1 and 1.2 were attempted by most participants, that 2.1 was
attempted by only two participants, and only the first task of 3.1 was attempted
(unsuccessfully) by only one participant. The seven tasks of the first two exercises
seemed to be readily achievable given the information in the tutorial. The tasks of the
second chapter exercise involved constructing mildly complex terms, with nesting of
N-tuples. These seem to confuse most of the participants.

In analyzing the interaction logs we looked at the durations of the interactions, the
frequencies of the occurrence of interactions by type of interaction and type of larger
activity (e.g. “reading section 1.2”, “working on exercise for section 2.1”) of which
the interaction is a part. The results of these analyses are presented in several tables in
this chapter and in appendix 4 (“Interaction Log Data”). We used the duration data to
study issues in response time and think time, object selection accuracy, and section
and exercise activity durations.

Our analysis of response time was motivated by concern that if SPARCL responded
too slowly to common actions, then the users would become frustrated and this would
inhibit their use of (and appreciation for) the system. Because of this concern, we
devoted substantial effort to making the implementation what we hoped would be
adequately responsive. The response of the interaction is dependent on two activities:
presenting the appropriate popup menu in reaction to a “mouse down” event over a
program object and redisplaying a program to reflect editing changes. According to
our analysis, SPARCL’S response time for popping up menus was entirely adequate.
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The redisplay time was generally acceptable, although we did discover that it
degrades seriously as the amount of SPARCL “code” loaded into the environment at
one time grows. Since the tutorial does not require large amounts of code to be loaded
at one time, this response time degradation was not a problem.

We found that the interaction log data is insufficient to shed light on the object
selection accuracy question. The logging could be extended to note each popup menu
invoked, whether or not a selection was made from the popup menu. Currently, only
popup menu selections are recorded. Also, the logging could be extended to track
how much time the user spends moving the cursor around.

The duration data organized by participant and section shows that the sections that
had the most total time spent in reading them were 1.1, 1.2, 2.1 and 3.1, in order of
decreasing total duration. Considering the average or median times spent in a section
as a measure of how demanding that section was, the same four sections are the most
demanding, but in a slightly changed order: 1.1, 3.1, 1.2, and 2.1 (in decreasing order
for either average duration or median duration).

This notion of “demanding” sections based on durations corresponds well to the
size in visible steps for sections 1.1 and 3.1. They are much larger in visible steps
than the other sections because they build SPARCL programs step-by-step, and com-
ment on many of these steps. The other sections simply present SPARCL examples by
opening saved programs, instead of building the examples in the script.

Overall, participants averaged 107.9 minutes working through the sections (with a
median of 81.5), 43 minutes working on the exercises (with a median of 32.3), and 17
minutes on “other” activities (with a median of 19.9). The uncategorized activity,
“other”, is surprisingly high. They averaged 167.8 minutes overall on the tutorial
(with a median of 131).

Much the most common interaction type was “script_control^step” (clicking the
“Next Step” button in the script dialog). This occurred 3106 times. The five most
common non-scripting interaction types (with their number of occurrences in the test
data) were “Argument Ops^Insert:Variable” (149), “general_tool^close_edit” (125),
“Clause Ops^Create Literal” (82), “link” (77), and “File^Record Comment about Sys-
tem...” (74). The “Literal Ops^Create Argument” interaction is not even in the top 10,
although one would expect about 130 interactions of this type (given the other inter-
actions) to create literal arguments. Instead they are being created without an explicit
interaction by the user due to an optimization in the SPARCL interface.
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The system comment file contained comments on a variety of topics. Three recur-
ring comments of interest here are: requests for the ability to go back to earlier points
in a script, at least to be able to go back to the previous step; comments that the coref-
erence link representation to be very understandable and a distinct improvement over
variables in prolog; and, the term “ur” was confusing.

Assessment. The usability testing was too limited to provide much insight into the
usability of SPARCL. It did show that SPARCL is usable in simple ways and that the rep-
resentation was understandable for very simple programs. The study participants
could not understand the one somewhat complex program in the tutorial. We don’t
know to what extent this is a failing of the language design or the tutorial. We can
make some assessments that are more specific to the implementation of the tutorial
and of SPARCL.

The tutorial “instrument” is clearly still in need of development. The tutorial sys-
tem needs to be able to back up, as several participants requested. Also, several par-
ticipants would like to have been able to actually do the various steps which the tuto-
rial was demonstrating. The tutorial system could allow the user to “do” the next step,
correcting the user if she does the wrong thing, or the user could choose to have the
system “do” the next step (as it does now). This is similar to the approach supported
by the Apple Guide help system used on the Apple Macintosh.

The interaction logging technique was useful, but was not able to shed light on
some questions. As we discussed above, the object selection accuracy question can
not be addressed using the interaction logging data. Some extensions to the logging
technology were discussed above which could make it useful for this question. These
include logging menu “pop ups”, not just menu selections, and logging time spent in
cursor movement.

The tutorial content appears to start out well, in that the initial sections were han-
dled well by the participants. But, the later sections are too “aggressive”; they try to
cover much too much material and the participants were left confused. The tutorial
may need to be about twice as long to adequately present most of the concepts it
currently covers. This increased length leaves the tutorial at a still reasonable length,
about six to eight hours. This compares reasonably with the two automated SMALL-
TALK tutorials at six and 12 hours.

The editing environment may be more difficult to learn to use than we had
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expected, although the participant’s problems with this may be due to inadequate
instruction in the tutorial. The particular editing procedure that seemed confusing was
the creation and extension of N-tuples. An N-tuple is created by popping up a menu
for at an existing term and selecting a “Create N-Tuple:<term type>” option, where
“<term type>” is one of “Variable”, “Ur”, “Set”, “Table”, or “IntenSet”. This replaces
the existing term with an N-tuple that has the existing term as its first element and a
term of the chosen type as its second element. An N-tuple is extended by popping up
a menu at the N-tuple (not above one of the elements of the N-tuple), and selecting
“Extend with:<term type>”. This adds a term of the chosen type to the end of the N-
tuple. None of the participants extended any N-tuples.

We were concerned that the term-linking procedure might prove tedious, but none
of the participants appeared to have any trouble with it. We were concerned that it
might be tedious due to the necessity to place the cursor very precisely when linking
certain kinds of terms, particularly variables. This might have become a problematic
feature if the participants had produced programs requiring the linking of more com-
plex terms (e.g. parts of partitioned sets within N-tuples).

The SPARCL response time for simple editing interactions appeared to be generally
acceptable. However, this response time degrades substantially when there are many
display objects (clauses, literals, terms, etc.) in the environment. This is an area which
needs work to prevent the response degradation. Also, edits which cause apparently
minor modifications to a complex representation can lead to a slow response due to a
long time for redisplaying the modified representation. Better localization of the
redisplay could help here.

The SPARCL representation was thought to be good by the participants, judging by
their recorded comments. Particularly, there were several positive comments about
the representation of variable coreference by connecting lines instead of naming.
Contrary evidence on the understandability of SPARCL by the participants is that the
final program (Column Sum) may not have been understood by any of the four partic-
ipants who read that section (3.1).

From this experience the SPARCL environment appears promising, but the con-
struction and use of the complex terms needs careful and extensive explanation. The
two SMALLTALK tutorials mentioned above required more time to complete (6 to 12
hours) than we had planned for the SPARCL tutorial (2 to 4 hours). A SPARCL tutorial
which is modified to more gradually introduce complex terms and to more fully
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explain the execution model should still fit within the 6 to 12 hour range of these
other tutorials (and be much closer to the 6 than the 12 hour duration).
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Chapter 10
Future Work

There are many aspects of SPARCL in that provide an opportunity for further
research. We present some of these here.

Design Elements. We noted in chapter 3 (“Design Elements”) that the concrete
visual representation of delay specifications needs to be redesigned to be made more
compact than it currently is. This could substantially reduce the size of SPARCL pro-
grams. There are various extensions to the representation that we hope to investigate.
These include: lists, matrices, and directed graphs.

Some linear textual languages have very adaptable syntax that the programmer
tailors to the problem at hand. In Edinburgh-style Prolog, the programmer may define
the syntax of an operator:  its name, its position (prefix, postfix, or infix), its prece-
dence, and its associativity (does or doesn’t associate for unary operators; associates
left, associates right, or doesn’t associate for binary operators).1 There is also a facili-
ty for transforming clauses which are being interpreted, called term_expansion2. Term
expansion is a read-only operation - the original form of the clause is unavailable.
There is a write “hook” which is the print/1 predicate. This can be used to arbitrarily
reformat system output (such as that produced by the debugger or the top-level inter-
preter loop). Thus, the programmer can change the external (what is read and written)
syntax of Prolog in fairly dramatic ways. Lisp has its macro facility, which only af-
fects the reading of s-expressions3. There is an extensive macro preprocessor associat-
ed with C which can dramatically alter the syntax of the language. It only applies to
reading the language, however. These macro facilities are loosely analogous to the
term_expansion facility of Prolog. There may interesting analogs in a visual logic
programming language for the kinds of flexibility which Prolog provides via operator
definitions, and which macro facilities provide. Approaches to this question are close-
ly related to how one addresses the I/O problem identified earlier. Also, we would
like to provide an adaptable syntax for SPARCL. This is discussed in more detail below.

1. p. 26 of [Clocksin&Mellish 1992].
2. ff. 303 in [O'Keefe 1990].
3. ff. 193 in [Steele 1990].
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We expect to do further research into Input/Output system of sparcl. The immedi-
ate problem is to provide for a way for a user to interact with SPARCL during the inter-
pretation of a query. This is necessary to be able to build self-contained interactive
applications in SPARCL.

Partition Structured Unification. In chapter 4 (“Partition Structured Unification”),
we discussed several points related to the unification algorithm formalization, analy-
sis, and implementation. We would like to create a more concise form of the formal-
ization. The analysis should be completed to include soundness and completeness of
the formalization and minimality of the implementation. There are several aspects of
the implementation that can be worked on to improve the performance of SPARCL:
more sophisticated constraint analysis to recognize some cases of invalid collections
of nonground constraint partitioned sets; specialization of the unification algorithm
either per clause head or via partial evaluation of the SPARCL interpreter.

Three-dimensional Representation. We expect to explore some of the possibilities
for representing comments, as well as developing table representations, modelling
multiple clause scenes, and making the 3D representation interactively editable.

The strong similarity in approaches to automated layout for 2D and 3D represen-
tations should make it easier for us to combine these approaches. Such a combination
would yield an incrementally updated layout for the 3D representation (such as is cur-
rently implemented for the 2D representation). This is essential for interactive editing
of the 3D representation.

Implementation. Substantial performance improvements are possible in the
interpreter’s clause database searching by an indexing scheme for the clauses based
on their arguments, and by specializing the unification procedure for each clause
head. Another common optimization for logic programming interpreters is to compile
to a byte-code (which is interpreted by a heavily optimized run-time written in a low-
level language such as C or assembler) or even to compile to “native code”. However,
there are several algorithmic improvements that we expect to investigate before we
consider moving the run-time of SPARCL out of PROLOG. Changing the interpreter to
compilation makes it much more complex, and therefore harder to change, and it will
no longer automatically benefit from improvements to PROLOG implementation per-
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formance.

Subjective analysis. The “lazy” unification discussed in chapter 7 (“Subjective Ana-
lytic Assessment”) may provide another substantial performance improvement, and
we hope to investigate it. The analysis to support this “lazy” unification may be subtle
and there may be substantial changes needed in the implementation of the interpreter
to support it.

We found the ‘*TERM*’/1 predicate useful at several points in the SPARCL solu-
tions to the example problems. The ‘*TERM*’/1 literals were used to provide a place
to put partitioned set terms that didn’t have a “natural” home elsewhere in the clause.
This would be reasonably represented by suppressing the display of the ‘*TERM*’/1
literal and just displaying the contents of its argument—”free floating” in the clause.
There are various relatively minor adjustments required in various parts of the editing
and display systems to support this. We plan to investigate this alternative representa-
tion.

Objective analysis. We want to investigate making the representation of set relation-
ships (e.g. union, intersection, difference) more diagrammatic. 

Usability testing. We would like to modify the interaction logging mechanism. The
logging could be extended to note each popup menu invoked, whether or not a selec-
tion was made from the popup menu. We might infer that the wrong popup menu was
invoked if a popup menu was “popped up” but no selection was made. Currently,
only popup menu selections are recorded. Also, the logging could be extended to
track how much time the user spends moving the cursor around. A lot of time spent
moving the cursor prior to popping up a menu could indicate that the user was having
a hard time positioning the cursor.

Further work on the tutorial system will improve its usability (as opposed to the
usability of SPARCL): support “backing up” at least one step, preferably more; and,
allow the user to “do” the next step, instead of just telling them how it should be done
and then doing it for them. The tutorial contents should be changed to more gradually
introduce the more advanced concepts of SPARCL, aiming at a total tutorial duration in
the range of 6 to 12 hours instead of the current 2.5 hours.

The editing environment interaction model and specific choices of available com-
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mands needs more study. Particularly the construction of N-tuples, which appears to
be confusing as currently implemented.

Debugging. There is  a lot of research in debugging environments for visual and logic
programming languages. It should be interesting to investigate a debugging environ-
ment for a programming language which is both visual and logic-based.
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Chapter 11
Conclusions

At the beginning of chapter 1 we stated that the hypothesis of our research is that
visual logic programming based on sets with partitioning constraints provides a supe-
rior basis for exploratory programming languages. We further specified that our
research program had two major objectives: feasibility—test the feasibility of this
approach to programming languages by designing and implementing such a program-
ming language with an integrated development environment; and, desirabil-
ity—assess the desirability of this approach to programming languages by analyzing
this implementation.

We have fully achieved the first objective by our successful design and imple-
mentation of SPARCL. There were many problems to overcome in all aspects of creat-
ing SPARCL, its syntax, semantics, and integrated development environment. The sec-
ond objective is only partially achieved in this thesis. Also, as chapter 10 (“Future
Work”) indicates, this research project has many opportunities for additional research.

Demonstrating feasibility. There were a number of problems to overcome in the
development of a semantics for SPARCL that followed the hypothesis: logic program-
ming based on sets with partitioning constraints. The most difficult was developing
the partitioned set unification algorithm. The idea of partitioned set unification and
the accompanying algorithm are perhaps the major single technical contribution of
this research project. Another complex area in the semantics was integrating parti-
tioned set unification, partition constraint handling, and the delay mechanism into the
interpreter. To simplify the implementation of this interpreter, we simplified the lan-
guage it interprets compared to the SPARCL language seen by the programmer. This
required that we develop a program transformation system to translate between these
forms of SPARCL. The main complications addressed in this transformation deal with
generating coreferences when going from internal form to external form and with
variable scoping analysis when going from external form intensional sets to the inter-
nal form.

The design of a suitable representation and the construction of an integrated
development environment (IDE) to work with that representation also presented
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numerous difficulties. Our use of hyperedges in the representation of SPARCL is a
novel and reasonably successful solution of the problem of how to represent networks
of connecting lines. To make a fully visual and diagrammatic representation easy to
work with requires a great deal of support from the IDE. In particular, the IDE must
be able to help with the creation and layout of the representation. We made this
almost completely automated: the programmer has very little involvement in layout
decisions. Since the layout was done in an editing environment, it was necessary that
the layout algorithm be incremental and non-disruptive. 

We pushed the design of the representation into three-dimensions, but that work
remains incomplete. One of the concrete results of this work is an approach to the lay-
out of hyperedges in three-dimensions. We believe the 3D representation work pre-
sented in this thesis is a good foundation for further study.

Assessing desirability. In our analyses we evaluated this language to assess the evi-
dence it provides for the hypothesis. The analyses were of three kinds: subjective,
objective, and usability. These analyses provide only an initial step toward achieving
the second major objective of the hypothesis. A great deal of work remains to be done
to fully achieve this objective.

The subjective analysis comparing the SPARCL solutions to those in LISP and PRO-
LOG shows the SPARCL solution to be arguably, but not undeniably, more understand-
able than the solutions in the other two languages. This (arguable) improved under-
standability is due to its visual representation of coreference, its specialized represen-
tation and handling of sets, and its comparative brevity. The SPARCL solutions of the
other example problems provide additional evidence of SPARCL’s brevity and under-
standability.

The objective analysis demonstrates that SPARCL is comparable to PROLOG and
substantially more concise than LISP. Further, the analysis indicates that with certain
further work on the SPARCL concrete representation, SPARCL can be improved to be
substantially more concise than PROLOG. Based on our connection of size measure-
ments with the quality of the programming language, this indicates that SPARCL may
be a better programming language than PROLOG or LISP for some kinds of exploratory
programming.

The usability testing indicated several things about the implementation. The
SPARCL representation was thought to be good by the participants, judging by their
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recorded comments. There was some contrary evidence on the understandability of
SPARCL by the participants in that the final example program of the tutorial may not
have been understood by any of the four participants who studied it. From this experi-
ence the SPARCL environment appears promising, but the construction and use of the
complex terms needs careful and extensive explanation.

The analyses showed that the three approaches to programming and the novel set-
handling technique work well together, as hypothesized. Each contributed to the rea-
sonable brevity of SPARCL programs. The visual presentation of partitioned sets was
successful in that they are easily understood. Intensional sets seem to be the hardest
aspect of SPARCL for users to understand. We believe that their visual presentation
does not particularly help in making them understandable, although another represen-
tation than that we chose might do so. The use of connecting lines for coreference
(instead of “co-naming”) was preferred by the participants of the study.

The use of sets is problematic. They are a very abstract data organization that both
require and support many other organizations. We addressed this issue in SPARCL by
building in representations of sets-as-N-tuples and sets-as-tables. To make SPARCL

easier to use, there should probably be a richer suite of built-in data organization
alternatives.

SPARCL fully demonstrates the feasibility of visual logic programming with parti-
tioned sets. The more difficult question of the desirability of such an approach to pro-
gramming language design is not well established. SPARCL demonstrates that such a
programming language can be as concise, or more so, as the symbolic programming
languages PROLOG and LISP for selected nontrivial programming problems.
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Appendix  1
A Tutorial Introduction to SPARCL

This appendix is a tutorial introduction to SPARCL, the language which is built
using the principles of the hypothesis: it is semantically a logic programming
language which is built around partitioned sets; it is representationally a two- and
three-dimensional visual programming language; and it is implemented as an inte-
grated development environment (IDE). The definitions of the syntax of SPARCL and
the relationship of the various elements of SPARCL to the design principles of the
hypothesis are discussed in chapter 3 (“Design Elements”). The tutorial material in
this appendix is extracted from the interactive tutorial that is part of the SPARCL IDE,
and which was the basis of the usability testing discussed in chapter 9 (“Usability
Testing”).

1.Introduction: Introduction to SPARCL

In this section we review the basic mechanisms of SPARCL through an example
program. Although the treatment is informal many important concepts are introduced
such as: SPARCL clauses, facts, rules and running queries. [Due to the underlying
logic programming semantics of SPARCL, there are many similarities between an
introduction to SPARCL and introductions to other logic programming languages.
Thus, the contents and organization of this script are adaptations to SPARCL of the
first chapter of the second edition of Ivan Bratko's "Prolog Programming for Artificial
Intelligence", 2nd edition.]

1.1.Facts - the Parents program. In this subsection we create a program which
describes the ‘Parent’/2 relationship among seven people, then present several queries
of this parent relationship.

In this subsection you are shown how to create a simple "database"-style program,
‘Parent’/2, and how to query ("run") it.1 SPARCL is a visual logic programming

1. Due to the underlying logic programming semantics of SPARCL, there are many similarities
between an introduction to SPARCL and introductions to other logic programming languages. We
adapted section 1.1 of the second edition of Ivan Bratko's "Prolog Programming for Artificial
Intelligence" (a discussion of logic programming and PROLOG) to create this subsection of the
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language based on
sets with partitioning
constraints. This sub-
section introduces
some of the simple
visual logic
programming aspects
of SPARCL.

First we define a
simple SPARCL
program.

1.1.1.Create the ‘Parent’/2 program. In this subsection we create a program of six
clauses. These clauses describe a ‘Parent’/2 relationship among seven people.

A SPARCL program is represented by a window containing one or more clauses.
An empty new program is created via the "New Program..." option of the "File "
menu. After we create the program window we will populate it with clauses.  The
first step is described below, and the results of this step are shown in Figure A1–1. 1.

Step 1.
DO: Create a new program (and window) named "Parent".
BY: Select the "New Program..." option of the "File " menu, enter "Parent" in the program name

dialog, and click "OK".

There are three "panes" in a program window (only two of which are visible in
Figure A1–1. 1): the drawing pane, the tools pane, and the viewer pane. The drawing
pane is the large area on the right side of the window. It has scroll bars on its right
and bottom sides. The tools pane is on the left side of the window. There are two tool
icons, the top one (an arrow) is the "general" tool and the other tool is the "connect"
tool. The viewer pane is optionally visible, it is in the lower left corner of the
window. The viewer is used to quickly position the drawing pane. It is left hidden (or
"off") to speed up the display operations.

The general tool supports a wide variety of operations, each of which is invoked
through a popup menu which is activated by pressing the mouse button while the

tutorial on logic programming and SPARCL.
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Figure A1–1. 1: The newly created “Parent” program window.



cursor is over some "object" in
the program window (the
background of the program
window is considered to be the
"program" object). Each kind
of object has a different popup
menu. The connect tool supports connecting two terms
together. We discuss this more below.

Now we are ready create the clauses of the ‘Parent’/2
program. Step 2, which creates the first clause, has several
sub-steps.

Step 2: Create a clause with arguments Pam and Bob in program

Parent.

Step 2.1 creates an “empty” clause in the program win-
dow. The popup menu item selection is shown in
Figure A1–1. 2. The result of the interaction described
in step 2.1 is shown in Figure A1–1. 3.

Step 2.1.
DO: Create a new clause in program "Parent".
BY: Select the "Create Clause" option in the popup menu for the

program (window).

Now that we have the empty clause, we must add
the two arguments positions. This is done in Step 2.2.
This step uses two sub-steps.

Step 2.2: Add arguments to an existing object.

The next step creates the first argument position. The popup menu item selection
is shown in Figure A1–1. 4. The result of the interaction described in step 2.2.1 is
shown in Figure A1–1. 5.

Step 2.2.1.
DO: Create a new argument in the clause.
BY: Select the "Create Argument" option in the popup menu for clause.
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Figure A1–1. 2: Step 2.1
interaction to create a
clause. (The small “flag”
at the upper left corner
of the clause is half of a
“demonstration cursor”
used by the tutorial sys-
tem.)

Figure A1–1. 3: New
“Parent” clause result-
ing from Step 2.1

Figure A1–1. 4: Interaction
to create an argument for
step 2.2.1.

Figure A1–1. 5: Result
of argument creation by
step 2.2.1.
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The next step creates the sec-
ond argument position. The
popup menu item selection is
shown in Figure A1–1. 6. The
result of the interaction described
in step 2.2.2 is shown in
Figure A1–1. 7.

Step 2.2.2.(repeat Step 2.2.1).

Having created two argu-
ment positions in the ‘Parent’/2

clause, we now place the ur con-
stant “Pam” in the first (upper)
argument. This is done by step
2.3, which is done in three sub-
steps.

Step 2.3: Create a new ur constant of value Pam in the first argument of the clause.

The step 2.3.1 creates an ur constant in the first argu-
ment position with the default value of “new_ur”, and
leaves an edit item open for that new ur constant. The
popup menu item selection is shown in Figure A1–1. 8. The
result of the interaction described in step 2.3.1 is shown in
Figure A1–1. 9.

Step 2.3.1.
DO: Create a new ur in the first argument of the clause.
BY: Select the "Insert:Ur" option in the popup menu for the argument.

Now we enter the text “Pam” into the edit item left open by the previous step. The
result of this step is shown in Figure A1–1. 10.

Step 2.3.2.
DO: Edit the value of the ur constant of the “open” ur constant to "Pam".
BY: Enter the characters of the new value.

We have entered the text “Pam”, now we close the edit item. The result of this
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Figure A1–1. 6: Interaction
to create an argument for
step 2.2.2.

Figure A1–1. 7: Result
of argument creation by
step 2.2.2.

Figure A1–1. 8: Inter-
action to create a new
ur constant for step

Figure A1–1. 9:
Result of ur con-
stant creation by

Figure A1–1. 10:
Result of ur constant
editing by step 2.3.2.
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step  is shown in Figure A1–1. 11.

Step 2.3.3.
DO: Close the current edit "box" for program "Parent".
BY: Click in the program window anywhere outside of

the box.

The next step creates an ur constant “Bob”
in the second (lower) argument. It uses the same
three sub-steps as did step 2.3. The result of this
step is shown in Figure A1–1. 12.

Step 2.4: Create a new ur constant of value
Bob in the second argument of the clause.

Step 2.4.1.
DO: Create a new ur in the second argument of

the clause.
BY: Select the "Insert:Ur" option in the popup

menu for the argument.

Step 2.4.2.
DO: Edit the value of the “open” ur constant to "Bob".
BY: Enter the characters of the new value.

Step 2.4.3.
DO: Close the current edit "box" for program "Parent".
BY: Click in the program window anywhere outside of the box.

Step 3 creates a second clause. It uses the same sort of sub-steps as used in creat-
ing the first clause, with the exception of the argument position creation steps. When
there is just one predicate defined in a program window, as in this case, any “create
clause” interaction creates a clause for that predicate with the appropriate number of
argument positions. The result of the sub-steps of step 3 are shown in Figure A1–1. 13.

Step 3: Create a clause with arguments” Tom” and “Bob” in program Parent.

Step 3.1.
DO: Create a new clause in program "Parent". (Call this clause 2.)
BY: Select the "Create Clause" option in the popup menu for the program.

(Use existing arguments in an existing object.)

Step 3.2: Create a new ur constant of value “Tom” in the first argument of clause 2.

Step 3.2.1.
DO: Create a new ur in the first argument of clause 2.
BY: Select the "Insert:Ur" option in the popup menu for the argument.
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Figure A1–1. 11
: Result of
“closing” ur
constant edit
item by step

Figure A1–1. 12
: Result of cre-
ating new ur
constant by
step 2.4.

Figure A1–1. 13: Result of creating new
clause by step 3.
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Step 3.2.2.
DO: Edit the value of “open” ur constant to "Tom".
BY: Enter the characters of the new value.

Step 3.2.3.
DO: Close the current edit "box" for program "Parent".
BY: Click in the program window anywhere outside of the box.

Step 3.3: Create a new ur constant of value “Bob” in the second argu-
ment of clause 2.

(sub-steps similar to step 3.2)

The remainder of the six clauses are created in the next
four steps. These steps achieve their goals by the same
process as steps 2 and 3. The resulting set of clauses is
shown in .

Step 4: Create a clause with arguments “Tom” and “Liz” in program
Parent.

Step 5: Create a clause with arguments “Bob” and “Ann” in program
Parent.

Step 6: Create a clause with arguments “Bob” and “Pat” in program
Parent.

Step 7: Create a clause with arguments “Pat” and “Jim” in program Parent.

Now that we have defined the "Parent"/2 predicate (a predicate "Name/K" is
defined by all of the clauses with the name "Name" and K of arguments), we can
query it. A query is written in SPARCL as a clause, generally with one or more
"literals" in it. A "literal" is a reference to a predicate.
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Figure A1–1. 14: Result
of steps to create the
six ‘Parent’/2 clauses. 
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1.1.2: Querying the Parent program. In this section we
create six clauses for querying the parent program and run
these queries.

First we create the program which will contain the six
query clauses.

Step 1.
DO: Create a new program (and window) named "Parent Query".
BY: Select the "New Program..." option of the "File " menu, enter "Parent Query" in the program name

dialog, and click "OK".

For our first example, we ask "Who is Pam's child?". This is done in two phases:
first, create a clause which describes the query; second, use the "Query:Brief" option
of the "Clause" popup menu to run the query. Step 2 creates the query using several
sub-steps.

Step 2: Create a "Parent Query" clause for asking the question "Who is Pam's child?" (Call this clause
1)

Step 2.1 creates the “Parent Query” with one argument. The argument is created
in the same fashion as shown in step 2.2.1 of section 1.1.1. The result of the creation
is shown in Figure A1–1. 15.

Step 2.1.
DO: Create a new clause named "Parent Query" with 1 argument in program "Parent Query".  (Call

this clause 1)
BY: Select the "Create Clause" option in the popup menu for the program. Add 1 more argument to the

default 0 arguments.

We add a comment to the clause to describe the question it asks in step 2.2. This
is done in three sub-steps.

Step 2.2: Create a new comment “Who is Pam's child?” in clause 1.

The next step creates a comment for the clause with the default value “comment”.
The interaction is shown in Figure A1–1. 16, and the result is shown in Figure A1–1. 17.

Step 2.2.1.
DO: Create a new comment in clause 1.
BY: Select the "Create Comment" option in the popup menu for the clause.

Next the default comment value is replaced with the desired comment “Who is
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Figure A1–1. 15: Result
of step 2.1 to create
argument.

Parent Query



Pam's child?”. The result is shown in
Figure A1–1. 18.

Step 2.2.2.
DO: Edit the value of the “open” comment  to “Who is

Pam's child?”.
BY: Enter the characters of the new value.

The next step finishes the creation of the
comment by closing the edit item for the comment.

Step 2.2.3.
DO: Close the current edit "box" for program "Parent Query".
BY: Click in the program window anywhere outside of the box.

Next a variable is put in the argument of the clause.
The interaction is shown in Figure A1–1. 19  and the result is
shown in Figure A1–1. 20.

Step 2.3.
DO: Create a new variable in the argument of clause 1.
BY: Select the "Insert:Variable" option in the popup menu for the

argument.

The next step creates a literal. The interaction is
shown in Figure A1–1. 21, and the result is shown in
Figure A1–1. 22.

Step 2.4.
DO: Create a new literal with name “Parent” and 2 arguments in clause 1.
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Figure A1–1. 16: Interaction for step
2.2.1 to create argument.

Figure A1–1. 17: Result of step 2.2.1 to
create the comment.

Figure A1–1. 18: Result of step
2.2.2 to set the value of the com-

Figure A1–1. 19: Inter-
action for step 2.3 to
create a variable.

Figure A1–1. 20: Result
for step 2.3 to create a
variable.
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BY: Select the
"Create Literal" option
in the popup menu for
the clause.

Next we put the ur constant valued “Pam” in the first
argument of the new literal. This is done by several sub-
steps.

Step 2.5: Create a new ur constant of value “Pam” in the argument of
the literal of clause 1.

The sub-steps for creating an ur constant value “Pam”
start with step 2.5.1. These steps are similar to the ur con-
stant creation steps presented above. The initial interaction is
shown in Figure A1–1. 23  and the final result is in
Figure A1–1. 24.

Step 2.5.1.
DO: Create a new ur in argument 1 of the literal of clause 1.
BY: Select the "Insert:Ur" option in the popup menu for the argument.

Step 2.5.2.
DO: Edit the value of the “open” ur constant to “Pam”.
BY: Enter the characters of the new value.

Step 2.5.3.
DO: Close the current edit "box" for program "Parent Query".
BY: Click in the program window anywhere outside of the box.

The next step creates a variable in the second argument of the literal, similarly to
step 2.3.

Step 2.6.
DO: Create a new variable in the argument 2 of the literal of clause 1.

364

Figure A1–1. 21: Interaction for step
2.4 to create a literal.

Figure A1–1. 22: Result for
step 2.4 to create a literal.

Figure A1–1. 23: Interac-
tion for step 2.5.1 to cre-
ate an ur constant.

Figure A1–1. 24: Result
for step 2.5.3 to close
the edit item for the
new ur constant.
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BY: Select the "Insert:Variable" option in the popup menu for the argu-
ment.

Now we link together the
two variables. The interaction is
shown in Figure A1–1. 25. The
state of the interaction pictured
is after doing a click-and-drag
from the variable in the argu-
ment of the clause to the vari-

able in the second argument of the literal, but before the
mouse button is released. The “demonstration cur-
sor” shows where the user’s cursor would be at this
point and the grey line shows where the link will
be placed. The result is shown in Figure A1–1. 26.

Step 2.7.
DO: Create a coreference link including the variable in  the

argument of clause 1 and the variable in argument 2 of
the literal of clause 1.

BY: With "connect tool" as the current tool, depress the
mouse button while the cursor is over one of the vari-
ables and drag the cursor until it's over the other vari-
able, then release the mouse button.

This clause has our first uses of SPARCL
variables. One is in the argument of the "Parent
Query" clause; the other is in the second argument
to the ‘Parent’/2 literal. These two variables are
linked to show that they must refer to the same thing. In a
traditional linear language this would be indicated by
having two variable instances with the same name.

Now that we have built a “query” clause, we are ready
to evaluate it. The next step does this evaluation. The
interaction is shown in Figure A1–1. 27 and the result is shown in Figure A1–1. 28.

Step 3.
DO: Execute a query of clause 1, with tracing information suppressed.
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Figure A1–1. 25: Inter-
action for step 2.7 to
link two variables.

Figure A1–1. 26: Result
for step 2.7 to link two
variables.

Figure A1–1. 27: Interaction for
step 3 to query SPARCL.

Figure A1–1. 28:
Result for step 3 to
query SPARCL.
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BY: Select the "Query:Brief" option in
the popup menu for the clause.

This query creates output
in two windows. It writes a
"timing" message in the
"*Output*" window telling
how long the query took to be
evaluated (this time does not
include time spent rendering
the result). The query, when
successful, also adds an "N-
tuple" to the "Parent Query
RESULT" window which is the query clause "head" as it is
after the successful query evaluation. In this example, the
result in Figure A1–1. 28 shows that Bob is Pam's child.

For our second example, we ask "Who is Liz's parent?". This is done in the same
two phases as were used before. The sub-steps used by step 4 to create the query
clause are similar to those of step 2 above. The resulting clause is shown in
Figure A1–1. 29.

Step 4: Create a "Parent Query" clause for asking the question "Who is Liz's parent?"

Step 5. 
DO: Execute a query of clause with ID Parent Query:13, with tracing information suppressed.
BY: Select the "Query:Brief" option in the popup menu for clause with ID Parent Query:13.

As a result of the preceding query, SPARCL tells us that Tom is a parent of Liz,
as shown in Figure A1–1. 30.

For our third example, we ask "Who are two people related as parent and child?".
The clause for this question and the result of posing this clause as a query are shown
in Figure A1–1. 31.

The next query asks for Jim's grandparent "X". Since our program does not
directly know the "Grandparent" relation, this query has to be broken down into two
parts:

• 1) Who is a parent of Jim? Assume that this is some Y.
• 2) Who is a parent of Y? Assume that this is some X.
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Figure A1–1. 29:
Result for step 4 to
create the “Who is
Liz’s parent?” query

Figure A1–1. 30:
Result of step 5 pos-
ing the “Who is Liz’s
parent?” clause as a
query.

Figure A1–1. 31: Clause for
“Who are two people
related as parent and
child?” and the result of
posing this clause as a
query.
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We can ask a query of two parts
by putting a literal for each part in the body of the same query clause and connecting
the variables of these literals appropriately. The clause for this question and the result
of querying SPARCL with it are shown in Figure A1–1. 32. This result shows us that
Bob is Jim's grandparent.

The previous query can be "turned around" and we can ask "Who is a grandchild
of Bob?". The clause for this question and the result of querying SPARCL are shown in
Figure A1–1. 33. This shows us that Jim is a grandchild of Bob.

Another question could be "Who is a common parent of Ann and Pat?". As
before, this query has to be broken down into two parts:

• 1) Who is a parent, X, of Ann?
• 2) Is (this same) X a parent of Pat?
The clause for this question and the result of querying SPARCL are shown in

Figure A1–1. 34.The result shows us that Bob is a common parent of Ann and Pat.
This section has presented several points:

• It is easy in SPARCL to define a relation, such as the ‘Parent’/2 relation, by
stating the N-tuples of objects that satisfy the relation.

• The user can easily query the SPARCL system about relations defined in the
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Figure A1–1. 32: Clause
for “Who is the grand-
parent of Jim?” and the
result of posing this
clause as a query.

Figure A1–1. 33:
Clause for “Who is a
grandchild of Bob?”
and the result of pos-
ing this clause as a
query.

Figure A1–1. 34: Clause
for “Who is a common
parent of Ann and Pat?”
and the result of posing
this clause as a query.
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program.
• A SPARCL program consists of 'clauses'.
• The arguments of relations can (among other

things) be: concrete objects (such as "Tom"
and "Ann"), or general objects which are
represented by small circles. Objects of the
first kind are called "atoms" and objects of the
second kind are called "variables".

• Questions to the system consist of a clause,
which may contain any number of 'literals'.
Several literals in the body of a single clause
means that clause is true when the conjunction of the literals is true.

• An answer can be either positive or negative: for a positive answer we say that
the query was "satisfiable" and it "succeeded"; for a negative answer we say that
the query was "unsatisfiable" and it "failed".

• If a query has several possible answers then SPARCL will find one of them.

1. Exercise for section 1.1:
1. Formulate in SPARCL the following questions about the ‘Parent’/2 rela-

tion (your question formulation should be "query" clauses with names of
your choosing (e.g. "Query A", "Query B", "Query C")):

1. Who is Pat’s parent?
2. Does Liz have a child?
3. Who is Pat’s grandparent?

1.2: Rules - extending the Parents program. The "Parents" program can be
extended in many interesting ways. Let us first add the information on the sex of the
people that occur in the ‘Parent’/2 relation. This information has already been entered
and saved in a program file, so we can simply open that program.

The relations introduced in Figure A1–1. 35 are ‘Male’/1 and ‘Female’/1. These
relations are unary (or one-place) relations. A binary relation like ‘Parent’/2 defines a
relation between *pairs* of objects; on the other hand, unary relations can be used to
declare simple yes/no properties of objects.
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Figure A1–1. 35: “Sex” pro-
gram, separate clauses ver-
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These ‘Female’/1 and
‘Male’/1 relations can be
displayed in a different, more compact, way. This alternative representation uses
SPARCL's "fact tables". Figure A1–1. 36 has "fact table" versions of the ‘Female’/1
and ‘Male’/1 relations. These tables have the same meaning as the collection of
shown the in Figure A1–1. 35. The fact table has the predicate name for all of the facts
of the table placed in the upper left-hand corner of the table. Each row of the table is a
single "fact" - a clause with an empty "body".

As our next extension to the program let us introduce the ‘Offspring’/2 relation as
the inverse of the ‘Parent’/2 relation. We could define ‘Offspring’/2 in a similar way
as the ‘Parent’/2 relation; that is, by simply providing a list of simple facts about the
‘Offspring’/2 relation, each fact mentioning one pair of people such that one is an off-
spring of the other.

However, the offspring relation can be defined much more elegantly making use
of the fact that it is the inverse of ‘Parent’/2, and that ‘Parent’/2 has already been
defined. This alternative way can be based on the following logical statement: "For
all X and Y, Y is an offspring of X if X is a parent of Y." The clause in
Figure A1–1. 37 represents the preceding "logical statement". This kind of clause is
called a "rule".

There is an important difference between facts and rules. A fact like those shown
in the ‘Parent’/2 clauses is something that is always, unconditionally, true. On the
other hand, rules specify things that are true if some condition is satisfied. Therefore
we say rules have:

• a condition part (the right-hand side of the clause)
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Figure A1–1. 36:
“Sex” program, fact
table version.

Figure A1–1. 37: Offspring clause, with labeled parts.
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• a conclusion part (the predicate name and arguments on
the left-hand side of the clause).

The conclusion part is also called the "head" of a clause and
the condition part the "body" of the clause.

How rules are actually used by SPARCL is illustrated by
the following example. Let us ask our program whether Liz is
an offspring of Tom. The "query" clause in Figure A1–1. 38

represents our question.
There is no fact about offsprings in the program, therefore

the only way to consider this question is to apply the
rule about offsprings. The rule is general in the sense
that it is applicable to any two objects; therefore it can
also be applied to such particular objects as "Liz" and
"Tom". We say that the variables become instantiated.

Figure A1–1. 39 is the special case of the Offspring
rule clause after instantiation of the general rule in
Figure A1–1. 37 in satisfying the query literal from
Figure A1–1. 38.

The single literal of the "Offspring
*INSTANCE*" body becomes the new goal for
SPARCL to solve. It is trivial to solve as it can be
found as a fact in the ‘Parent’/2 program. This
means that the conclusion part of the rule is also
true, and SPARCL will succeed in executing the
original query.

In Figure A1–1. 40 there are two similar clauses
defining two different predicates. The "Mother"
clause, which defines the ‘Mother’/2 predicate,
shows a rule with two literals in its body,
‘Parent’/2 and ‘Female’/2. The "Grandparent"
clause, which defines the ‘Grandparent’/2 predicate, shows a rule which uses the
same relation, ‘Parent’/2, twice in the literals of its body.

The "Sister (sort of)" clause in Figure A1–1. 41 defines the relationship of someone

370

Figure A1–1. 38:
Clause for posing
the query “Is Liz an
offspring of Tom?”

Figure A1–1. 39: Instantia-
tion of Offspring rule clause.
Created in response to the
query literal of
Figure A1–1. 38.

 
Figure A1–1. 40: The clauses
defining the ‘Mother’/2 and
‘Grandparent’/2 predicates.
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as the sister of someone if these two
people have the same parent. This
clause actually is slightly flawed - it
allows for someone to be sister to
herself. The "Sister" clause in
Figure A1–1. 42 fixes this using the
‘Different’/2 relation.

The ‘Different’/2 predicate, shown
in Figure A1–1. 43, relies on a parti-
tioned set constraint
to specify the the
terms in its two argu-
ments are different.
The ‘*TERM*’/1

predicate is a
built-in predi-
cate of the
SPARCL
system. It is
always true. It is
used here to
introduce the
partitioned set
constraint. Since
the two "sisters"
are in different
parts of a partition, they must be different (since parts
of a partition are disjoint sets). This is a kind of "not

equal" constraint. We will discuss partitioned sets in more detail in a later section.
The ‘Predecessor’/2 predicate is defined by the two ‘Predecessor’/2 clauses and a

‘*DELAY*’/2 clause, as shown in Figure A1–1. 44. This predicate is an example of
recursion, multiple clauses to defining a single predicate, and specifying a delay con-
dition. A recursive definition of a predicate uses the predicate being defined in the
body of one or more of the defining clauses of that predicate. Some person X is the

371

Figure A1–1. 41:
Clause defining the
‘Sister (sort of)’/2

Figure A1–1. 42: Clause
defining ‘Sister’/2 predi-
cate.

Figure A1–1. 43:
Clause defining
the ‘Different’/2
predicate.

 

Figure A1–1. 44: Clauses defining
the not-quite-satisfactory version of
the ‘Predecessor’/2 predicate.
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Predecessor of some other
person Z if X is a Parent of Z
(this is one of the clauses),
OR if X is the parent of some
person Y, and Y is a
predecessor of Z (this is the
other one of the clauses).

The ‘*DELAY*’/2 predi-
cate is used by the SPARCL
interpreter in deciding when
to evaluate goal literals. This
‘*DELAY*’/2 clause
instructs the interpreter to
“delay” the evaluation of a
‘Predecessor’/2 goal if the
first argument is a variable
(i.e. an unbound variable
term). This is necessary in the
case of the ‘Predecessor’/2
predicate to prevent the
interpreter from trying to
solve the ‘Predecessor’/2 literal before it has solved the ‘Parent’/2 literal. This
prevents the interpreter from recursing forever. Unfortunately, this is too restrictive.
This restricts us to using the ‘Predecessor’/2 predicate to ask the question "Who is X
the predecessor of?". We would like to also be able to use ‘Predecessor’/2 to answer
the question "Who is X's predecessor?".

Another version of the ‘Predecessor’/2 program is shown in Figure A1–1. 45 that
allows us to ask both of these questions. This version of the ‘Predecessor’/2 program
allows us to ask both of the questions mentioned before. The difference between this
version and the earlier version small: There is a new predicate, "Predecessor
Recursion" which is simply a "wrapper" for ‘Predecessor’/2; this predicate is used in
the recursive clause of ‘Predecessor’/2; and the ‘*DELAY*’/2 clause now refers to
this new predicate ‘Predecessor Recursion’/2 instead of the ‘Predecessor’/2 predicate.
Now, the interpreter will attempt to solve a ‘Predecessor’/2 goal which has an
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Figure A1–1. 45: Clauses defining the correct ver-
sion of the ‘Predecessor’/2 predicate.
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unbound variable first argument (which would have been delayed in the definition in
Figure A1–1. 44), but it will not recurse infinitely in the attempt since the ‘Predecessor
Recursion’/2 literal will be delayed when its first argument is an unbound variable.

The ‘*DELAY*’/2 clauses are the primary method the SPARCL programmer has
to control the order in which the SPARCL interpreter attempts to solve goals. This is
a particularly important facility when writing recursive predicates to ensure that the
recursion terminates.

Important points of this section are:
• SPARCL programs can be extended by simply adding new clauses.
• SPARCL clauses are of three types: facts, rules, and questions.
• Facts declare things that are always, unconditionally true.
• Rules declare things that are true depending on a given condition.
• By means of questions the user can ask the program what things are true.
• SPARCL clauses consist of the "head" and the "body". The head is the name of

the predicate and the arguments placed on the left side of the clause. The body is
a set of "literals". These literals are understood to be joined by conjunctions.

• Facts are clauses that have a head and the empty body. Rules have the head and
the (non-empty) body. A question is a "rule" clause which the programmer
chooses to query.

• In the course of computation, a variable can be substituted by another object. We
say that a variable becomes "instantiated".

• Variables are assumed to be universally quantified and are read as "for all".
Alternative readings are, however, possible for variables that appear only in the
body. These can be read as "some" (existential) variables.

• Recursion may be used in defining SPARCL predicates.
• The "*DELAY*" clause may be used to control the order in which the SPARCL

interpreter attempts to solve goals.

1. Exercise for section 1.2
1. Show translations for the following statements:

1. Everybody who has a child is happy (introduce a one-argument
relation "Happy").

2. For all X, if X has a child who has a sister then X has two children
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(introduce a new relation "Has Two Children").
2. Define the relation "Grandchild" using the ‘Parent’/2 relation. Hint: It will

be similar to the "Grandparent" relation.
3. Define the relation "Aunt" of two arguments in terms of the relations

‘Parent’/2 and "Sister".'),
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1.3-How SPARCL works. This section gives an informal explanation of how
SPARCL answers questions.2

A question to SPARCL is always a set of one or more goal literals. To answer a
question, SPARCL tries to satisfy all of the goals. What does it mean to satisfy a
goal? To satisfy a goal means to demonstrate that the goal is true, assuming that the
relations in the program are true. In other words, to satisfy a goal means to
demonstrate that the goal logically follows from the facts and rules in the program. If
the question contains variables, SPARCL also has to find what are the particular
objects (in place of variables) for which the goals are satisfied. The particular
instantiation of variables to these objects is displayed to the user. If SPARCL cannot
demonstrate for some instantiation of variables that the goals logically follow from
the program, then SPARCL's answer to the question will be "no".

An appropriate view of the interpretation of a SPARCL program in mathematical
terms is then as follows: SPARCL accepts facts and rules as a set of axioms, and the
user's question as a conjectured theorem; then it tries to prove this theorem—that is,

to demonstrate that it can be logically derived from the
axioms.

We will illustrate this view by a classical example. Let
the axioms be:

All men are fallible.
Socrates is a man.

A theorem that logically follows from these two axioms
is:

Socrates is fallible.
The first axiom above can be rewritten as:

For all X, if X is a man the X is fallible.

The example can be translated into SPARCL as shown in Figure A1–1. 46.
Now we ask SPARCL the question of Socrates' fallibility by querying the

‘Fallible Socrates Query’/0 clause in Figure A1–1. 47, which succeeds.

2.  The text of this section is adapted for sparcl from section 1.4 of Ivan Bratko's "Prolog
Programming for Artificial Intelligence", 2nd edition.
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Figure A1–1. 46:
Clauses defining the
‘Fallible’/1 and ‘Man’/1
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To discuss how SPARCL

works, we the concept of a
proof sequence. Given some
program (a set of clauses), a
sequence of facts can be
constructed starting with any
fact in the program, then suc-
cessively adding other facts
from the program or any fact
derived using a rule of the pro-

gram and any facts already in the sequence. A goal (or ‘literal’) is satisfied if such a
sequence of facts can be found which ends with that goal. Let us call such a sequence
of facts a proof sequence. SPARCL finds an appropriate proof sequence to satisfy a
query.

SPARCL searches for a proof sequence satisfying a given goal by starting with
that goal and working “backward” to facts of the program. Instead of starting with
simple facts given in the program, SPARCL starts with the given goals and, using
rules, substitutes the current goals with new goals, until new goals happen to be
simple facts (or unify with program facts). Let's look at an example using
‘Predecessor’/2 and ‘Parent’/2 programs.

How does SPARCL “solve” the query asking if Tom is Pat's predecessor? We
start with the initial query shown in Figure A1–1. 48. This initial query clause provides
a single goal literal, “Predecessor(Tom, Pat)”. There are two rule clauses which have
heads (consequents) which unify with this goal literal. These rules are labeled "Prede-
cessor clause 1" and "Predecessor clause 2". SPARCL may try either of these clauses
first—let's suppose SPARCL tries the rule of
"Predecessor clause 2". It unifies the goal literal with
the head of the rule, which binds the variables in the
head. Since these variables corefer with variables in
the body (antecedent) of the rule, these corefering
variables are also bound. This instantiates the rule
clause as shown in Figure A1–1. 49.
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Figure A1–1. 47: Clause pos-
ing the question “Is
Socrates fallible?”

Figure A1–1. 48: Clause
defining initial query for
“Is Tom Pat’s predeces-
sor?”

Figure A1–1. 49:
First instantiation
of ‘Predecessor’/2
clause 2.
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For this instantiation of ‘Predecessor’/2 clause 2 to
be applicable in building a proof sequence, the literal
in its body must precede the application of this rule in
the proof sequence. Thus, SPARCL determines that it
must find a proof sequence for this literal. This yields
the "query 2" version of the initial query shown in
Figure A1–1. 50. The original goal of "Is Tom Pat's
predecessor?" has been replaced by the goal of "Is Tom
Pat's parent?".

There is no clause (fact or rule) with a head that
matches the ‘Parent’/2 literal in the body of query 2 in
Figure A1–1. 50, so SPARCL fails to solve this goal and
it backtracks to try an alternative way to derive the top
goal ("Is Tom Pat's predecessor?"). There were origi-
nally two ways to solve this top goal, and having
failed to solve it using the rule “Predecessor
clause 2” SPARCL now tries rule "Predecessor
clause 1". As was done when using “Predecessor
clause 2”, SPARCL unifies the goal literal with the
head of the rule (“Predecessor clause 1”), which
binds the variables in the head. Again, since these
variables corefer with variables in the body (ante-
cedent) of the rule, these corefering variables are
also bound. This instantiates the rule clause as
shown in Figure A1–1. 51.

Substituting the body of instantiation 1 of “Predecessor clause 1” for the literal of
the original query yields the new version of the query (query 3) shown in . The goal
literals, in query 3, share an uninstantiated variable.

SPARCL must now solve the two literals in the body of this revised query.
SPARCL is free  to satisfy them in any order. Suppose SPARCL tries the
‘Predecessor Recursion’/2 literal first. It checks the *DELAY* clauses and finds that
‘Predecessor Recursion’/2 is to be delayed if the first argument is an unbound vari-
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Figure A1–1. 50: Revised
version of ‘Predecessor
Query’/0 (Figure A1–1. 48)
based on substituting the
body of instantiation 1 of
‘Predecessor’/2 clause 2 (
Figure A1–1. 49) for the lit-
eral in the body of the origi-
nal ‘Predecessor Query’/0.

Figure A1–1. 51: Second instan-
tiation of ‘Predecessor’/2 clause
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able. This is the
case in query 3, so
SPARCL delays
solving the
‘Predecessor
Recursion’/2 literal
and tries the
‘Parent’/2 literal.
This one is easily
satisfied by
matching the fact
that "Tom is Bob's
parent." This
matching binds the
shared variable to
be "Bob". Remov-
ing the "solved" lit-

eral "Tom is Bob's parent" from query 3 leaves us
with query 4 (Figure A1–1. 53).

SPARCL solves the literal of query 4 by
instantiating ‘Predecessor Recursion’/2 as shown in
Figure A1–1. 54. It had "delayed" attempting the solution of this literal earlier because
the goal had a variable first argument and there is a *DELAY* clause which specifies
this situation as requiring such a goal to be delayed. However, the goal literal no
longer has a variable first argument, it is now "Bob". So, SPARCL need not delay
solving this literal.

Query 5 in Figure A1–1. 55 is created by substituting the instantiation of
‘Predecessor Recursion’/2 in Figure A1–1. 54 into query 4 in Figure A1–1. 53.

SPARCL solves the literal of query 5 by instantiating "Predecessor clause 2" in
Figure A1–1. 56, similar to the first attempt at solving the initial query in
Figure A1–1. 48.
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Figure A1–1. 52: Revised ver-
sion of ‘Predecessor Query’/0
(Figure A1–1. 48) based on
substituting the body of
instantiation 1 of
‘Predecessor’/2 clause 1 (
Figure A1–1. 51) for the literal
in the body of the original
‘Predecessor Query’/0.

Figure A1–1. 53: Revised ver-
sion of ‘Predecessor Query
3’/0 (Figure A1–1. 52) based
on removing the solved literal
and replacing the remaining
variable with its binding
(“Bob”).

Figure A1–1. 54: Instantiation
1 of ‘Predecessor
Recursion’/2.
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Query 6 in Figure A1–1. 57

is created by substituting
instantiation 2 of ‘Predecessor
clause 2’/0 in Figure A1–1. 56

into query 5. The ‘Parent’/2 lit-
eral of query 6 matches a
‘Parent’/2 fact, and thus is true.

This completes the search
for a proof sequence. The
sequence being: the lit-
eral of query 6 and
instance 2 of
Predecessor clause 2
derives the literal of

query 5; the literal of query 5 and instance 1 of "Prede-
cessor Recursion" derives the literal of query 4; the lit-
eral of query 4 and fact "Tom is Bob's parent" derive
the literals of query 3; the literals of query 3 and
instance 1 of "Predecessor clause 1" derive the the lit-
eral of initial query.

The trace of the execution of SPARCL can be
pictured as a "tree". The nodes of the tree correspond
to goal literals, or lists of goal literals, that are to be
satisfied. The arcs between the nodes correspond to the application of (alternative)
program clauses that transform the goals at one node into the goals at another node.
The top goal is satisfied when a path is found from the root node (top goal) to a leaf
node labelled "success". A leaf is labelled "success" if it is a simple fact. The
execution of SPARCL programs is the searching for such paths. During the search
SPARCL may enter an unsuccessful branch. When SPARCL discovers that a branch
fails it automatically backtracks to the previous node and tries to apply an alternative
clause at that node.
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Figure A1–1. 55: Revised
version of ‘Predecessor
Query 4’/0 (Figure A1–1. 53) 
based on substituting the
body of instantiation 1 of
‘Predecessor Recursion’/2
clause (Figure A1–1. 54) for
the literal in the body of
‘Predecessor Query 4’/0.

Figure A1–1. 56:
Second instantia-
tion of
‘Predecessor’/2

Figure A1–1. 57: Revised
version of ‘Predecessor
Query 5’/0 (
Figure A1–1. 55)  based on
substituting the body of
instantiation 2 of
‘Predecessor’/2 clause (
Figure A1–1. 56) for the lit-
eral in the body of

Query 6 is created by substituting the 
body of instantiation 2 of Predecessor 
clause 1 into the body of query 5.
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1.4-What SPARCL programs mean. This section discusses ways to think about the
meaning of SPARCL programs.3 In the examples so far it has always been possible to
understand the results of the program without exactly knowing *how* the system
actually found the results. It therefore makes sense to distinguish between two levels
of meaning of SPARCL programs; namely,

• the declarative meaning and
• the procedural meaning.
The declarative meaning is concerned only with the relations defined by the

program. The declarative meaning thus determines what will be the output of the
program. On the other hand, the procedural meaning also determines how this output
is obtained; that is, how are the relations actually evaluated by the SPARCL system.

The ability of SPARCL to work out many procedural details on its own is
considered to be one of its specific advantages. It encourages the programmer to
consider the declarative meaning of programs relatively independently of their
procedural meaning. Since the results of the program are, in principle, determined by
its declarative meaning, this should be (in principle) sufficient for writing programs.
This is of practical importance because the declarative aspects of programs are
usually easier to understand than the procedural details. To take full advantage of this,
the programmer should concentrate mainly on the declarative meaning and, whenever
possible, avoid being distracted by the executional details. These should be left to the
greatest possible extent to the SPARCL system itself.

This declarative approach indeed often makes programming in SPARCL easier
than in typical procedurally oriented programming languages such as Pascal.
Unfortunately, however, the declarative approach is not always sufficient. It will later
become clear that, especially in large programs, the procedural aspects cannot be
completely ignored by the programmer for practical reasons of executional efficiency.
Nevertheless, the declarative style of thinking about SPARCL programs should be
encouraged and the procedural aspects ignored to the extent that is permitted by
practical constraints.

3.  The text of this section is largely drawn from section 1.5 of Ivan Bratko's "Prolog Programming
for Artificial Intelligence", 2nd edition.
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Summary:
• SPARCL programming consists of defining relations and querying about relations.
• A program consists of clauses. These are of two types: facts and rules. A clause

can be used to ask a question.
• A relation can be specified by facts, simply stating the N-tuples of objects that

satisfy the relation, or by stating rules about the relation.
• A procedure (also called a “predicate”) is a set of clauses about the same relation.
• Querying about relations, by means of questions, resembles querying a database.

SPARCL's answer to a question consists of a set of objects that satisfy the
question.

• In SPARCL, to establish whether an object satisfies a query is often a complicated
process that involves logical inference, exploring among alternatives and possibly
backtracking. All this is done automatically by the SPARCL system and is, in
principle, hidden from the user.

• Two types of meaning of SPARCL programs are distinguished: declarative and
procedural. The declarative view is advantageous from the programming point of
view. Nevertheless, the procedural details often have to be considered by the
programmer as well.

• The following concepts have been introduced in this section: clause, fact, rule,
question; the head of a clause, the body of a clause; recursive rule, recursive
definition; procedure; constant, variable; instantiation of a variable; goal (literal);
goal is satisfiable, goal succeeds; goal is unsatisfiable, goal fails; backtracking;
declarative meaning, procedural meaning.
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2: SPARCL representation and meaning.

This section gives a systematic treatment of the representation and meaning of
basic concepts of SPARCL, and introduces sets.

The topics
included are:

• simple data
objects
(constants and
variables)

• sets
• matching as the

fundamental operation on objects
• declarative (or nonprocedural) meaning of a

program
• procedural meaning of a program
• relation between the declarative and procedural

meanings of a program, and
• altering the procedural meaning by "delay"

specifications.

Most of these topics have already been reviewed
in section 1. Here the treatment is more formal and detailed.

2.1: Data objects section

2.1.1: Term types discussion.  Figure A1–2. 1 shows a classification of data objects in
SPARCL. The SPARCL system reflects the type of an object in its representation. There is
a different kind of visual representation for each type of object. Figure A1–2. 2 shows
some examples of these data object (term) types.

We have already seen representations for text constants and variables in Chapter
1: text constants are represented by text, variables are represented by small circles.
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Figure A1–2. 1: Classification of data objects.

Figure A1–2. 2: Examples of
some types of data objects
(terms).
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This is shown in the first and third entries in Figure A1–2. 2. There are no explicit vari-
able data type declarations in SPARCL programs. In SPARCL, text constants are used to
represent numeric and non-numeric data. SPARCL interprets a text constant as a
number if a number-handling built-in predicate is being evaluated.

The second entry in Figure A1–2. 2 shows the representation of an empty set. An
empty set constant represents a set with no members.

Variables in SPARCL do not have names. Each small circle represents a distinct
variable. If two variables are intended to refer to the same thing, then they are
connected by a coreference link. Coreference links may connect any number of
SPARCL terms (data objects). Most commonly they connect two variables. The terms
connected by a single coreference link are all the same - they must unify with each
other (unification is a special kind of matching). The terms joined by a coreference
link must all be in the same clause. You have already seen some uses of coreference
links in the example queries of Chapter 1.

Sets are objects which contain any number of objects. The contained objects can,
in turn, be sets. There are several representations of sets in SPARCL. Each
representation is associated with a particular special set organization. We have
already seen most of these set representations. They have been used to display other
information in the examples of Chapter 1 and the earlier examples of this chapter.

Figure A1–2. 3 shows most of the various types of set representations (some types
of tables are not shown). The most general of the representations is the partitioned set.
Any thing which can be represented using one of the other representations (e.g. N-tu-
ples) can be represented using a partitioned set, but the partitioned set representation
may be much less concise.

The partitioned set is a collection of objects which is all in one part, or is divided
into several parts. The example in the first entry of Figure A1–2. 3 divides a set into
three parts. The division means that these three parts are all subsets of the whole set,
that the union of these three sets is the entire set, and that no two parts
"overlap"—every pair of parts has an empty intersection. This last constraint is the
"pairwise disjoint" constraint. There are many uses of the single-part partitioned set in
this section and in section 1.

The top part of the example partitioned set contains two terms, a constant and a
variable. The variable could be bound to the same value as the constant, making it so
that (after instantiation) this part contained only one distinct member. Or, the variable
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may be bound to a
distinct term making
this part contain two
distinct members. The
middle part contains no
terms. It can be
instantiated to a set of
any number of terms;
none (the empty set), 1
or many. This is, strictly
speaking, another
representation of a
variable, where the
variable must be bound
to a set. The bottom part
contains a single
variable.Whatever the
variable is instantiated
to, this part must
contain exactly one
member. Due to the
pairwise disjointness
constraint on parts of a
partitioned set, the
variable in the top part and the variable in the bottom part can not be instantiated to
the same term. This is an implicit "inequality" constraint.

There is an example of an N-tuple in the second entry of Figure A1–2. 3. An N-
tuple is a set of a particular construction:

• A 2-tuple (ordered pair) of <X, Y> is the set {{X}, {X, Y}};
• An N-tuple of <X1, ..., X(n-1), Xn> equals <<X1, ..., X(n-1)>, Xn>;
• An N-tuple of <X> equals X.

N-tuples have been used several times already in figures in this chapter and in
Chapter 1.

The Intensional Set, or IntenSet, is a way of expressing "the set of all terms X
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Figure A1–2. 3: Examples of some types of sets with spe-
cialized representations.
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such that X has property P"; symbolically this is
"{X|P(X)}". An example of an IntenSet is shown in the
third entry of Figure A1–2. 3. The intensional set is a
shorthand for the use of the "setof" built-in predicate: a
way to specify the set of all terms such that some particular
property (conjunction of literals) is true of those terms and
no others. We will discuss it more in a later chapter.

Tables come in four basic varieties. Three examples are shown in the last three
entries of Figure A1–2. 3. Figure A1–2. 3 is itself an example of a table (a “Function
Table”). The basic types of tables are developed from combinations of two types of
rows, N-tuple and function, and two types of row collections, set and N-tuple. Also,
any kind of table may be "factored", where columns that are the same in all rows are
extracted from the table and shown in a separate place. Finally, a table may have an
initial row (a “0-th” row) which is treated as a single term instead of an N-tuple of
terms. This last facility is particularly useful in defining a table which is a list of lists,
where a list is an N-tuple with ‘empty list’ as its first element.

The N-tuple Table (shown in entry four of Figure A1–2. 3) is a set of rows, where
each row is an N-tuple. All of the rows must be the same length. In this case, the rows
are 2-tuples. The Function Table (shown in entry five of Figure A1–2. 3) is a set of
rows, where each row is a function. A function is a set of ordered pairs (2-tuples),
where the first element of the pair is the domain element and the second element of
the pair is the range element. No two pairs in the function set can have the same
domain element and different range elements. Such a set defines a function mapping
from a domain to a range. All of the rows must have the same domains. In this case,
the rows have the domain {"Column A", "Column B"}. The Ordered, Factored
Function Table (shown in entry five of Figure A1–2. 3) is an N-tuple of rows, where
each row is a function, as for the Function Table. In this example, the ordered pair
"<b, 2>" has been factored out of the two rows.

2.1.2: Discussion of simple geometry representation. The two most widely used set
representations are partitioned sets and N-tuples. We can use these to conveniently
represent many different kinds of structures. In this section we see how some simple
geometric objects can be represented.

The two 3-tuples in Figure A1–2. 4 show a way to represent geometric points, one

385

Figure A1–2. 4: Two tri-
ples representing the
points (1,1) and (2,3).
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with X = 1 and Y = 1 and the other with X = 2
and Y = 3. An N-tuple is used here to provide
a concise "naming" via element position to
distinguish the X and the Y value.

The ordered pair (2-tuple) in Figure A1–2. 5

represents a line segment with endpoints at
(1,1) and (2,3). The 2-tuple is used here to
"name" the endpoint data
(telling us it defines a
"segment"). The endpoint
data is placed in a set,
rather than in more
elements of a N-tuple. This
reflects the fact that there
is no distinction between the two endpoints (this isn't a directed line).

The ordered pair in Figure A1–2. 6 represents a triangle with three "corners" at
(4,2), (6,4), and (7,1). The ordered pair is used to "name" the collection of points as
describing a "triangle". The points are in a set since no ordering of the points is
needed.

1. Exercise for section 2.1.
Develop a representation for rectangles, squares, and circles as structured

SPARCL objects. Use an approach similar to that given in the "Geometry Example"
program. Write single argument clauses which have example terms of each of
these in their argument and use a comment in the argument to explain the
elements of the terms (e.g. "a triangle is represented by a set of three (X,Y) points
which are the corners of the triangle"):

1. write a Rectangle clause of one argument which contains a term for a
rectangle with diagonally opposite corners at (1,2) and (34,-5.8)

2. write a Circle clause of one argument which contains a term for a circle
centered at (93,4) with a radius of 16

3. write a Square clause of one argument which contains a term for a square
with upper left corner at (14, 23) and sides of length 123.

386

Figure A1–2. 5: An ordered pair rep-
resenting a line segment with end
points at (1,1) and (2,3).

Figure A1–2. 6: An ordered pair representing a triangle
with corners at (4,2), (7,1), and (6,4).
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2.2:Term matching. In the previous section we have seen how terms can be used to
represent complex data objects. The most important operation on terms is matching.
A special kind of matching is used in SPARCL called unification. Matching alone can
produce some interesting computation.

Given two terms, we say they match if:
(1) they are identical
(2) the variables in both terms can be instantiated to objects in such a way that

after the substitution of variables by these objects the terms become identical, and
these instantiations don't violate any "current" partitioning constraints.

Using example predicates which define properties of line segments, we illustrate
how matching alone can be used for interesting computation. Let us return to the
simple geometric objects of the previous example and define a piece of program for
recognizing horizontal and vertical line segments. The ‘Vertical’/1 predicate in
Figure A1–2. 7 is a property of segments, so it can be formalized in SPARCL as a unary
relation. A segment is vertical if the x-coordinates of its end-points are equal,
otherwise there is no other restriction on the segment. The property ‘Horizontal’/1 is
similarly formulated in Figure A1–2. 8, with only the x and y interchanged.

The query in Figure A1–2. 9 asks for the y value of a point such that there is a
horizontal segment from (1,1) to that point with x = 2. The result in Figure A1–2. 10

shows the desired y value to be 1.
Matching with the partitioned set term provides a very powerful tool. The

‘Union’/3 predicate in Figure A1–2. 11 relies entirely on this mechanism to relate two
sets to the set which is their union.

The bottom part of set A, the top part of set B, and the middle part of set C are
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Figure A1–2. 7: Clause defining the
‘Vertical’/1 predicate.

Figure A1–2. 8: Clause defining the
‘Horizontal’/1 predicate.
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connected and thus must be the same (i.e. they must unify
with each other)--they must all "refer" to the same set which
we'll call X. Since these parts are in sets A and B, X must be a
set of terms common to A and B.

The top part of set A and the bottom part of set C are
connected and thus must be the same—must refer to the same
set which we'll call Y. Since one of these parts is in set A, set Y must be a subset of
set A. Since one of these parts is in set A with a part for set X (mentioned earlier), X
and Y must have nothing in common (the pairwise disjointness constraint). 

The bottom part of set B and the
top part of set C are connected and
thus must be the same—must refer
to the same set which we'll call Z.
Since one of these parts is in set B,
set Z must be a subset of set B.
Since one of these parts is in set B
with a part for set X (mentioned
earlier), X and Z must have nothing
in common (the pairwise
disjointness constraint).

Since Y and Z are referred to by these two parts within the same partition, Y and
Z must not have any terms in common.

To summarize what we know about the sets A, B, C,
X, Y, and Z:

From these equations we can infer:
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Figure A1–2. 9: Clause for posing the query
“What is the value of Y such that there is a
horizontal segment from (1,1) to (2,Y).”

Figure A1–2. 10:
Result of querying
the clause in
Figure A1–2. 9.

Figure A1–2. 11: Clause
defining the ‘Union’/3
predicate.
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To infer the equation for X, suppose there is some term P which is common to A
and B but is not in X, then this element must be in both Y and Z, but this violates the
constraint that Y and Z are disjoint. The equation for Y derives from the equation for
A as the union of X and Y and the equation for X as the intersection of A and B. The
equation for Z is derived similarly to the equation for Y.

Finally, substituting the solutions for X, Y and Z into the equation for C:

which is equivalent to:

This is the desired result. The third argument of ‘Union’/3 (“C”) is the union of
the first two arguments (“A” and “B”).

2.3: The declarative meaning of SPARCL. We have already seen in section 1 that
SPARCL programs can be understood in two ways: declaratively and procedurally. In
this and the next section we will consider a more formal definition of the declarative
and procedural meanings of programs in basic SPARCL. But first let us look at the
difference between the two meanings again.

Consider the clause in Figure A1–2. 12. Some alternative
declarative readings of this clause are:

P is true if Q and R are true.
From Q and R follows P.

Alternative procedural readings of this clause are:
To solve problem P, solve the subproblems Q and R.
To satisfy P, satisfy Q and R.

These procedural readings do not say the order in which to solve or satisfy Q and
R. The information given (the lone clause for P) doesn't allow us to infer any particu-
lar ordering. However, SPARCL is a fundamentally sequential language. It will choose
an order in which to solve Q and R. The programmer may affect this choice using
‘*DELAY*’/2 clauses, the ‘ordered_disjunction’/2 built-in predicate, and the ‘if’/3
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Figure A1–2. 12
: ‘P’/0 example
with two literals.
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built-in predicate.
To see the use of the ‘*DELAY*’/2 clause,

consider the example in Figure A1–2. 13. Predi-
cates ‘P’/2, ‘Q’/2, and ‘R’/2 each have two
arguments and there is a ‘*DELAY*’/2 clause.

The ‘P’/2 clause has a similar declarative
reading as for the ‘P’/0 clause in
Figure A1–2. 12:

P(X,Y) is true if Q(X,A) and R(A,Y) are
true.

From Q(X,A) and R(A,Y) follows P(X,Y).

The ‘*DELAY*/2 clause makes the procedural reading of the example in
Figure A1–2. 13 different from the procedural reading of the example in
Figure A1–2. 12. There is now a constraint on when the ‘R’/2 subgoal may be
attempted:

To solve problem P(X,Y), solve the subproblems Q(X,A) and R(A,Y). Delay any
attempt to solve R(A,Y) as long as A is an unbound variable.

Since the first argument of ‘R’/2, in the clause for ‘P’/2, can only be bound before
attempting to solve ‘R’/2 if ‘Q’/2 has been solved, this ‘*DELAY*’/2 constraint on
‘R’/2 has the effect of ordering attempts at solving the subgoals of ‘P’/2.

Thus the difference between the declarative readings and the procedural ones is
that the latter not only define the logical relations between the head of the clause and
the goals in the body, but also (possibly) the order in which goals are processed.

2.3.1. A formalization of declarative meaning. The declarative meaning of
programs determine whether a given goal is true, and if so, for what values of
variables it is true. To precisely define the declarative meaning we need to introduce
the concept of "instance" of a clause. An instance of a clause C is the clause C with
each of its variables substituted by some term.

A goal G is true (that is, satisfiable, or logically follows from the program) if and
only if

(1) there is a clause C in the program such that
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(2) there is a clause instance I of C such that
     (a) the head of I is identical to G,
     (b) all of the goals in the body of I are true,
     (c) the instantiation of C to create I does not

violate any partitioning constraints in C or I
This definition extends to SPARCL questions as

follows. In general, a question to the SPARCL system is a
set of goals. A set of goals is true if all of the goals in
the set are true for the same instantiation of variables
and that instantiation of variables does not violate any
(implicit) partitioning constraints.

A set of goals, as just described, denotes the
"conjunction" of those goals; they all have to be true. There
is a built-in predicate in SPARCL which implements
“disjunction”; ‘ordered_disjunction’/2. This built-in is used
in the clause for ‘P’/0 in Figure A1–2. 14. The declarative reading of this is “P is true if
Q or R is true.” The procedural reading of this is ordered: To solve problem P, first
try to solve subproblem Q. If this succeeds, then P is solved. Otherwise, if solving
subproblem Q fails, then solve subproblem R. If this succeeds then P is solved.

The ‘P’/0 clause with the ‘ordered_disjunction’/2 literal in Figure A1–2. 14 has the
same declarative meaning as the two ‘P’/0 clauses in Figure A1–2. 15. The difference
in meaning is only procedural. With these two clauses, there is no guarantee which
ordering of the P clauses the SPARCL interpreter will use when attempting to solve the
P problem.

2.4: The procedural meaning of SPARCL. The procedural meaning specifies how
SPARCL answers questions. To answer a question means to try to satisfy a set of goals.
They can be satisfied if the variable that occur in the goals can be instantiated in such
a way that the goals logically follow from the program. Thus the procedural meaning
of SPARCL is a procedure for executing a set of goals with respect to a given program.
To “execute goals” means try to satisfy them.

Let us call this procedure “execute set”. The inputs and the outputs for this
procedure are:

input: a program, a goal set, and a set of partitioning constraints
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Figure A1–2. 14: ‘P’/0
ordered_disjunction exam-
ple.
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output: a success/failure indicator and an instantiation of variables
The meaning of the two output results is as follows:
(1) The success/failure indicator is “yes” if the goals are satisfiable and “no” oth-

erwise. We say that “yes” signals a successful termination and “no” a failure.
(2) An instantiation of variables is only produced in the case of a successful

termination; in the case of failure there is no instantiation.

In section 1, we discussed informally what procedure “execute set” does, under
the heading “How SPARCL answers questions.” What follows in this section is a more
formal and systematic description of this process.

To execute a set of goals {G1, ..., Gm} with partitioning constraints P the
procedure “execute” does the following:

• Order the goal set to create a list {G1', ..., Gm'}
• invoke "execute list".

To execute a LIST of goals [G1', ..., Gm'] with partitioning constraints P the
procedure "execute list" does the following:

• If the goal list is empty then if the delayed goals list is empty terminate with
"success", else terminate with "failure".

• If the goal list is not empty then divide the list into the first goal, G1', and the
OtherGoals.

• If G1' is the special "marker" goal 'end_body', then replace it with the
DelayedGoalsList ([DG1, ..., DGk]) to create [DG1, ..., DGk, G2', ..., Gm'] and
recursively invoke execute_list with this new goal list and an empty delayed
goals list. The result of the recursive invocation is the result of this invocation.

• Else, if G1' is a goal which should be delayed according to the *DELAY*
definitions in the program then add G1' to the DelayedGoals and recursively
invoke execute_list with the OtherGoals ([G2', ..., Gm']) and the extended
DelayedGoals. The result of the recursive invocation is the result of this
invocation.

• Otherwise (i.e. if GoalList is not empty, G1' is not 'end_body', and G1' does not
need to be delayed) continue with (the following) operation called
"SCANNING".

• SCANNING: Scan through the clauses in the program in any order until a
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clause, C, is found such that the head of C matches the first goal G1' without
violating the current partitioning constraints P. If there is no such clause then
terminate with "failure".

If there is such a clause C with head H and body goals {B1, ..., Bn}, then
replace the variables of C with new variables (essentially, rename the variables
of C) to obtain a variable C' of C, such that C' and the list G1', ..., Gm' have no
common variables. Let C' have head H' and body {B1', ..., Bn'}. Let G1' match
H'; let the resulting instantiation of variables be S and extend partitioning
constraints P to be P'.

Order the goal set {B1', ..., Bn'} to create the goal list
[B1'', ..., Bn''].

In the goal list [G1', ..., Gm'], replace G1' with the list [B1'', ..., Bn''], obtaining a
new list

[B1'',...,Bn'',G2', ..., Gm']. 
(Note that if C is a fact then n = 0 and the new goal list is shorter than the
original one; such shrinking of the goal list may eventually lead to the empty list
and thereby a successful termination.)

Substitute the variables in this new goal list with new values as specified in
the instantiation S, obtaining another goal list

[B1''', ..., Bn''', G2'', ..., Gm'']

• Execute (recursively with procedure "execute list") this new goal list. If the
execution of this new goal list terminates with success then terminate the
execution of the original goal list also with success. If the execution of the new
goal list is not successful then abandon this new goal list and go back to
SCANNING through the program. Continue the scanning with any untried
clause and try to find a successful termination using some other clause.

This procedure can be written in a Pascal-like notation as shown in
Figure A1–2. 16. Several additional remarks are in order here regarding the procedures
"execute_set" and ""execute_list" as presented. First, it was not explicitly described
how the final resulting instantiation of variables is produced. It is the instantiation S
which led to a successful terminate, and was possibly further refined by additional
instantiations that were done in the nested recursive calls to "execute_list".
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Whenever the recursive
call within SCANNING to
"execute_list" fails, the
execution returns to
SCANNING, continuing at
the program that had been
last used before. As the
application of the clause C
did not lead to a successful
termination SPARCL has to try
an alternative clause to
proceed. What effectively
happens is that SPARCL aban-
dons this whole part of the
unsuccessful execution and
backtracks to the point
(clause C) where this failed
branch of the execution was
started. When the procedure
backtracks to a certain point,
all of the variable
instantiations that were done after that point are undone. This ensures that SPARCL sys-
tematically examines all of the possible alternative paths of execution until one is
found that eventually succeeds, or until all of them have been shown to fail.

The actual implementation of SPARCL adds many refinements to the execute
procedures. One of them is to reduce the amount of scanning through the program
clauses to improve efficiency. So SPARCL will not scan through all of the clauses of
the program, but will only consider the clauses about the relation in the current goal.
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procedure execute_set (Program, GoalSet, Constraints, Success)
begin
  OrderedGoalsList := order_goal_set(GoalSet);
  execute_list(Program, OrderedGoalList, [], Constraints, Success);
end;

procedure execute_list (Program, GoalList, DelayedGoals,
                        Constraints, Success)
begin
  if empty(GoalList) then
    begin
      if empty(DelayedGoals) then
        Success := true
      else Success := false
    end
  else
    begin
      Goal := head(GoalList);
      OtherGoals := tail(GoalList);
      if Goal = end_body then
        begin
          NewGoals := append(DelayedGoals, OtherGoals);
          execute_list(Program, NewGoals, [], Constraints, Success);
        end
      else if delay(Goal, Program) then
        begin
          NewDelayedGoals := append(DelayedGoals, [Goal]);
          execute_list(Program, OtherGoals, NewDelayedGoals,
                       Constraints, Success);
        end
      else
        begin
          Satisfied := false;
          while not Satisfied and "more clauses in program" do
            begin
              Let next clause in Program be
                head H and body {B1, ..., Bn}.
              Construct a variant of this clause
                head H' and body {B1', ..., Bn'}.
              match(Goal, H', Constraints, MatchOK, Instant,
                    MatchConstraints);
              if MatchOK then
                begin
                  OrderedBodyGoals := order_goal_set({B1', ..., Bn'});
                  ExtendedBodyGoals := append(OrderedBodyGoals,
                                              [end_body]);
                  NewGoals := append(ExtendedBodyGoals, OtherGoals);
                  NewGoals := substitute(Instant, NewGoals);
                  execute_list(Program, NewGoals, MatchConstraints,
                               Satisfied);
                end
            end;
          Success := Satisfied
        end
    end

end;

Figure A1–2. 16: execute_set and execute_list proce-
dures.



3: Presentation of an application of SPARCL

This section presents an application of SPARCL, "Column Sum". This program
takes a function term table and a domain value and produces the sum of all of the
range values for that domain value in the function term table. This is analogous to
finding the sum of the values of a given column of a spreadsheet. This program
demonstrates the use of several aspects of SPARCL including term tables, intensional
sets, multisets, and arithmetic. We demonstrate the creation of the clause defining the
‘Column Sum’/3 predicate and a “query” clause using this predicate and explain vari-
ous aspects of these clauses and their use. 

First we will create the "Column Sum" clause. This one clause is the entire
definition of the "Column Sum" predicate. This clause with empty arguments and an
empty body is shown in Figure A1–3. 1.

Step 1: Create the "Column Sum" clause.

Step 1.1.
DO: Create a new clause named “Column Sum” with 3 arguments in

program “Column Sum”
BY: Select the "Create Clause" option in the popup menu for the program.

Add 3 arguments.

Step 2: Create the comments and variables of the arguments of the "Column
Sum" clause.

There are three arguments to this clause. Each of these
arguments will be given a variable and a comment describing the purpose of the
variable. The steps for creating and editing a comment, the sub-steps of step 2.1, are
very similar to those for creating and editing an ur constant.

Step 2.1: Create a new comment "Function Table" in the first argument of the clause.

Step 2.1.1.
DO: Create a new comment in the first argument of the clause.
BY: Select the "Create Comment" option in the popup menu for the argument.

Step 2.1.2.
DO: Edit the value of “open” comment “Function Table”.
BY: Enter the characters of the new value.

Step 2.1.3.
DO: Close the current edit "box" for program “Column Sum”.
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Figure A1–3. 1:
Clause for
‘Column Sum’/3
with empty argu-
ments and empty
body.

Column Sum



BY: Click in the program window anywhere outside of the box.

Step 2.2.
DO: Create a new variable in the second argument of the clause.
BY: Select the "Insert:Variable" option in the popup menu for the

argument.

Steps 2.3 through 2.6 repeat the basic process of
steps 3.2.1 and 3.2.2 to fill in the second and third argu-
ments of the ‘Column Sum’/3 clause. The result is
shown in Figure A1–3. 2.

The next major step, 3, creates the single literal
using ‘is’/2 that is the body of the clause. This literal does the arithmetic to determine
the sum. One of the terms in the second argument of this literal collects together the
values which are to be summed.

Step 3: Create the literal of the "Column Sum" clause.

In steps 3.1 and 3.2 we create the literal with empty arguments and fill in the first
argument. The first argument is the the result of the arithmetic evaluation of the
expression in the second argument.

Step 3.3.1.
DO: Create a new literal with name “is” and 2 arguments in the clause.
BY: Select the "Create Literal" option in the popup menu for the clause.

Step 3.3.2.
DO: Create a new variable in the first argument.
BY: Select the "Insert:Variable" option in the popup menu for the argument.

The next steps build the expression which is the sum of the range values of the
specified domain value. The “sum” part of this expression is represented by a ‘+’ and
the set of the range values is represented by an intensional (multi)set. The expression
is an ordered pair with ‘+’ as its first argument and the intensional multiset as its sec-
ond argument. To build this N-tuple (2-tuple), we first create what will be the first
element of the N-tuple, the ‘+’ ur constant.

Step 3.3: Create a new ur constant of value “+” in the second argument.

The next step achieves two purposes: it replaces the ‘+’ ur constant with an 2-
tuple which has that ur constant as its first element, and it creates an empty
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Figure A1–3. 2: Clause for
‘Column Sum’/3 with argu-
ments filled in and an
empty body.

Column Sum
Function Table

Domain Value Identifying Range 
Values to Sum.

Sum of Identified Range Values.



intensional set as the second element of
the new 2-tuple. The interaction for
this step is shown in Figure A1–3. 3.
The result is shown in Figure A1–3. 4.

Step 3.4.
DO: Create an N-tuple with  the ur constant

“+” as the first element and create a
new intensional set term as the second
term.

BY: Select the "Create NTuple:IntenSet"
option in the popup menu for “+”.

An intensional set, such as shown
in Figure A1–3. 4 as the second argu-
ment of a 2-tuple, is a term that speci-
fies the set of all terms which have
the given property. The type of the
intensional set may be either "set" or
"multiset". A multiset intensional set
(or "intensional multiset") is the
multiset of all terms which have the
given property. The representation of
an intensional (multi)set has two
parts, the template and the body. The body is a set of literals.

The template contains a term (which almost always contains at least one variable)
that is instantiated once for every "way" in which the literals of the body are true. The
"result" of the intensional (multi)set is the (multi)set of all of these instantiations of
the template.

We are using the intensional multiset to collect together all of the values of the
given domain of the given function table. Since we want to sum all of these values,
we want to keep the duplicates. Thus, we want the result type of the intensional set to
be “multiset.” The next step changes the type appropriately. The interaction is shown
in Figure A1–3. 5. The result is shown in Figure A1–3. 6.

Step 3.5.
DO: Set the "result type" of the intensional_set to multiset.
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Figure A1–3. 3: Interaction for step 3.4 to
convert the ‘+’ ur constant to a 2-tuple with
‘+’ as first element and an empty IntenSet
as the second element.

Figure A1–3. 4: Result of step 3.4.
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BY: Select the "Result
Type:Multiset" option
in the popup menu for
the intensional_set.

The template we want
is simply a single variable.
This will be connected to
the range term of each
function pair with the
given domain term in the
given table.

Step 3.6.
DO: Create a new variable

in the
intensional_set_tem-
plate.

BY: Select the
"Insert:Variable"
option in the popup
menu for the inten-
sional_set_template.
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Figure A1–3. 5: Interaction for step 3.5 to convert an
intensional set to an intensional multiset.

Figure A1–3. 6: Result of step 3.5 converting an
intensional set to an intensional multiset.

Figure A1–3. 7: Result of step 3.6 to create a variable in
the template of the intensional multiset.
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Next we
create a
"unify" literal.
This will give
us all possible
unifications of
a function pair
with the given
function table.
The steps for
editing the
new literal ur
in an inten-
sional are sim-
ilar to those
for editing a
new ur constant. The
interaction for creating
the new literal ur is
shown in Figure A1–3. 8.
The result of creating the
literal ur and editing the
literal name to be “unify”
is shown in
Figure A1–3. 9.

Step 3.7.
DO: Create a new literal with an ur constant predicate name in the intensional_set.
BY: Select the "Create Literal:Ur" option in the popup menu for the intensional_set.

Step 3.8.
DO: Edit the value of the  “open” ur constant to “unify”.
BY: Enter the characters of the new value.

Step 3.9. 
DO: Close the current edit "box" for program "Column Sum temp".
BY: Click in the program window anywhere outside of the box.
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Figure A1–3. 8: Interaction for creating a new literal in an intensional
(multi)set.

Figure A1–3. 9: Result of creating new literal “unify” ur.
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At this point, we
have a ‘unify’/0 literal.
To make a ‘unify’/2 lit-
eral, we need two
arguments added to
‘unify’/0. This is repre-
sented by an N-tuple of
three elements, the first
element is the "unify"
constant and the second
and third elements are
the two arguments. The
intensional set is a
shorthand for the meta-
predicate ‘setof’/3. A
meta-predicate is a predi-
cate that takes terms that
are interpreted as literals
in one or more of its
arguments. A term to be
interpreted as a literal is
a constant or an N-tuple.
A constant is interpreted
as a literal of no argu-
ments, a N-tuple is inter-
preted as a literal of
(N-1) arguments. In the next step we replace the “unify” ur constant with an N-tuple
of two elements: the “unify” ur constant and a variable. The interaction is shown in
Figure A1–3. 10. The result is shown in Figure A1–3. 11.

Step 3.10.
DO: Create an N-tuple with ur constant “unify” as the first element and create a new variable term as

the second term. (Call the new N-tuple object “N-tuple 2”, call the new variable object “variable
3.”)

BY: Select the "Create NTuple:Variable" option in the popup menu for ur constant “unify”.
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Figure A1–3. 10: Interaction to create an ordered pair (2-
tuple) with “unify” as first element and a variable as the
second element.

Figure A1–3. 11: Result of interaction to create an
ordered pair with “unify” as the first element and a vari-
able as the second element.
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Now we have
an 2-tuple of
"unify" and a
variable. To
complete the
"unify" literal, we
extend this 2-tuple
with another
element, an empty
set. The interac-
tion is shown in
Figure A1–3. 12
and the result is
shown in
Figure A1–3. 13.

Step 3.11.
DO: Extend N-

tuple 2,
creating a new
set term as the
new last element.
(Call the new
object “set 1”.)

BY: Select the
"Extend
With:Set" option
in the popup
menu for the N-
tuple.

Eventually, we will
connect the variable
that is the first
argument to "unify" with the given function table. The second argument to "unify",
which is currently an empty set, we are going to turn into a pattern term which can
match (or unify) with any function pair (domain value/range value) in a function
table. Since this unify literal is in the body of an intensional set, evaluation of the
intensional set will produce all possible unifications of the pattern term with the given
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Figure A1–3. 12: Interaction to extend an ordered pair (2-tuple)
to a 3-tuple with an empty set as the third element.

Figure A1–3. 13: Result of interaction to extend an ordered
pair (2-tuple) to a 3-tuple with an empty set as the third ele-
ment.
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table.
The pattern term is an ordered-pair (2-tuple) within a part of a two-part

partitioning of a set (the "inner" set), which is in turn within a part of a two-part
partitioning of a set (the "outer" set). The ordered pair will unify with any ordered
pair in a function (which is a set of ordered pairs where no two first elements are the
same).  The two parts of the "inner" will unify with any table where one part contains
one ordered pair and the other part contains any number of terms (and is possibly
empty). This partitioned "inner" set will unify with any function (or row) of the given
table. The two parts of the "outer" set will unify with any table where one part
contains the "inner" set (a row of the table) and the other part contains any number of
terms (and is possibly empty).

402



Our first
step in
creating this
pattern term
is to create a
empty set
within the
existing
empty set.
The existing
empty set will
be converted
to a
partitioned
set of one
part. This is
the "outer"
set. The newly
created empty
set will become
the "inner" set.
The interaction
is shown in
Figure A1–3. 14
and the result is
shown in
Figure A1–3. 15.

Step 3.12.
DO: Create a

new set in set 1. (Call the new object “set 2”.)
BY: Select the "Insert:Set" option in the popup menu for the set.

Next we add a “hollow” second part to the “outer” set partitioning. The interac-
tion is shown in Figure A1–3. 16, and the result is shown in Figure A1–3. 17.
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Figure A1–3. 14: Interaction to convert an empty set to a partitioned
set of one part and create an empty set inside that new part.

Figure A1–3. 15: Result of interaction to convert an empty set to
a partitioned set of one part and create an empty set inside that
new part.
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Step 3.13.
DO: Create a new partitioned set part in the set 1.
BY: Select the "Create Partition" option in the popup menu for set 1.

Now we build the ordered pair inside of the "inner" set. First, we create a variable
inside the "inner" set. This will convert the "inner" set from an empty set to a
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Figure A1–3. 16: Interaction to create a “hollow” part in a partitioned set.

Figure A1–3. 17: Result of interaction to create a “hollow” part.
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partitioned set
of one part, and
place a variable
inside this one
part. The inter-
action is shown
in
Figure A1–3. 18
and the result is
shown in
Figure A1–3. 19
.

Step 3.14.
DO: Create a new variable in set 1. (Call this object “variable 4”.)
BY: Select the "Insert:Variable" option in the popup menu for the set.

This variable is the generic domain value variable. We replace this variable by an
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Figure A1–3. 18: Interaction to create a variable.

Figure A1–3. 19: Result of creation of a variable.
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N-tuple with this variable as its first element and another variable as its second
element. This is shown in Figure A1–3. 20 and Figure A1–3. 21.

Step 3.3.15.
DO: Create an N-tuple with variable 4 as the first element and create a new variable term as the

second term. (Call this new N-tuple object “N-tuple 3” and the new variable object “variable 5.”)
BY: Select the "Create NTuple:Variable" option in the popup menu for the variable.
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Figure A1–3. 20: Interaction to convert a variable to a 2-tuple of two variables.

Figure A1–3. 21: Result of interaction to convert a variable to a 2-tuple of two vari-
ables.
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The new variable in Figure A1–3. 21 is the generic range value variable. This
completes the function pair N-tuple. To finish this "pattern" term, we will create a
second "hollow" part in the "inner" set. The interaction and result are shown in
Figure A1–3. 22 and Figure A1–3. 23.

Step 3.16.
DO: Create a new partitioned set part in the set 2.
BY: Select the "Create Partition" option in the popup menu for the set.

We complete the intensional set by connecting the template variable to the generic
range value variable. This is shown in Figure A1–3. 24 and Figure A1–3. 25.

Step 3.17.
DO: Create a coreference link including the intensional set template variable and variable 5.
BY: With "connect tool" as the current tool, depress the mouse button while the cursor is over one of

the variables and drag the cursor until it's over the other variable, then release the mouse button.

To complete the "Column Sum" clause, we need only to connect some terms. We
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Figure A1–3. 22: Interaction to create a “hollow” part in a partitioned set.
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connect the "given table" argument variable to the intensional set unification table
variable. This specifies that the intensional set "ranges" over the given table. This is
shown in Figure A1–3. 25 and Figure A1–3. 26.

Step 3.18.
DO: Create a coreference link including the variable in the first argument of the clause and variable 3.

BY: With "connect tool" as the current tool, depress the mouse button while the cursor is
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Figure A1–3. 23: Result of creating “hollow” part in partitioned set.

Figure A1–3. 24: Interaction (in “connect” mode) to create a link between
the template variable and the range variable of the “pattern”.
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over one of the variables and drag the cursor until it's over the other variable, then release the
mouse button.

We connect the "given domain value" argument variable to the first element of the
ordered pair in the intensional set unification. This specifies that only range values
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Figure A1–3. 25: Result of linking the template and pattern “range value” vari-
ables. Interaction to create a link between the “function table” argument vari-
able and the first argument variable of the intensional set ‘unify’/2 literal 3-
tuple.

Figure A1–3. 26: Result of creating the “function table” link.
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paired with a domain value the same as the "given" domain value will be collected in
the intensional set result.

Step 3.19.
DO: Create a coreference link including the variable in the second argument of the clause and vari-

able 4.
BY: With "connect tool" as the current tool, depress the mouse button while the cursor is over one of

the variables and drag the cursor until it's over the other variable, then release the mouse button.

The last connection makes the sum of the intensional multiset the result of the
clause.

Step 3.20
DO: Create a coreference link including the variable in the third argument of the clause and the vari-

able in the first argument of the literal.
BY: With "connect tool" as the current tool, depress the mouse button while the cursor is over one of

the variables and drag the cursor until it's over the other variable, then release the mouse button.

Having finished creating the clause which defines the ‘Column Sum’/3 predicate
as shown in Figure A1–3. 27, we will create a clause defining the predicate ‘Column
Sum Query’/1 for querying this predicate. This clause will provide test data to
‘Column Sum’/3 and return the calculated sum.
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Figure A1–3. 27: Complete clause defining the ‘Column Sum’/3 predicate.
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3.1.2. Create the ‘Column Sum Query’/1 predicate.
The section describes the creation of the clause to be used
to query the ‘Column Sum’/3 clause built in the previous
section. This is step 4 of the “Column Sum” example.

Step 4: Create the "Column Sum Query" clause.

The first two sub-steps of step 4 create the clause for
the ‘Column Sum Query’/1 predicate with an empty
body.

Step 4.1.
DO: Create a new clause named "Column Sum Query" with 1

argument in program (window) "Column Sum".
BY: Select the "Create Clause" option in the popup menu for the

program. Remove 2 arguments from the default 3 arguments.
Edit the default name ("Column Sum") to change it to "Column
Sum Query".

Step 4.2: Create the argument term for the "Column Sum Query"
clause.

The term in the argument of this query clause gives shape to the result of the
query. The query clause that we will create provides a table of data and the name of a
column to be summed in that table. The result of the query is a table of two rows: one
row shows the test data and the other row shows the name of the column being
summed and the sum for that column. The next step creates an empty table which is a
set of one 2-tuple row. The interaction and result are shown in Figure A1–3.4. 1 and
Figure A1–3.4. 2.

Step 4.3.
DO: Create a new term table in the argument of the “Column Sum Query” clause.
BY: Select the "Insert:Table" option in the popup menu for the argument.

The first column of this table is used to label the parts of the answer. The first row
will hold the input “data”. Step 4.4 creates an ur constant “data” in the first column of
the first row. Step 4.5 creates a variable which will corefer with the input table that
will be placed in the first argument of the literal to be created in the query clause.

Step 4.4: Create a new ur constant of value “data” in the left term_table_cell.

Step 4.5.
DO: Create a new variable in the left term_table_cell.
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Figure A1–3.4. 1: Interac-
tion to create a table rep-
resentation of a set.

Figure A1–3.4. 2: Result
of creating a new table.
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BY: Select the
"Insert:Variable" option in
the popup menu for the left
term_table_cell.

Step 4.6 creates a
second row in the
result table. This row
will hold the sum of
the selected column
of the input data. The
interaction and result
of this step are
shown in
Figure A1–3.4. 3 and
Figure A1–3.4. 4.

Step 4.6.
DO: Create a row at the

bottom of the term_table.
BY: Select the "Create Row"

option in the popup menu for
the term_table.

We want to ensure that
the “data” row is dis-
played before (above) the

“total” row, so we will make the result table an ordered table—one which is an N-tu-
ple of rows instead of a set of rows. The interaction and result of this step are shown
in Figure A1–3.4. 5 and Figure A1–3.4. 6.

Step 4.7.
DO: Set the "table type" of the term_table to N-tuple.
BY: Select the "Set Table Type:NTuple" option in the popup menu for the term_table.

Now we put the “label” for the second row in place. The interaction for starting
this is shown in Figure A1–3.4. 7. The resulting table is shown in Figure A1–3.4. 8.

Step 4.8: Create a new ur constant of value “Calculation” in the term_table_cell.
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Figure A1–3.4. 3: Interac-
tion to add a second row to
a term table.

Figure A1–3.4. 4: Result
of adding a second row to
a term table.

Figure A1–3.4. 5: Interaction
to set the type of a term
table to “NTuple”.

Figure A1–3.4. 6: Result
of setting the type of a
term table to “NTuple”.
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The calculation from the
‘Column Sum’/3 predicate
will be shown using a func-
tion term table with the col-
umn titles from the input
data. It will have one row
with the first column being
the ur constant “Total”
and the second column
being the calculated total.
The first step in construct-
ing this new term table is

shown in Figure A1–3.4. 9 and Figure A1–3.4. 10.

Step 4.9.
DO: Create a new term table (call it term table 2) in the

term_table_cell  of row 2, column 2 of the table.
BY: Select the "Insert:Table" option in the popup menu for this

term_table_cell.

The next step change the row type of the new term
table to “Function”, as shown in Figure A1–3.4. 11 and
Figure A1–3.4. 12.

Step 4.10.
DO: Set the "row type" of term_table 2 to function.
BY: Select the "Set Row Type:Function" option in the popup

menu for this term_table.

Step 4.11 creates a variable in the first column of
the function table, as shown in Figure A1–3.4. 13.

Step 4.11.
DO: Create a new variable in the term_table_cell (1,1) of table 2.
BY: Select the "Insert:Variable" option in the popup menu for this term_table_cell.

Steps 4.12, 4.13, and 4.14 create two more variables and the ur constant “Total”
in the function table, as shown in Figure A1–3.4. 14.

Step 4.12.
DO: Create a new variable in the term_table_cell (1,2) of table 2.
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Figure A1–3.4. 7: Inter-
action to insert an ur
constant in a term
table cell.

Figure A1–3.4. 8: Result
of inserting “Calculation”
in a term table cell.

Figure A1–3.4. 9: Interac-
tion to create term table
in a term table cell.

Figure A1–3.4. 10: Result
of creating a term table in
a term table cell.
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BY: Select the
"Insert:Variable" option
in the popup menu for
this term_table_cell.

Step 4.13: Create a new ur
constant of value “Total”
in the term_table_cell
(2,1) of table 2.

Step 4.14.
DO: Create a new variable in

the term_table_cell (2,2)
of table 2.

BY: Select the
"Insert:Variable"
option in the popup
menu for this
term_table_cell.

The remaining
major part of creat-
ing the clause defin-
ing the ‘Column

Sum Query’/1 predicate is creating the ‘Column Sum’/3
literal with appropriately filled in arguments.

Step 4.15: Create the literal of the "Column Sum Query" clause.

The first sub-step is to create the literal  with empty
arguments.

Step 4.15.1.
DO: Create a new literal with name Column Sum and 3 arguments

in the clause.
BY: Select the "Create Literal" option in the popup menu for the

clause.

Having created the ‘Column Sum’/3 literal, we now fill in its arguments. In the
first argument we create a function table, put domain values in the "header" (the first
row) of the table and fill in two "body" rows of data. First we'll create the empty
function table, then we'll explain what a function table represents in SPARCL.

Step 4.15.2 creates a term table, shown in Figure A1–3.4. 15.

Step 3.4.15.2.
DO: Create a new term table (call it table 3) in the first argument of the literal.

414

Figure A1–3.4. 11: Interaction to
set the row type of a term table to
“Function”.

Figure A1–3.4. 12:
Result of setting the
row type of a term
table to “Function”.

Figure A1–3.4. 13: Result
of creating a variable in
the first column of the
header of the function

Figure A1–3.4. 14: Com-
plete result term in the
argument of the clause
defining the ‘Column Sum
Query’/1 predicate.

Column Sum Query

data

Calculation

Total

Column Sum Query

data

Calculation

Column Sum Query

data

Calculation

Column Sum Query

data

Calculation

Create Column
Create Row

Factor
Expand

Set Table Type:Set
Set Table Type:NTuple
Set Row Type:NTuple
Set Row Type:Function

Create NTuple:Variable
Create NTuple:Ur
Create NTuple:Set
Create NTuple:Table
Create NTuple:IntenSet

Delete Table
Unlink Table
Select Table

term_table



BY: Select the "Insert:Table" option in the
popup menu for the argument.

The next step takes this N-tuple-
row-type table and converts it to a
function-row-type table, shown in
Figure A1–3.4. 16.

Step 3.4.15.3.
DO: Set the "row type" of term_table 3 to

function.
BY: Select the "Set Row Type:Function"

option in the popup menu for this
term_table.

This conversion has added a row to
the table so that it has a "header" row
and one "body" row. The double hori-
zontal line between the first and second
row is the indication in the visual repre-
sentation that this table is now a
function table. It has the appearance of a
table with named columns. A function
table representation can be used for a set
of “functions”, where all of the
functions in this set are finite and have
the same domain values. These domain
values are the column names of the
function table. The column names are
placed at the top of the table, which we
will do now in steps 4.15.4 and 4.15.5. The result is shown in Figure A1–3.4. 17.

Step 4.15.4. Create a new ur constant of value “Item” in term_table_cell (1,1) of table 3.
Step 4.15.5: Create a new ur constant of value “Value” in term_table_cell (1,2) of table 3.

Each “body” row plus the “header” row represents a function. A function in
SPARCL is a set of ordered pairs (2-tuples), where the first elements of the ordered
pairs are the domain values and the second elements are the range values. Further, no
two ordered pairs in a “function” set have the same first element.
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Figure A1–3.4. 15: Result of creating a
term table in first argument of literal.

Figure A1–3.4. 16: Result of setting the lit-
eral term table row type to “Function.” 

Figure A1–3.4. 17: Result of adding the ur
constants “Item” and “Value” as column
headers to the function table in the literal.
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The range values of a function are
placed here by steps 4.15.6 and 4.15.7.
The result is shown in
Figure A1–3.4. 18.

Step 3.4.15.6: Create a new ur constant of
value “Sheet Music” in term_table_cell
(2,1) of table 3.

Step 3.4.15.7: Create a new ur constant of
value “25.00” in term_table_cell (2,2)
of table 3.

In step 4.15.8 we add another row
to the table. “Adding” a row always puts it at the end of the table. For a table which is
a set of rows (as opposed to an N-tuple of rows), this is semantically sufficient for
available editing operations because the order of the rows doesn't make any semantic
difference. But for a table which is an N-tuple of rows, this can be an awkward
interface because there is no tool to place a new row at a particular place in the order
of rows. To place a new row somewhere other than at the end, one would have to
delete the rows after the place where the new row is wanted, add the new row, then
rebuild the deleted rows.

Step 4.15.8.
DO: Create a row at the bottom of term_table 3.
BY: Select the "Create Row" option in the popup menu for this term_table.

Next we fill in this last "body" row.

Step 4.15.9: Create a new ur constant of value “Arm Chair & Stool”  in term_table_cell (3,1) of table
3.

Step 3.4.15.10: Create a new ur constant of value “75.00” in term_table_cell (3,2) if table 3.

This completes the test data table. Now we put variables in the other two
arguments. The result of this (overlain by a linking interaction) is shown in
Figure A1–3.4. 19.

Step 4.15.11.
DO: Create a new variable in the second argument of the literal.
BY: Select the "Insert:Variable" option in the popup menu for this argument.

Step 4.15.12.
DO: Create a new variable in the third argument of the literal.
BY: Select the "Insert:Variable" option in the popup menu for this argument.
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Figure A1–3.4. 18: Result of adding the ur
constants “Sheet Music” and “25.00” to the
function table in the literal.
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Rather than put the same
constant in the literal twice, we
write it once and put a variable at
the other location. Then we connect
these two terms. In step 4.15.13,
the title of the second column of
the test data is connected to the
variable in the literal argument for
the name of the column to be
summed. The interaction is shown
in Figure A1–3.4. 19. The result
(overlain by the next interaction) is
shown in Figure A1–3.4. 20.

Step 3.4.15.13.
DO: Create a coreference link

including the variable in the sec-
ond argument of the literal  and
“Value”.

BY: With "connect tool" as the current
tool, depress the mouse button
while the cursor is over the vari-
able and drag the cursor until it's
over “Value”, then release the
mouse button.

The entire table of test data is
linked to the variable in the sec-
ond column of the first row. The
interaction is shown in
Figure A1–3.4. 20 and the result is
shown in Figure A1–3.4. 21.

Step 4.16.
DO: Create a coreference link

including the variable in cell
(1,2) of table 1 and all of table 2.

BY: With "connect tool" as the current tool, depress the mouse button while the cursor is over the vari-
able  and drag the cursor until it's over the table, then release the mouse button.

The name of the column not being summed, “Item”, is linked to the head of the

417

Figure A1–3.4. 19: Interaction for linking
“Value” to the argument for the name of the
column to be summed.

Figure A1–3.4. 20: Result of linking “Value”.

Figure A1–3.4. 21: Result of linking the test data
table, and interaction for linking “Item”.
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appropriate column in the result
table’s function table. The interac-
tion is shown in Figure A1–3.4. 21

and the result is shown in
Figure A1–3.4. 22.

Step 4.17.
DO: Create a coreference link

including the variable in cell
(1,1) of table 2 and”Item”.

BY: With "connect tool" as the
current tool, depress the mouse
button while the cursor is over
the variable  and drag the cursor
until it's over “Item”, then release
the mouse button.

The name of the column being
summed, “Value”, is linked to the
head of the appropriate column in
the result table’s function table.
The interaction is shown in
Figure A1–3.4. 22 and the result is
shown in Figure A1–3.4. 23.

Step 4.18.
DO: Create a coreference link including

the variable in cell (1,2) of table 2
and “Value”.

BY: With "connect tool" as the current
tool, depress the mouse button
while the cursor is over the variable and drag the cursor until it's over  “Value”, then release the
mouse button.

The final connection is from the result variable for the ‘Column Sum’/3 literal and
the result sum variable in the second column of the “Total” row of the function table
of the result table. The interaction is shown in Figure A1–3.4. 23 and the result (plus
the next interaction) is shown in Figure A1–3.4. 24.

Step 3.4.19.
DO: Create a coreference link including the variable in cell (2,2) of table 2  and the variable in the third

argument of the literal.
BY: With "connect tool" as the current tool, depress the mouse button while the cursor is over one
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Figure A1–3.4. 22: Result of linking “Item” to the
to the head of the result data column not being
summed, and interaction for linking “Value” to
the result data column for the sum.

Figure A1–3.4. 23: Result of linking “Value” to
the result data column for the sum, and inter-
action for linking the column sum result
variable to the result data column sum result
value variable.
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variable  and
drag the cursor
until it's over the
other variable,
then release the
mouse button.

Finally, we will
run the test query. The
query interaction is
shown in
Figure A1–3.4. 24. The
result of the query is a
2-tuple with the name
of the query clause as
the first element and
the bound value of the
argument to the query
clause as the second
element. The query interaction is
shown in Figure A1–3.4. 24 and
the result is in Figure A1–3.4. 25.

Step 3.5.
DO: Execute a query of the “Col-

umn Sum Query” clause, with
tracing information suppressed.

BY: Select the "Query:Brief" option
in the popup menu for the
clause.

This query result in Figure A1–3.4. 25 shows the sum of the items in the test data is
100.

1. Exercise for section 3
1. Implement a "Tournament Scores" predicate which scores players based

on their performance in multiple rounds of a tournament. In preparation
for implementing this predicate (in part 3, below), you are first asked to
implement "Maximal Range Value" in part 1, and then you are asked to
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Figure A1–3.4. 24: Interaction to query a ‘Column Sum
Query’/1 clause.

Figure A1–3.4. 25: Result of the query of the
clause for ‘Column Sum Query’/1.
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implement "Maximal Pairs" in part 2. These predicates will make use of
ordered pairs (2-tuples), partitioned sets, intensional sets (and intensional
multisets), function tables, "*DELAY*" specifications, and the fails/2
meta-predicate (a meta-predicate is a predicate which takes a literal as an
argument and invokes the given literal).

Write a "Maximal Range Value" predicate of two arguments.
1. Write a program for the predicate "Maximal Range Value" with

two arguments. The first argument is a set of pairs, with the second
elements (the range values) being numbers. The second argument
is a number which is maximal with respect to the range values of
this set, i.e. a number such that no range value is greater than it.

1. HINT:
Use a fails/1 literal and use two literals in its argument,

a unify/2 literal and a less/2 literal. The unify/2 literal
unifies given the pair set with a partitioned set with an
ordered pair of two variables in one part and nothing in the
other part. The less/2 literal compares the second argument
term with the second element of the ordered pair of the
unify/2 set.

2. Write a "Maximal Range Value Query" predicate of no arguments
which tests the "Maximal Range Value/2" predicate by giving it
the set "{a=>3,b=>4,c=>5}" and 5 as the maximal range value.

2. Write a "Maximal Pair" predicate of three arguments and a test predicate.
1. The "Maximal Pairs" predicate has a set of ordered pairs as its first

argument, its second argument is the set of maximally range-
valued pairs among the first argument’s set. Thus, for the first
argument set "{a=>2, b=>1, c=>2, d=>0}", the second argument
set of maximal pairs is "{a=>2, c=>2}".

1. HINT:
This is implemented by a single clause, plus a "helper"

predicate. The second argument to "Maximal Pairs" should
be an intensional set. The template is an ordered pair
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(which will become the maximal ordered pairs). The body
has two literals. One of these is a unify/2 literal which
unifies a 2-part partitioning with a variable. The first part
contains a 2-tuple, the second part is hollow. The second
literal is the "helper" predicate, "Maximal Range Value" of
two arguments as implemented in part 1 of this exercise.
For "Maximal Range Value"/2 to work correctly in
"Maximal Pairs", there must be two "*DELAY*"
specifications for the "Maximal Range Value" predicate of
two arguments such that "Maximal Range Value" delays if
either argument is a variable (i.e. a delay specification for
"variable=>ignore" and another for "ignore=>variable").

2. Write a "Maximal Pairs Query" predicate of one argument to test
the "Maximal Pairs" predicate. The "Maximal Pairs Query"
predicate should return the maximal pairs found by "Maximal
Pairs", given the test set "{a=>2, b=>1, c=>2, d=>0}".

3. Write a "Tournament Scores" predicate and a predicate to test it.
1. The "Tournament Scores" predicate has two arguments. The first

argument is the tournament rounds scores and the second argument
is a function from player to overall score for that player. The
tournament rounds scores are a function table, where each column
is a different player in the tournament and each row is a set of
scores for a round of the tournament. The overall scoring of a
player for the tournament is the number rounds in which that
player was among those with the highest score.

1. HINT:
The second argument of "Tournament Scores" is an

intensional multiset, where the template is a variable
(which will be the player) and the body contains two
literals. One of these literals is a unify/2 literal which
extracts a row from the rounds table. The other literal is a
"Maximal Pairs"/2 literal which finds the players with
maximal scores for that round. The second argument to this
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"Maximal Pairs" literal should be a partitioned set of two
parts. One of these parts is an ordered pair with the first
element of this pair being connected to the template
variable.

2. Write a "Tournament Scores Query" predicate of one argument
which returns the overall player scores from "Tournament Scores",
given a table of:

"{{a=>1, b=>2, c=>0}, {a=>2, b=>2, c=>1}, {a=>1, b=>0,
c=>2}}".
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Appendix 2
Source Metrics for the Implementation of SPARCL

This appendix contains details of the measurements of the various parts of the
implementation of SPARCL.

Totals for selected columns in Table A2– 1:
Procedure count: 3667, 
Clause count: 5618,
Goal count: 23032,
Size: 191012

Logical source line count = Clause count + Goal count = 28650 logical source
lines.

Table A2– 1: Metrics for the modules implementing SPARCL. The modules are sorted  by
(Halstead) volume.

Program G C P GC GP Vol S Voc UOtr UOnd TOtr TOnd

SPARCL Script : 1878 434 202 4.3 9.2 154419 14745 1421 28 1393 7399 7346
SPARCL to 3D Model : 1453 362 203 4.0 7.1 151150 14612 1300 27 1273 7335 7277
SPARCL Dev Env : 2041 432 281 4.7 7.2 137103 12931 1555 28 1527 6433 6498
SPARCL Display : 1453 264 197 5.5 7.3 136636 13635 1039 27 1012 6885 6750
SPARCL Log Analysis : 1603 393 287 4.0 5.5 117633 11765 1023 34 989 5996 5769
SPARCL Interpreter : 1143 291 197 3.9 5.8 113421 11484 940 33 907 5790 5694
SPARCL QD3D Model : 739 171 48 4.3 15.3 61061 6908 458 17 441 3410 3498
SPARCL DE Database : 1064 280 231 3.8 4.6 60384 6543 600 24 576 3340 3203
SPARCL DE Program : 882 215 127 4.1 6.9 60186 6298 753 22 731 3141 3157
SPARCL Interp Unify : 803 235 114 3.4 7.0 58094 6437 521 21 500 3322 3115
SPARCL Dialogs : 679 116 76 5.8 8.9 52973 5621 687 22 665 2810 2811
SPARCL Halstead : 552 131 98 4.2 5.6 52519 5821 520 22 498 2912 2909
Display Graph : 299 69 47 4.3 6.3 44950 5012 501 17 484 2466 2546
Graph Averaging Layo : 468 109 72 4.2 6.5 44313 4910 521 25 496 2473 2437
SPARCL DE Create Obj: 629 140 109 4.4 5.7 41085 4684 437 21 416 2361 2323
vectors : 425 110 57 3.8 7.4 30363 3855 235 20 215 1942 1913
SPARCL DE Edit Objec: 458 79 66 5.7 6.9 26987 3224 331 16 315 1644 1580
SPARCL Visual Transf : 344 86 53 4.0 6.4 25770 3141 295 13 282 1625 1516
String Utilities : 349 93 56 3.7 6.2 23889 2851 333 21 312 1455 1396
SPARCL Linear Transf : 298 67 46 4.4 6.4 23557 2896 281 17 264 1478 1418
SPARCL Objects Kerne : 189 155 154 1.2 1.2 22288 2790 254 9 245 1390 1400
My Conversion Suppor : 372 150 130 2.4 2.8 21998 2635 326 41 285 1302 1333
SPARCL 3D Model Util: 265 58 34 4.5 7.7 21750 2608 324 18 306 1265 1343
SPARCL Inventor Mode: 322 81 36 3.9 8.9 21044 2579 286 16 270 1282 1297
Containment Tree DB : 218 60 52 3.6 4.1 19678 2597 191 18 173 1302 1295
Graph Utilities : 330 81 48 4.0 6.8 19539 2439 258 17 241 1265 1174
SPARCL Display Util : 323 78 49 4.1 6.5 19507 2379 294 21 273 1191 1188
SPARCL DE Factor Tab: 295 58 43 5.0 6.8 19147 2418 242 13 229 1226 1192
SPARCL Readable Line : 309 97 48 3.1 6.4 18353 2304 250 23 227 1200 1104
Program G C P GC GP Vol S Voc UOtr UOnd TOtr TOnd
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Table A2– 1 (continued): Metrics for the modules implementing SPARCL. The modules
are sorted  by (Halstead) volume.
Program G C P GC GP Vol S Voc UOtr UOnd TOtr TOnd
SPARCL DE Object Uti : 219 50 18 4.3 12.1 14686 1878 226 14 212 951 927
SPARCL DE Menus : 298 55 42 5.4 7.0 13353 1731 210 13 197 870 861
List Utilities : 168 71 37 2.3 4.5 10755 1577 113 16 97 826 751
portray : 178 43 25 4.1 7.1 10567 1423 172 18 154 715 708
SPARCL Trans Disp Ob: 138 46 27 3.0 5.1 9886 1339 167 13 154 681 658
SPARCL POV Model : 209 44 25 4.7 8.3 9752 1287 191 15 176 620 667
Browser : 123 30 14 4.1 8.7 8562 1161 166 9 157 577 584
SPARCL Interp Kernel : 162 46 31 3.5 5.2 8272 1149 147 14 133 592 557
Arithmetic Utilities : 140 40 27 3.5 5.1 8000 1143 128 22 106 583 560
SPARCL Interaction L : 165 30 28 5.5 5.8 7362 965 198 17 181 483 482
SPARCL Dev Env Util : 127 29 25 4.3 5.0 7255 1012 144 18 126 496 516
Display Lines : 74 19 14 3.8 5.2 4425 669 98 13 85 338 331
Binary Tree : 77 19 10 4.0 7.7 4240 641 98 17 81 316 325
SPARCL Dialog Kernel : 64 7 7 9.1 9.1 3605 523 119 15 104 262 261
SPARCL Menus Kernel : 108 32 32 3.3 3.3 3487 547 83 12 71 277 270
Queue Utilities : 37 22 16 1.6 2.3 2700 463 57 8 49 238 225
Preference Utilities : 78 14 14 5.5 5.5 2556 401 83 13 70 199 202
SPARCL Pgm Wdw  Na: 69 13 12 5.3 5.7 2296 376 69 10 59 189 187
File Utilities : 61 14 13 4.3 4.6 2206 350 79 9 70 177 173
SPARCL Pjct&Pgm U : 56 15 15 3.7 3.7 1892 312 67 14 53 159 153
curve_to_lines : 34 9 7 3.7 4.8 1866 316 60 9 51 159 157
SPARCL Picture DB : 30 10 8 3.0 3.7 1405 239 59 10 49 121 118
SPARCL DE Cls DB : 35 7 6 5.0 5.8 1247 213 58 13 45 110 103
garbage_collecting_c : 38 12 10 3.1 3.8 891 180 31 8 23 92 88
SPARCL Output Wdw : 26 5 5 5.2 5.2 870 148 59 14 45 74 74
SPARCL Database Kern: 25 11 11 2.2 2.2 781 144 43 10 33 73 71
Point-Line Distance : 19 5 5 3.8 3.8 742 146 34 6 28 73 73
Picture DB : 22 7 7 3.1 3.1 687 130 39 7 32 65 65
Term Utilities : 17 5 3 3.4 5.6 528 103 35 11 24 53 50
straight : 13 3 3 4.3 4.3 516 100 36 10 26 49 51
Picture DB Utilities : 13 4 3 3.2 4.3 485 98 31 8 23 50 48
Error Handling : 13 3 3 4.3 4.3 388 80 29 9 20 40 40
Clause Utilities : 13 3 3 4.3 4.3 210 46 24 8 16 24 22

Program G C P GC GP Vol S Voc UOtr UOnd TOtr TOnd

GoalCount=G ClauseCount=C ProcedureCount=P
AvgGoalsPerClause=GC AvgGoalsPerProcedure=GP Volume=Vol
Size=S Vocabulary=Voc UniqueOperators=UOtr
UniqueOperands=UOnd TotalOperators=TOtr TotalOperands=TOnd
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Table A2– 2: Metrics for the modules implementing SPARCL, sorted by module name..
Program G C P GC GP Vol S Voc UOtr UOnd TOtr TOnd

Arithmetic Utilities : 140 40 27 3.5 5.1 8000 1143 128 22 106 583 560
Binary Tree : 77 19 10 4.0 7.7 4240 641 98 17 81 316 325
Browser : 123 30 14 4.1 8.7 8562 1161 166 9 157 577 584
Clause Utilities : 13 3 3 4.3 4.3 210 46 24 8 16 24 22
Containment Tree DB : 218 60 52 3.6 4.1 19678 2597 191 18 173 1302 1295
curve_to_lines : 34 9 7 3.7 4.8 1866 316 60 9 51 159 157
Display Graph : 299 69 47 4.3 6.3 44950 5012 501 17 484 2466 2546
Display Lines : 74 19 14 3.8 5.2 4425 669 98 13 85 338 331
Error Handling : 13 3 3 4.3 4.3 388 80 29 9 20 40 40
File Utilities : 61 14 13 4.3 4.6 2206 350 79 9 70 177 173
Graph Averaging Layo : 468 109 72 4.2 6.5 44313 4910 521 25 496 2473 2437
Graph Utilities : 330 81 48 4.0 6.8 19539 2439 258 17 241 1265 1174
garbage_collecting_c : 38 12 10 3.1 3.8 891 180 31 8 23 92 88
List Utilities : 168 71 37 2.3 4.5 10755 1577 113 16 97 826 751
My Conversion Suppor : 372 150 130 2.4 2.8 21998 2635 326 41 285 1302 1333
Picture DB : 22 7 7 3.1 3.1 687 130 39 7 32 65 65
Picture DB Utilities : 13 4 3 3.2 4.3 485 98 31 8 23 50 48
Point-Line Distance : 19 5 5 3.8 3.8 742 146 34 6 28 73 73
Preference Utilities : 78 14 14 5.5 5.5 2556 401 83 13 70 199 202
portray : 178 43 25 4.1 7.1 10567 1423 172 18 154 715 708
Queue Utilities : 37 22 16 1.6 2.3 2700 463 57 8 49 238 225
SPARCL 3D Model Util: 265 58 34 4.5 7.7 21750 2608 324 18 306 1265 1343
SPARCL Database Kern: 25 11 11 2.2 2.2 781 144 43 10 33 73 71
SPARCL DE Cls DB : 35 7 6 5.0 5.8 1247 213 58 13 45 110 103
SPARCL DE Create Obj: 629 140 109 4.4 5.7 41085 4684 437 21 416 2361 2323
SPARCL DE Database : 1064 280 231 3.8 4.6 60384 6543 600 24 576 3340 3203
SPARCL DE Edit Objec: 458 79 66 5.7 6.9 26987 3224 331 16 315 1644 1580
SPARCL DE Factor Tab: 295 58 43 5.0 6.8 19147 2418 242 13 229 1226 1192
SPARCL DE Menus : 298 55 42 5.4 7.0 13353 1731 210 13 197 870 861
SPARCL DE Object Uti : 219 50 18 4.3 12.1 14686 1878 226 14 212 951 927
SPARCL DE Program : 882 215 127 4.1 6.9 60186 6298 753 22 731 3141 3157
SPARCL Dev Env : 2041 432 281 4.7 7.2 137103 12931 1555 28 1527 6433 6498
SPARCL Dev Env Util : 127 29 25 4.3 5.0 7255 1012 144 18 126 496 516
SPARCL Dialog Kernel : 64 7 7 9.1 9.1 3605 523 119 15 104 262 261
SPARCL Dialogs : 679 116 76 5.8 8.9 52973 5621 687 22 665 2810 2811
SPARCL Display : 1453 264 197 5.5 7.3 136636 13635 1039 27 1012 6885 6750
SPARCL Display Util : 323 78 49 4.1 6.5 19507 2379 294 21 273 1191 1188
SPARCL Halstead : 552 131 98 4.2 5.6 52519 5821 520 22 498 2912 2909
SPARCL Interaction L : 165 30 28 5.5 5.8 7362 965 198 17 181 483 482
SPARCL Interp Kernel : 162 46 31 3.5 5.2 8272 1149 147 14 133 592 557
SPARCL Interpreter : 1143 291 197 3.9 5.8 113421 11484 940 33 907 5790 5694
SPARCL Interp Unify : 803 235 114 3.4 7.0 58094 6437 521 21 500 3322 3115
SPARCL Inventor Mode: 322 81 36 3.9 8.9 21044 2579 286 16 270 1282 1297
SPARCL Linear Transf : 298 67 46 4.4 6.4 23557 2896 281 17 264 1478 1418
SPARCL Log Analysis : 1603 393 287 4.0 5.5 117633 11765 1023 34 989 5996 5769
SPARCL Menus Kernel : 108 32 32 3.3 3.3 3487 547 83 12 71 277 270
SPARCL Objects Kerne : 189 155 154 1.2 1.2 22288 2790 254 9 245 1390 1400
SPARCL Output Wdw : 26 5 5 5.2 5.2 870 148 59 14 45 74 74
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Table A2– 2 (continued): Metrics for the modules implementing SPARCL, sorted by mod-
ule name.
SPARCL Pgm Wdw  Na: 69 13 12 5.3 5.7 2296 376 69 10 59 189 187
SPARCL Picture DB : 30 10 8 3.0 3.7 1405 239 59 10 49 121 118
SPARCL POV Model : 209 44 25 4.7 8.3 9752 1287 191 15 176 620 667
SPARCL Pjct&Pgm U : 56 15 15 3.7 3.7 1892 312 67 14 53 159 153
SPARCL QD3D Model : 739 171 48 4.3 15.3 61061 6908 458 17 441 3410 3498
SPARCL Readable Line : 309 97 48 3.1 6.4 18353 2304 250 23 227 1200 1104
SPARCL Script : 1878 434 202 4.3 9.2 154419 14745 1421 28 1393 7399 7346
SPARCL Trans Disp Ob: 138 46 27 3.0 5.1 9886 1339 167 13 154 681 658
SPARCL to 3D Model : 1453 362 203 4.0 7.1 151150 14612 1300 27 1273 7335 7277
SPARCL Visual Transf : 344 86 53 4.0 6.4 25770 3141 295 13 282 1625 1516
String Utilities : 349 93 56 3.7 6.2 23889 2851 333 21 312 1455 1396
straight : 13 3 3 4.3 4.3 516 100 36 10 26 49 51
Term Utilities : 17 5 3 3.4 5.6 528 103 35 11 24 53 50
vectors : 425 110 57 3.8 7.4 30363 3855 235 20 215 1942 1913

Program G C P GC GP Vol S Voc UOtr UOnd TOtr TOnd

GoalCount=G ClauseCount=C ProcedureCount=P
AvgGoalsPerClause=GC AvgGoalsPerProcedure=GP Volume=Vol
Size=S Vocabulary=Voc UniqueOperators=UOtr
UniqueOperands=UOnd TotalOperators=TOtr TotalOperands=TOnd
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Appendix 3
PROLOG and LISP Solutions to 

Programming Problems

This appendix contains the source for the PROLOG and LISP solutions of the ID3 pro-
gramming problem and the PROLOG solution of the WARPLAN problem.

ID3

PROLOG.

/*
Sample query:

:-id3([color, size],
      decision,
      [[color-red, size-big, decision-yes],
       [color-red, size-small, decision-no],
       [color-blue, size-big, decision-yes]],
      Tree
     )

No.1 : Tree = [node(top, size, [node(big, yes), node(small, no)])]

*/

id3(Attributes, Decision, Examples, Tree) :-
          id3_tree(Attributes, [top-Examples], Tree, Decision).

id3_tree(Attributes, ClassifiedExamples,
         [node(Value, SelectedAttribute, Subtree)|OtherNodes], Decision) :-
          choose(ClassifiedExamples, Value-ValueExamples,
                 OtherClassifiedExamples),
          heterogeneous_examples(ValueExamples, Decision),
          select_attribute(Attributes, ValueExamples, Decision,
                           SelectedAttribute, SubclassifiedExamples,
                           OtherAttributes),
          id3_tree(OtherAttributes, SubclassifiedExamples, Subtree, Decision),
          id3_tree(Attributes, OtherClassifiedExamples, OtherNodes, Decision).

id3_tree(Attributes, ClassifiedExamples, [node(Value, DecisionValue)|OtherNodes],
         Decision) :-
          choose(ClassifiedExamples, Value-ValueExamples,
                 OtherClassifiedExamples),
          homogeneous_examples(ValueExamples, Decision, DecisionValue),
          id3_tree(Attributes, OtherClassifiedExamples, OtherNodes, Decision).
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id3_tree(_, [], [], _).

heterogeneous_examples(ValueExamples, Decision) :-
          choose_trim(ValueExamples, Example, OtherExamples),
          choose(Example, Decision-DV1),
          choose(OtherExamples, OtherExample),
          choose(OtherExample, Decision-DV2),
          DV1 \= DV2.

homogeneous_examples([Example|OtherExamples], Decision, DV) :-
          choose(Example, Decision-DV),
          forall(choose(OtherExamples, OtherExample),
                 choose(OtherExample, Decision-DV)).

          
select_attribute(As, ValueExamples, Decision, Attribute,
                 ClassifiedExamples, OAs) :-
          determine_entropies(ValueExamples, Decision, As, AttributeEntropies),
          choose(AttributeEntropies,
                 entropy(Attribute, Entropy, ClassifiedExamples),
                 OtherAttributeEntropies),
          \+ (choose(OtherAttributeEntropies, entropy(_, OtherEntropy, _)),
              Entropy > OtherEntropy
             ),
          setof(TA, X^Y^choose(OtherAttributeEntropies, entropy(TA, X, Y)), OAs).

determine_entropies(Examples, Decision, [A|OAs],
                    [entropy(A, E, ClassifiedExamples)|OtherInfos]) :-
          determine_entropy(A, Examples, Decision, E, ClassifiedExamples),
          determine_entropies(Examples, Decision, OAs, OtherInfos).

determine_entropies(_, _, [], []).

determine_entropy(A, Examples, Decision, E, ClassifiedExamples) :-
          classify_examples(Examples, A, ClassifiedExamples),
          de_attribute_values(ClassifiedExamples, Decision, 0, E).

de_attribute_values([], _, E, E).

de_attribute_values([_-Examples|OtherClassifiedExamples], Decision, E0, E1) :-
          de_attribute_value(Examples, Decision, EV),
          EN is E0 + EV,
          de_attribute_values(OtherClassifiedExamples, Decision, EN, E1).

de_attribute_value(Examples, Decision, E) :-
          length(Examples, ExampleCount),
          classify_examples(Examples, Decision, ClassifiedExamples),
          de_attribute_decisions(ClassifiedExamples, ExampleCount, 0, NE),
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          E is -1*NE.

de_attribute_decisions([], _, Entropy, Entropy).

de_attribute_decisions([ValueExamplesPair|OtherValueExamplesPairs], ExampleCount,
                       EntropyIN, EntropyOUT) :-
          de_attribute_decision(ValueExamplesPair, ExampleCount,
                                EntropyIN, EntropyNEXT),
          de_attribute_decisions(OtherValueExamplesPairs, ExampleCount,
                                 EntropyNEXT, EntropyOUT).

de_attribute_decision(_-Examples, OuterExampleCount, EntropyIN, EntropyOUT) :-
          length(Examples, ExamplesCount),
          Fraction is ExamplesCount / OuterExampleCount,
          EntropyPart is Fraction * ln(Fraction),
          EntropyOUT is EntropyIN + EntropyPart.

% short version.
classify_examples(Examples, ClassifyingAttribute, ClassifiedExamples) :-
          setof(V-Es,
                setof(XE,
                      (member(XE, Examples),
                       member(ClassifyingAttribute-V, XE)
                      ),
                      Es
                      ),
                ClassifiedExamples).

/*
% fast version.
% this version of classify_examples/3 should be much faster than the "setof"
version.

classify_examples(Examples, ClassifyingAttribute, ClassifiedExamples) :-
          classify_examples1(Examples, ClassifyingAttribute, ValueExamplePairs),
          sort(ValueExamplePairs, SortedPairs),
          assemble_value_example_pairs(SortedPairs, ClassifiedExamples).

classify_examples1([], _, []).

classify_examples1([Example|OtherExamples],
                   ClassifyingAttribute,
                   [Value-Example|OtherValueExamplePairs]) :-
          choose(Example, ClassifyingAttribute-Value),
          classify_examples1(OtherExamples, ClassifyingAttribute,
OtherValueExamplePairs).

assemble_value_example_pairs([Value-Example|OtherPairs],
                             [Value-[Example|OtherValueExamples]
                              | OtherClassifiedExamples]) :-
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          assemble_value_example_pairs(OtherPairs, Value,
                                       OtherValueExamples,
                                       OtherClassifiedExamples).

assemble_value_example_pairs([], _, [], []).

assemble_value_example_pairs([Value-Example|OtherPairs],
                             RefValue, ValueExamples,
                             ClassifiedExamples) :-
          (Value = RefValue
            -> ValueExamples = [Example|OtherValueExamples],
               ClassifiedExamples = OtherClassifiedExamples
          ;
          _ = RefValue,
          ValueExamples = [],
          ClassifiedExamples = [Value-[Example|OtherValueExamples]
                                | OtherClassifiedExamples]
          ),
          assemble_value_example_pairs(OtherPairs, Value,
                                       OtherValueExamples,
                                       OtherClassifiedExamples).
*/

/*
choose([H|_], H).
choose([_|T], X) :-
          choose(T, X).

choose([H|T], H, T).
choose([H|T], X, [H|R]) :-
          choose(T, R).

choose_trim([H|T], H, T).
choose_trim([H|T], X, R) :-
            choose(T, R).

length([], 0).
length([_|T], N) :-
          length(T, K),
          N is K + 1.

*/
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LISP.

(defun find-tree (examples)
  (cond ((constant-decision examples)
         (get-decision-value (get-decision (first examples))))
        (t (split examples))))

(defun constant-decision (examples)
  (if (null examples)
      t
      (constant-decision-util
        (get-decision-value (get-decision (first examples)))
        (rest examples))))

(defun constant-decision-util (value examples)
  (if (null examples)
      t
      (if (equal value (get-decision-value (get-decision (first examples))))
          (constant-decision-util value (rest examples))
          nil)))

;;; split takes a list of examples and determines which attribute to use
;;; to "split" the examples using the entropy calculation across the
;;; attributes in the examples. It returns a list of 2 elements:
;;; (splitting-attribute-name split-examples)
;;; where the split-examples is an assoc list of
;;; (value trimmed-examples) triples,
;;; where the trimmed-examples are those examples having that value, minus
;;; the attribute being used for the split. split-recurse is called by split
;;; to find-tree the examples which have been classified by the "current"
;;; split. split uses a shortcut in selecting the appropriate attribute:
;;; instead of using attribute with the largest  information gain, it uses
;;; the attribute with the smallest conditional entropy.  This will always
;;; select the same attribute as the largest information gain would have.

(defun split (examples)
  (let ((attribute-names (get-attribute-names
                           (get-attributes (first examples))))
        (best-entropy 10000) ;;; assume that entropy is always < 10000
        (best-attribute-name nil)
        (best-split nil))
    (do ((attribute-name nil)
         (other-attribute-names attribute-names))
        ((null other-attribute-names))
      (setf attribute-name (first other-attribute-names))
      (setf other-attribute-names (rest other-attribute-names))
      (let ((y (split-attribute attribute-name examples)))
        (cond ((< (second y) best-entropy)
               (setf best-entropy (second y))
               (setf best-attribute-name (first y))
               (setf best-split (third y))))))
    (list best-attribute-name (split-recurse best-split))))

(defun split-recurse (splits)
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  (if (null splits)
      nil
      (let* ((split (first splits))
             (value (first split))
             (examples (second split)))
        (cons (list value (find-tree examples))
              (split-recurse (rest splits))))))

(defun split-attribute (name examples)
  (let* ((split (classify name examples nil))
         (entropy-split (calculate (length examples) split 0 nil)))
    (list name (first entropy-split) (second entropy-split))))

(defun classify (name examples classes)
  (cond ((null examples) classes)
        (t (classify name
                     (rest examples)
                     (extend classes
                             name
                             (get-attribute-value name (first examples))
                             (trim-example name (first examples)))))))

(defun extend (classes name value example)
  (cond ((null classes)
         (list (list value
                     (list example)
                     (count-decisions (list example) nil))))
        ((equal value (first (first classes)))
         (cons (list value
                     (cons example (second (first classes)))
                     (count-decisions (list example)
                                      (third (first classes))))
               (rest classes)))
        (t (cons (first classes)
                 (extend (rest classes) name value example)))))

(defun count-decisions (examples counts)
  (cond ((null examples) counts)
        (t (count-decisions
             (rest examples)
             (extend-counts
               counts
               (get-decision-value (get-decision (first examples))))))))

(defun extend-counts (counts value)
  (cond ((null counts) (list (list value 1)))
        ((equal value (first (first counts)))
         (cons (list value (+ 1 (second (first counts)))) (rest counts)))
        (t (cons (first counts) (extend-counts (rest counts) value)))))

;;; calculate determines the conditional entropy for the given split and
;;; returns this entropy and the split list with the decision counts removed.

(defun calculate (number-of-examples split sum trimmed-split)
  (if (null split)
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      (list sum trimmed-split)
      (let* ((class (first split))
             (class-size (length (second class))))
        (calculate number-of-examples
                   (rest split)
                   (+ sum (/ (* class-size
                                (entropy class-size (third class) 0))
                             number-of-examples))
                   (cons (list (first class) (second class)) trimmed-split)))))

(defun entropy (class-size decision-counts sum)
  (if (null decision-counts)
      sum
      (let* ((decision-count (second (first decision-counts)))
             (ratio (/ (float decision-count) (float class-size)))
             (logratio (- (log2 decision-count)
                          (log2 class-size))))
        (entropy class-size
                 (rest decision-counts)
                 (- sum (* ratio logratio))))))

(defun get-attributes (example) (rest example))
(defun get-decision (example) (first example))

(defun get-attribute-value (name attributes)
  (attribute-match name attributes))

(defun attribute-match (name attributes)
  (cond ((equal name (first (first attributes))) (second (first attributes)))
        (t (attribute-match name (rest attributes)))))

(defun get-attribute-names (attributes)
  (if (null attributes)
      nil
      (cons (first (first attributes))
            (get-attribute-names (rest attributes)))))

(defun get-decision-value (decision) (second decision))
(defun get-decision-name (decision) (first decision))

(defun trim-example (name example)
  (cond ((equal name (first (first example))) (rest example))
        (t (cons (first example) (trim-example name (rest example))))))
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WARPLAN programming problem.

There is no LISP version of this problem. The WARPLAN algorithm was designed to
fit logic programming semantics well, and as a consequence it is awkward to imple-
ment in LISP.

PROLOG.

WARPLAN was written by David H. D. Warren.  This version is taken from the
book [Coelho&Cotta 1988]. The variables have been descriptively renamed.

There are facts and actions.  Goals are the facts which are the desired state.  A
state is a conjunction of facts, expressed using the '&' operator.  A plan is a sequence
of actions, expressed using the '=>' operator. A fact  F is "preserved" by an action A if
and only if F is not added by A and F is true in a state resulting from A whenever F is
true in the state the application of A.

WARPLAN solves problems in a some "world".  The state of a world is a
conjunction of facts. A world is defined by defining the set of possible actions, the set
of "always" true facts for the world, the set of "impossible" conjunctions of facts
(which defines a set of impossible states of the world), and the "given" initial state of
the world.

An action is defined by a set of preconditions, deletions, and additions.

Schema for defining an action:

can(Action, PreconditionFacts1) :- PreconditionBody1.
...
can(Action, PreconditionFactsJ) :- PreconditionBodyJ.
del(DeleteFact1, Action)  :- DeleteBody1.
...
del(DeleteFactN, Action)  :- DeleteBodyN.
add(AddFact1, Action)  :- AddBody1.
...
add(AddFactK, Action)  :- AddBodyK.
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Preconditions of an action are a conjunction of facts, defined by the can/2
procedure: can(Action, Facts). A deletion of a fact (i.e. a fact which is not preserved
by an action) is defined by the del/2 procedure: del(Fact, Action). Multiple facts may
be deleted by the same action, this is indicated by having multiple del/2 facts for the
same action. The addition of a fact is defined by the add/2 procedure: add(Fact,
Action). Multiple facts may be added by the same action, this is indicated by having
multiple add/2 facts for the same action.

An "always" true fact is indicated by: always(Fact). An "impossible" conjunction
of facts is indicated by: imposs(Facts). A "given" fact F for initial state S is indicated
by: given(S, F).

:- op(700, xfy, &).
:- op(650, yfx, =>).

plan(Goals, Given, PlanOUT) :-
          plan(Goals, true, Given, PlanOUT).

plan(FirstGoal & OtherGoals, ProtectedFactsIn, PlanIn, PlanOut) :-
  !,
  solve(FirstGoal, ProtectedFactsIn, PlanIn, ProtectedFactsNext, PlanInterim),
  plan(OtherGoals, ProtectedFactsNext, PlanInterim, PlanOut).

plan(Goal,  ProtectedFacts, PlanIn, PlanOut) :-
  solve(Goal, ProtectedFacts, PlanIn, _, PlanOut).

solve(Goal, ProtectedFactsIn, PlanIn, ProtectedFactsIn, PlanIn) :-
  (def(always),
   always(Goal)
  )
  ;
  (def(Goal),
   call(Goal)
  ).

solve(Goal, ProtectedFactsIn, PlanIn, ProtectedFactsOut, PlanIn) :-
  holds(Goal, PlanIn),
  and(Goal, ProtectedFactsIn, ProtectedFactsOut).

solve(Goal, ProtectedFactsIn, PlanIn, Goal&ProtectedFactsIn, PlanOut) :-
  add(Goal, AddingAction),
  achieve(Goal, AddingAction, ProtectedFactsIn, PlanIn, PlanOut).
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achieve(_, ActionToAchieve, ProtectedFacts, PlanIn,
        PlanInterim => ActionToAchieve) :-
  preserves(ActionToAchieve, ProtectedFacts),
  can(ActionToAchieve, Goals),
  consistent(Goals, ProtectedFacts),
  plan(Goals, ProtectedFacts, PlanIn, PlanInterim),
  preserves(ActionToAchieve, ProtectedFacts).

achieve(Goal, ActionToAchieve, ProtectedFacts,
        PlanIn => RetracedAction, PlanOut => RetracedAction) :-
  preserved(Goal, RetracedAction),
  retrace(ProtectedFacts, RetracedAction, ProtectedFactsNext),
  achieve(Goal, ActionToAchieve, ProtectedFactsNext, PlanIn, PlanOut),
  preserved(Goal, RetracedAction).

/* Possible changes due to intervening variable bindings require the repeated
preserved/2 check.
*/

holds(Fact, _ => LastAction) :-
  add(Fact, LastAction).

holds(Fact, PrecedingActions => LastAction) :-
  !,
  preserved(Fact, LastAction),
  holds(Fact, PrecedingActions),
  preserved(Fact, LastAction).

holds(Fact, PrecedingActions) :-
  given(PrecedingActions, Fact).

preserves(Action, Fact & OtherFacts) :-
  preserved(Fact, Action),
  preserves(Action, OtherFacts).

preserves(_, true).

preserved(Fact, Action) :-
  numbervars(Fact & Action, 0, _),
  del(Fact, Action),
  !,
  fail.

preserved(_, _).

retrace(ProtectedFactsIn, Action, ProtectedFactsOut) :-
  can(Action, Facts),
  retrace1(ProtectedFactsIn, Action, Facts, ProtectedFactsInterim),
  consistent(Facts, ProtectedFactsInterim), % LLS addition.
  append_facts(Facts, ProtectedFactsInterim, ProtectedFactsOut).
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retrace1(ProtectedFactIn & OtherProtectedFactsIn, Action, Facts,
         ProtectedFactsOut) :-
  add(FactAddedByAction, Action),
  equiv(ProtectedFactIn, FactAddedByAction),
  !,
  retrace1(OtherProtectedFactsIn, Action, Facts, ProtectedFactsOut).

retrace1(ProtectedFactIn & OtherProtectedFactsIn, Action, Facts,
         ProtectedFactsOut) :-
  elem(Fact, Facts),
  equiv(ProtectedFactIn, Fact),
  !,
  retrace1(OtherProtectedFactsIn, Action, Facts, ProtectedFactsOut).

retrace1(ProtectedFactIn & OtherProtectedFactsIn, Action, Facts,
         ProtectedFactIn & OtherProtectedFactsOut) :-
  retrace1(OtherProtectedFactsIn, Action, Facts, OtherProtectedFactsOut).

retrace1(true, _, _, true).

consistent(Facts, ProtectedFacts) :-
  numbervars(Facts & ProtectedFacts, 0, _),
  imposs(ImpossibleFacts),
  % The double "not" avoids new bindings.
  \+(\+(intersect(Facts, ImpossibleFacts))),
  implied(ImpossibleFacts, Facts & ProtectedFacts),
  !,
  fail.

consistent(_, _).

and(NewFact, Facts, Facts) :-
  elem(OldFact, Facts),
  equiv(NewFact, OldFact),
  !.

and(Fact, FactsIn, Fact & FactsIn).

append_facts(Fact1 & OtherFacts1, Facts2, Fact1 & OtherFactsCombined) :-
  !, 
  append_facts(OtherFacts1, Facts2, OtherFactsCombined).

append_facts(Fact, Facts, Fact & Facts).

elem(Fact, FirstFacts & _) :-
  elem(Fact, FirstFacts).

elem(Fact, _ & OtherFacts) :-
  !,
  elem(Fact, OtherFacts).

elem(Fact, Fact).
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implied(FirstImpliedFacts & OtherImpliedFacts, AcceptedFacts) :-
  !,
  implied(FirstImpliedFacts, AcceptedFacts),
  implied(OtherImpliedFacts, AcceptedFacts).

implied(ImpliedFact, AcceptedFacts) :-
  elem(ImpliedFact, AcceptedFacts).

implied(ImpliedFact, _) :-
  def(ImpliedFact),
  call(ImpliedFact).

intersect(Facts1, Facts2) :-
  elem(CommonFact, Facts1),
  elem(CommonFact, Facts2).

not_equal(Term1, Term2) :-
  \+(Term1 = Term2),
  \+(Term1 = '$VAR'(_)),
  \+(Term2 = '$VAR'(_)).

equiv(Fact1, Fact2) :-
  \+(nonequiv(Fact1, Fact2)).

/* nonequiv(Fact1, Fact2) must be used carefully, as any variables in Fact1 and
Fact2 are bound to dummy symbols of the form '$VAR'(_) by numbervars. Thus,
nonequiv/2 is used as the argument of a not/1 call.
*/

nonequiv(Fact1, Fact2) :-
  numbervars(Fact1 & Fact2, 0, _),
  Fact1 = Fact2,
  !,
  fail.

nonequiv(_, _).
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Appendix 4
Interaction Log Data

This appendix contains detailed data and analyses for the interaction logs.

Figure 1is a histogram of the frequencies of interactions grouped by their dura-
tions. The duration of an interaction is the time from the recording of the interaction
to the time of the recording of the next interaction. These durations are more precisely
the interaction intervals.

Figure 1: Histogram of durations in seconds for all interactions.
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    13|xxxxxxxxxxxx  (123)
    14|xxxxxxxx  (82)
    15|xxxxxx  (69)
    16|xxxxxx  (66)
    17|xxxxxx  (61)
    18|xxxxx  (57)
    19|xxxx  (47)
    20|xxxxx  (53)
    21|xxxx  (44)
    22|xxx  (34)
    23|xx  (25)
    24|xxx  (35)
    25|xx  (20)
    26|xx  (24)
    27|xx  (25)
    28|xx  (21)
    29|xx  (20)
    30|  (9)
    31|x  (16)
    32|x  (12)
    33|xx  (24)
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Figure 1(continued): Histogram of durations in seconds for all interactions.
    34|x  (14)
    35|x  (13)
    36|  (9)
    37|  (8)
    38|x  (11)
    39|x  (10)
    40|  (8)
    41|x  (12)
    42|  (9)
    43|x  (10)
    44|x  (12)
    45|  (7)
    46|x  (13)
    47|  (5)
    48|  (4)
    49|  (7)
    50|  (8)
    51|  (9)
    52|  (4)
    53|  (4)
    54|  (3)
      |
      |
    57|  (6)
    58|  (2)
    59|  (8)
    60|  (6)
    61|  (1)
    62|  (6)
    63|  (3)
    64|  (7)
      |
    66|  (3)
    67|  (5)
    68|  (8)
    69|  (6)
    70|  (6)
    71|  (4)
    72|  (5)
    73|  (1)
    74|  (1)
    75|  (1)
    76|  (3)
    77|  (6)
    78|  (5)
    79|  (5)
    80|  (4)
    81|  (1)
    82|  (4)
    83|  (2)
    84|  (2)
    85|  (1)
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Figure 1(continued): Histogram of durations in seconds for all interactions.
    86|  (3)
    87|  (1)
    88|  (5)
    89|  (2)
    90|  (3)
    91|  (2)
    92|  (4)
Skipping 79 data points spread over 36312 values.

Table 1 presents duration statistics for each action major and minor type. The
median durations for the various types are generally much less than the average
durations, and the standard deviations are typically greater than the average durations.
This indicates that for most interaction types, the durations are skewed toward the
lower values. The maximum duration is typically many times larger than the average.

There are some types of interactions which we expect were generally part of a
sequence of operations, where the user followed the interaction with another interac-
tion as rapidly as the system allowed. Most of the Argument Ops, Clause Ops, Set
Ops, Term Table Cell Ops, Literal Ops, Ur Ops, Partition Ops, Variable Ops, Term
Table Ops, and NTuple Ops interactions are of this type, with the exception of the
Clause Ops/Create Comment and Clause Ops/Query:Brief interactions. Creating a
comment was generally followed by a significant period of time editing the comment
being created. Executing a query could take an arbitrarily long period of time. The
median durations for these “sequence” interaction types vary between 6 and 10
seconds, with the exception of the NTuple Ops interactions, which have a median of
15 seconds.
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Table 1 (part 1 of 3): Duration statistics for all participants organized by action type.
Interaction "types" which account for less than 4 interactions are "suppressed". (The
“===” entries are only for formatting, they indicate the end of a major action type.)
Each line reports statistics for the durations of the interactions of the indicated type.
“Count” is the number of interactions of that type, “Total” is the total of the durations
of these interactions, “Avg” is the average (arithmetic mean) of these durations, “Dev”
is the standard deviation of these durations, “Med” is the median value of these dura-
tions, “Min” is the minimum value of these durations, and “Max” is the maximum value
of these durations.

Interaction Type (Major/Minor) Count Total Avg Dev Med Min Max

1. script_control 3227 37468 11.6 26.2 6 0 853
1. step 3113 34583 11.1 25.4 6 0 853
2. runvb 38 1579 41.6 47.9 20 0 20 8
3. runbf 35 1101 31.5 41.4 14 0 190
4. registered_scripts 26 164 6.3 8.1 5 0 43
5. done 15 41 2.7 2.9 2 0 12
6. ===

2. general_tool 459 11506 25.1 142.2 7 1 2861
1. activate 334 10229 30.6 166.3 6 1 2861
2. close_edit 125 1277 10.2 8.4 7 2 50
3. ===

3. window 363 6929 19.1 55.7 9 0 935
1. activate 363 6929 19.1 55.7 9 0 935
2. ===

4. Argument Ops 212 2190 10.3 12.8 7 1 148
1. Insert:Variable 149 1391 9.3 14.1 7 1 148
2. Insert:Ur 31 362 11.7 5 11 5 31
3. Delete 16 179 11.2 8.2 9 3 35
4. Insert:Set 7 74 10.6 5.7 10 3 22
5. Insert:Table 6 75 12.5 7.5 11 4 25
6. **** SKIP 1 types. **** 3
7. ===

5. Clause Ops 194 2855 14.7 21.3 11 1 236
1. Create Literal 82 1295 15.8 13.6 13 3 92
2. Create Argument 51 483 9.5 7.2 6 2 39
3. Query:Brief 41 694 16.9 36.3 8 1 236
4. Create Comment 10 308 30.8 33.2 22 4 128
5. Select 4 19 4.8 3.7 4 2 11
6. **** SKIP 2 types. **** 6
7. ===

6. connect_tool 115 1248 10.9 28 5 0 289
1. activate 115 1248 10.9 28 5 0 289
2. ===
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Table 1 (continued, part 2 of 3): Duration statistics for all participants organized by
action type. 
1. File 105 41183 392.2 3531.6 28 0 36404

1. Record Comment about SPARCL... 74 40274 544.2 4197.3 36 11 36404
2. Quit 17 390 22.9 84.4 0 0 360
3. Open Program... 7 269 38.4 18.6 33 18 70
4. **** SKIP 5 types. **** 7
5. ===

2. link 77 1113 14.5 18.3 8 2 119

3. Program Ops 54 662 12.3 9.7 9 3 57
1. Create Clause 53 653 12.3 9.8 9 3 57
2. ===

4. Clause Name Ops 41 438 10.7 5.4 10 2 24
1. Edit Clause Name 36 399 11.1 5.6 10 2 24
2. Select 5 39 7.8 2.5 8 5 11
3. ===

5. Windows 38 215 5.7 10.7 1 0 43
1. Exercise 1.2 5 5 1 0 1 1 1
2. Parent 4 46 11.5 18.2 1 1 43
3. Geometry Example 4 40 10 9.4 15 1 23
4. Family Relationships 4 4 1 0 1 1 1
5. Exercise 1.1 4 3 0.8 0.4 1 0 1
6. **** SKIP 11 types. **** 17
7. ===

6. Tutorial Scripts 36 559 15.5 24.2 8 1 119
1. 3.0.Application of SPARCL 6 81 13.5 5.7 14 4 23
2. 2.1.Data objects 4 22 5.5 2.9 8 1 8
3. **** SKIP 11 types. **** 26
4. ===

7. Literal Ops 29 251 8.7 7.2 6 2 37
1. Create Argument 17 123 7.2 3.9 6 3 18
2. Delete 10 123 12.3 10 9 3 37
3. **** SKIP 1 types. **** 2
4. ===

8. DISALLOWED 29 173 6 6.5 3 0 22
1. File 21 146 7 7 5 0 22
2. **** SKIP 3 types. **** 8
3. ===

9. Set Ops 24 324 13.5 9.6 10 4 45
1. Insert:Ur 10 117 11.7 7.3 10 6 31
2. Create NTuple:Set 4 72 18 7.6 24 9 27
3. Create NTuple:Ur 4 45 11.2 5.7 9 7 21
4. **** SKIP 5 types. **** 6
5. ===
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Table 1 (continued, part 3 of 3): Duration statistics for all participants organized by
action type. 
1. Term Table Cell Ops 19 194 10.2 5.2 8 5 26

1. Insert:Ur 15 137 9.1 3.8 8 5 17
2. **** SKIP 2 types. **** 4
3. ===

2. START LOGGING 17 1539 90.5 97.2 67 8 442
1. K... C... 5 368 73.6 10.8 69 62 88
2. **** SKIP 7 types. **** 12
3. ===

3. Ur Ops 15 368 24.5 31.3 9 2 92
1. Delete 8 146 18.2 27.9 8 6 92
2. Edit Ur Item 4 103 25.8 31 12 2 79
3. **** SKIP 1 types. **** 3
4. ===

4. Partition Ops 12 104 8.7 2.7 8 6 16
1. Delete Partition 5 41 8.2 2.2 8 6 12
2. **** SKIP 4 types. **** 7
3. ===

5. Variable Ops 12 74 6.2 5 6 1 22
1. Unlink Variable 7 29 4.1 1.6 4 1 6
2. Delete Variable 5 45 9 6.5 6 5 22
3. ===

6. Edit 9 279 31 38.6 6 1 107
1. Undo Most Recent 5 163 32.6 32.5 11 2 77
2. **** SKIP 4 types. **** 4
3. ===

7. Term Table Ops 7 121 17.3 13.8 8 5 40
1. **** SKIP 5 types. **** 7
2. ===

8. NTuple Ops 7 101 14.4 5.8 15 6 25
1. **** SKIP 5 types. **** 7
2. ===

9. **** SKIP 4 types. **** 8

The following histograms (Figure 2, Figure 3, Figure 4, and Figure 5) show the
frequencies of the types of interactions found in the usability study participant logs.
The four histograms show different collections of the interactions.
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Figure 2: Histogram of interaction type frequencies. Frequencies calculated by major
action type for all types of interactions for the entire time spent on the study.

Each "x" is a count of 100 .
   1:script_control      |xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  (3218)
   2:general_tool        |xxxx  (458)
   3:window              |xxx  (360)
   4:Argument Ops        |xx  (212)
   5:Clause Ops          |x  (194)
   6:connect_tool        |x  (115)
   7:File                |x  (105)
   8:link                |  (77)
   9:Program Ops         |  (54)
  10:Clause Name Ops     |  (41)
  11:Windows             |  (38)
  12:Tutorial Scripts    |  (36)
  13:Literal Ops         |  (29)
  14:DISALLOWED          |  (29)
  15:Set Ops             |  (24)
  16:Term Table Cell Ops |  (19)
  17:START LOGGING       |  (17)
  18:Ur Ops              |  (15)
  19:Variable Ops        |  (12)
  20:Partition Ops       |  (12)
  21:Edit                |  (9)
  22:Term Table Ops      |  (7)
  23:NTuple Ops          |  (7)
  24:Specify Preferences |  (3)
Skipping 5 data points spread over 3 values.
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Figure 3: Histogram of interaction type frequencies. Frequencies calculated by
major^minor action type for all types of interactions for the entire time spent on the
study. (The major action type’s have been abbreviated.)

Each "x" is a count of 100 .
   1:scrcnt^step         |xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  (3106)
   2:wnd^activate        |xxx  (360)
   3:gnrt^activate       |xxx  (333)
   4:ArgOp^Insert:Variabl|x  (149)
   5:gnrt^close_edit     |x  (125)
   6:cnnt^activate       |x  (115)
   7:ClsOp^Create Literal|  (82)
   8:link                |  (77)
   9:Fl^Record Comment ab|  (74)
  10:PrgOp^Create Clause |  (53)
  11:ClsOp^Create Argumen|  (51)
  12:ClsOp^Query:Brief   |  (41)
  13:scrcnt^runvb        |  (38)
  14:ClsNmOp^Edit Clause |  (36)
  15:scrcnt^runbf        |  (35)
  16:ArgOp^Insert:Ur     |  (31)
  17:scrcnt^registered_sc|  (24)
  18:LtrOp^Create Argumen|  (17)
  19:Fl^Quit             |  (17)
  20:START LOGGING       |  (17)
  21:ArgOp^Delete        |  (16)
  22:TrmTblCllOp^Insert:U|  (15)
  23:scrcnt^done         |  (15)
  24:DIS^File ^New Progra|  (11)
  25:StOp^Insert:Ur      |  (10)
  26:LtrOp^Delete        |  (10)
  27:ClsOp^Create Comment|  (10)
  28:UrOp^Delete         |  (8)
  29:VrbOp^Unlink Variabl|  (7)
  30:Fl^Open Program...  |  (7)
  31:ArgOp^Insert:Set    |  (7)
  32:TtrScr^3.0.Applicati|  (6)
  33:ArgOp^Insert:Table  |  (6)
  34:Wnd^Exercise 1.2    |  (5)
  35:VrbOp^Delete Variabl|  (5)
  36:PrtOp^Delete Partiti|  (5)
  37:Edt^Undo Most Recent|  (5)
  38:ClsNmOp^Select      |  (5)
  39:Wnd^Parent          |  (4)
  40:Wnd^Geometry Example|  (4)
  41:Wnd^Family Relations|  (4)
  42:Wnd^Exercise 1.1    |  (4)
  43:UrOp^Edit Ur Item   |  (4)
  44:TtrScr^2.1.Data obje|  (4)
  45:StOp^Create NTuple:U|  (4)
  46:StOp^Create NTuple:S|  (4)
  47:DIS^File ^Open Progr|  (4)
  48:ClsOp^Select        |  (4)
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  Figure 3 (continued): Histogram of interaction type frequencies
  49:Wnd^Parent Query    |  (3)
  50:Wnd^Exercise 2.1    |  (3)
  51:UrOp^Create NTuple:U|  (3)
  52:TtrScr^Run the Tutor|  (3)
  53:TtrScr^3.1.b.Exercis|  (3)
  54:TtrScr^2.4.Procedura|  (3)
  55:TtrScr^2.3.Declarati|  (3)
  56:TtrScr^1.4.Declarati|  (3)
  57:TrmTblOp^Set Table T|  (3)
  58:TrmTblCllOp^Insert:T|  (3)
  59:SpcPrf^User Name... |  (3)
  60:PrtOp^Insert:Ur     |  (3)
  61:DIS^Specify Preferen|  (3)
  62:DIS^Program Ops^Crea|  (3)
  63:CmmOp^Edit          |  (3)
  64:ClsOp^Query:Verbose |  (3)
  65:ClsOp^Delete Clause |  (3)
  66:ArgOp^Create Comment|  (3)
Skipping 68 data points spread over 53 values.

Figure 4: Histogram of interaction type frequencies. Frequencies calculated by major
action type for selected types of interactions for the entire time spent on the study.
The excluded interaction types are: script_control^_, _^activate, ‘Tutorial Scripts’^_,
DISALLOWED^_, and ‘START LOGGING’. This basically selects those interactions
which occurred during work on exercises.
Each "x" is a count of 10 .
   1:Argument Ops        |xxxxxxxxxxxxxxxxxxxxx  (212)
   2:Clause Ops          |xxxxxxxxxxxxxxxxxxx  (194)
   3:general_tool        |xxxxxxxxxxxx  (125)
   4:File                |xxxxxxxxxx  (105)
   5:link                |xxxxxxx  (77)
   6:Program Ops         |xxxxx  (54)
   7:Clause Name Ops     |xxxx  (41)
   8:Windows             |xxx  (38)
   9:Literal Ops         |xx  (29)
  10:Set Ops             |xx  (24)
  11:Term Table Cell Ops |x  (19)
  12:Ur Ops              |x  (15)
  13:Variable Ops        |x  (12)
  14:Partition Ops       |x  (12)
  15:Edit                |  (9)
  16:Term Table Ops      |  (7)
  17:NTuple Ops          |  (7)
  18:Specify Preferences |  (3)
Skipping 5 data points spread over 3 values.
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Figure 5: Histogram of interaction type frequencies. Frequencies calculated by
major^minor action type for selected types of interactions for the entire time spent on
the study. The excluded interaction types are: script_control^_, _^activate, ‘Tutorial
Scripts’^_, DISALLOWED^_, and ‘START LOGGING’. This basically selects those inter-
actions which occurred during work on exercises.

Each "x" is a count of 10 .
   1:ArgOp^Insert:Variabl|xxxxxxxxxxxxxx  (149)
   2:gnrt^close_edit     |xxxxxxxxxxxx  (125)
   3:ClsOp^Create Literal|xxxxxxxx  (82)
   4:link                |xxxxxxx  (77)
   5:Fl^Record Comment ab|xxxxxxx  (74)
   6:PrgOp^Create Clause |xxxxx  (53)
   7:ClsOp^Create Argumen|xxxxx  (51)
   8:ClsOp^Query:Brief   |xxxx  (41)
   9:ClsNmOp^Edit Clause |xxx  (36)
  10:ArgOp^Insert:Ur     |xxx  (31)
  11:LtrOp^Create Argumen|x  (17)
  12:Fl^Quit             |x  (17)
  13:ArgOp^Delete        |x  (16)
  14:TrmTblCllOp^Insert:U|x  (15)
  15:StOp^Insert:Ur      |x  (10)
  16:LtrOp^Delete        |x  (10)
  17:ClsOp^Create Comment|x  (10)
  18:UrOp^Delete         |  (8)
  19:VrbOp^Unlink Variabl|  (7)
  20:Fl^Open Program...  |  (7)
  21:ArgOp^Insert:Set    |  (7)
  22:ArgOp^Insert:Table  |  (6)
  23:Wnd^Exercise 1.2    |  (5)
  24:VrbOp^Delete Variabl|  (5)
  25:PrtOp^Delete Partiti|  (5)
  26:Edt^Undo Most Recent|  (5)
  27:ClsNmOp^Select      |  (5)
  28:Wnd^Parent          |  (4)
  29:Wnd^Geometry Example|  (4)
  30:Wnd^Family Relations|  (4)
  31:Wnd^Exercise 1.1    |  (4)
  32:UrOp^Edit Ur Item   |  (4)
  33:StOp^Create NTuple:U|  (4)
  34:StOp^Create NTuple:S|  (4)
  35:ClsOp^Select        |  (4)
  36:Wnd^Parent Query    |  (3)
  37:Wnd^Exercise 2.1    |  (3)
  38:UrOp^Create NTuple:U|  (3)
  39:TrmTblOp^Set Table T|  (3)
  40:TrmTblCllOp^Insert:T|  (3)
  41:SpcPrf^User Name... |  (3)
  42:PrtOp^Insert:Ur     |  (3)
  43:CmmOp^Edit          |  (3)
  44:ClsOp^Query:Verbose |  (3)
  45:ClsOp^Delete Clause |  (3)
  46:ArgOp^Create Comment|  (3)
Skipping 49 data points spread over 40 values.
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Table 2 gives the frequencies with which the various types of interactions occurred
among the seven participants of the usability study. The interaction types are
hierarchical. For instance, consider the most common interaction “minor” type (with
a count of 177). The action portion of the type is a “step” subtype of the “script_con-
trol” type. There were 3226 interactions of the “script_control” type, and 3112 inter-
actions of the “step” subtype of the “script_control” type. The “script_control:step”
interaction occurred with “<< (Please read the Script Commentary) >>” in the “Next
Step” field of the control window and “Rules - extending the Parents program” as the
current script. There were 1065 interactions of the “script_control:step” action type
with  “<< (Please read the Script Commentary) >>” in the “Next Step” window. Of
these interactions, there were 177 with “Rules - extending the Parents program” as the
current script.

Interaction types which account for less than four interactions have been
“skipped” in this table to improve its readability.
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Table 2 (part 1 of 18): Interaction type counts grouped by major action type, minor
action type, first argument, and second argument. Interaction "types" which account
for less than 4 interactions are "suppressed".

script_control                                       3226
     step                                                 3112
          << (Please read the Script Commentary) >>            1065
               Rules - extending the Parents program                 177
               This script discusses *how* SPARCL works.             164
               Set types discussion                                   96
               This script creates clauses for querying the paren     81
               Create the literal of the "Column Sum" clause.         64
               Discuss term matching.                                 58
               The declarative meaning of SPARCL                      48
               Term types discussion                                  48
               General comments about SPARCL and the tutorial scr     46
               Create a program which describes the "parent" rela     41
               This script describes what SPARCL programs mean.       35
               The procedural meaning of SPARCL                       32
               Discussion of simple geometry representation.          32
               Create a program of six clauses. These clauses des     26
               Presentation of an application of SPARCL               20
               Create the literal of the "Column Sum Query" claus     18
               Chapter of tutorial detailing SPARCL representatio     15
               Create the "Column Sum" clause.                        12
               Tutorial introduction to SPARCL                         8
               Rules Exercise (2.1)                                    8
               Introduction to SPARCL                                  8
               Rules Exercise (1.2)                                    7
               Exercise 1.1                                            6
               Exercise 3.1                                            5
               Create the argument term for the "Column Sum Query      5
               Create the comments and variables of the arguments      4
               **** SKIP 1 types. ****                                 1
          Create a variable.                                     63
               Create a literal with two arguments.                   63
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Table 2 (part 2 of 18): Interaction type counts
          Close the current edit "box" for program "Parent Q     63
               Create a new ur constant of value Pam in the argum      7
               Create a new comment ""Who is Pam's child?"" in th      7
               Create a new comment ""Who is Liz's parent?"" in t      7
               Create a new comment ""Who are two people related       7
               Create a new ur constant of value Liz in the argum      6
               Create a new comment ""Who is a grandparent of Jim      6
               Create a new ur constant of value Jim in the argum      5
               Create a new ur constant of value Bob in the argum      4
               Create a new ur constant of value Ann in the argum      4
               Create a new comment ""Who is a common parent of A      4
               **** SKIP 2 types. ****                                 6
         Close the current edit "box" for program "Parent".     60
               Create a new ur constant of value Bob in the argum      6
               Create a new ur constant of value Ann in the argum      6
               Create a new ur constant of value Tom in the argum      5
               Create a new ur constant of value Tom in the argum      5
               Create a new ur constant of value Pat in the argum      5
               Create a new ur constant of value Pam in the argum      5
               Create a new ur constant of value Liz in the argum      5
               Create a new ur constant of value Bob in the argum      5
               Create a new ur constant of value Bob in the argum      5
               Create a new ur constant of value Bob in the argum      5
               Create a new ur constant of value Pat in the argum      4
               Create a new ur constant of value Jim in the argum      4
          Use existing arguments in an existing object.          52
               Use existing arguments in an existing object.          25
               Create a clause with arguments Tom and Liz in prog      6
               Create a clause with arguments Bob and Ann in prog      6
               Create a clause with arguments Tom and Bob in prog      5
               Create a clause with arguments Pat and Jim in prog      5
               Create a clause with arguments Bob and Pat in prog      5
          Create a literal with two arguments.                   47
               Create a "query" clause with two arguments and two     26
               Create a "Parent Query" clause for asking the ques      7
               Create a "Parent Query" clause for asking the ques      7
               Create a "Parent Query" clause for asking the ques      7
          Make program "Parent Query" the front window.          35
               This script creates clauses for querying the paren     35
          Close the current edit "box" for program "Column S     33
               Create the literal of the "Column Sum" clause.          4
               Create a new ur constant of value data in the term      4
               Create a new ur constant of value + in the argumen      4
               Create a new comment "Function Table" in the argum      4
               **** SKIP 10 types. ****                               17
          Stop establishing arguments.                           30
               Use existing arguments in an existing object.          25
               Add arguments to an existing object.                    5
          Create an ur object.                                   30
               Create a literal with two arguments.                   30
          Make program "Predecessor" the front window.           22
               Rules - extending the Parents program                  15
               This script discusses *how* SPARCL works.               7
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Table 2 (part 3 of 18): Interaction type counts
          Close program "Predecessor".                           18
               Rules - extending the Parents program                  15
               **** SKIP 1 types. ****                                 3
          Create a "query" clause with two arguments and two     15
               Create a "Parent Query" clause for asking the ques      7
               Create a "Parent Query" clause for asking the ques      5
               **** SKIP 1 types. ****                                 3
          Open the program in the file ":Predecessor".           13
               Rules - extending the Parents program                   8
               This script discusses *how* SPARCL works.               5
          Open the program in the file ":Parent".                13
               Rules - extending the Parents program                   8
               This script discusses *how* SPARCL works.               5
          Create a new literal with name Parent and 2 argume     11
               Create a literal with two arguments.                   11
         Create a new argument in the clause with ID Parent     10
               Add arguments to an existing object.                   10
          Add arguments to an existing object.                   10
               Create a clause with arguments Pam and Bob in prog      5
               Add arguments to an existing object.                    5
          Introduction to SPARCL                                  9
               Chapters of the SPARCL tutorial.                        9
          Chapters of the SPARCL tutorial.                        9
               Tutorial introduction to SPARCL                         5
               (start)                                                 4
          Term types discussion                                   8
               Data objects section                                    8
          Set types discussion                                    8
              Data objects section                                    8
          Rules Exercise (2.1)                                    8
               Data objects section                                    8
          Rules Exercise (1.2)                                    8
               Rules - extending the Parents program                   8
          Rules - extending the Parents program                   8
               Introduction to SPARCL                                  7
               **** SKIP 1 types. ****                                 1
          Open the program in the file ":Sex - long".             8
               Rules - extending the Parents program                   8
          Open the program in the file ":Set Types".              8
               Set types discussion                                    8
          Open the program in the file ":Geometry Example".       8
               Discussion of simple geometry representation.           8
          Make program "Set Types" the front window.              8
               Set types discussion                                    8
          Make program "Geometry Example" the front window.       8
               Discussion of simple geometry representation.           8
          Discussion of simple geometry representation.           8
               Data objects section                                    8
          Create a program which describes the "parent" rela      8
               Introduction to SPARCL                                  7
               **** SKIP 1 types. ****                                 1
          Create a new program (and window) named "Exercise       8
               Rules Exercise (2.1)                                    8
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Table 2 (part 4 of 18): Interaction type counts
          Create a new program (and window) named "Exercise       8
               Exercise 1.1                                            6
               **** SKIP 1 types. ****                                 2
          Create a new literal with name Parent and 2 argume      8
               Create a literal with two arguments.                    8
          Close program "Sex - table".                            8
               Rules - extending the Parents program                   8
          Close program "Parent Query".                           8
               Create a program which describes the "parent" rela      8
          Close program "Parent Query RESULT".                    8
               Create a program which describes the "parent" rela      8
          Close program "Geometry Example".                       8
               Discussion of simple geometry representation.           8
          Close program "Exercise 1.1".                           8
               Exercise 1.1                                            6
               **** SKIP 1 types. ****                                 2
          Open the program in the file ":Term Types".             7
               Term types discussion                                   7
         Open the program in the file ":Predecessor, restri      7
               Rules - extending the Parents program                   7
          Open the program in the file ":Offspring".              7
               Rules - extending the Parents program                   7
          Open the program in the file ":Family Relationship      7
               Rules - extending the Parents program                   7
          Open the program in the file ":Fallible Socrates".      7
               This script discusses *how* SPARCL works.               7
          Make program "Term Types" the front window.             7
               Term types discussion                                   7
          Make program "Sex - long" the front window.             7
               Rules - extending the Parents program                   7
          Make program "Offspring" the front window.              7
               Rules - extending the Parents program                   7
          Make program "Family Relationships" the front wind      7
              Rules - extending the Parents program                   7
          Make program "Fallible Socrates" the front window.      7
               This script discusses *how* SPARCL works.               7
          Execute a query of clause with ID Parent Query:40,      7
               This script creates clauses for querying the paren      7
          Execute a query of clause with ID Parent Query:25,      7
               This script creates clauses for querying the paren      7
          Execute a query of clause with ID Parent Query:13,      7
               This script creates clauses for querying the paren      7
          Execute a query of clause with ID Parent Query:1,       7
               This script creates clauses for querying the paren      7
          Execute a query of clause with ID Fallible Socrate      7
               This script discusses *how* SPARCL works.               7
          Edit the value of ur with ID Parent Query:10 to "P      7
               Create a new ur constant of value Pam in the argum      7
          Edit the value of comment with ID Parent Query:4 t      7
               Create a new comment ""Who is Pam's child?"" in th      7
          Edit the value of comment with ID Parent Query:29       7
               Create a new comment ""Who are two people related       7
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          Edit the value of comment with ID Parent Query:16       7
               Create a new comment ""Who is Liz's parent?"" in t      7
          Create a new variable in the argument with ID Pare      7
               Create a variable.                                      7
          Create a new variable in the argument with ID Pare      7
               Create a variable.                                      7
          Create a new variable in the argument with ID Pare      7
               Create a variable.                                      7
          Create a new variable in the argument with ID Pare      7
               Create a "Parent Query" clause for asking the ques      7
          Create a new variable in the argument with ID Pare      7
               Create a "Parent Query" clause for asking the ques      7
          Create a new variable in the argument with ID Pare      7
               Create a "Parent Query" clause for asking the ques      7
          Create a new variable in the argument with ID Pare      7
               Create a variable.                                      7
          Create a new variable in the argument with ID Pare      7
               Create a "Parent Query" clause for asking the ques      7
          Create a new ur in the argument with ID Parent Que      7
               Create a new ur constant of value Pam in the argum      7
          Create a new ur in the argument with ID Parent Que      7
               Create a new ur constant of value Liz in the argum      7
         Create a new ur constant of value Pam in the argum      7
               Create an ur object.                                    7
          Create a new ur constant of value Liz in the argum      7
               Create an ur object.                                    7
          Create a new program (and window) named "Exercise       7
               Rules Exercise (1.2)                                    7
          Create a new literal with name Parent and 2 argume      7
               Create a literal with two arguments.                    7
          Create a new literal with name Parent and 2 argume      7
               Create a literal with two arguments.                    7
          Create a new literal with name Parent and 2 argume      7
               Create a literal with two arguments.                    7
          Create a new comment in the clause with ID Parent       7
               Create a new comment ""Who is a grandparent of Jim      7
          Create a new comment in the clause with ID Parent       7
               Create a new comment ""Who are two people related       7
          Create a new comment in the clause with ID Parent       7
              Create a new comment ""Who is Liz's parent?"" in t      7
          Create a new comment in the clause with ID Parent       7
               Create a new comment ""Who is Pam's child?"" in th      7
          Create a new comment ""Who is Pam's child?"" in th      7
               Create a "Parent Query" clause for asking the ques      7
          Create a new comment ""Who is Liz's parent?"" in t      7
               Create a "Parent Query" clause for asking the ques      7
          Create a new comment ""Who is a grandparent of Jim      7
               Create a "query" clause with two arguments and two      7
          Create a new comment ""Who are two people related       7
               Create a "Parent Query" clause for asking the ques      7
          Create a new clause named "Parent Query" with 2 ar      7
               Create a "Parent Query" clause for asking the ques      7
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          Create a new clause named "Parent Query" with 1 ar      7
               Create a "Parent Query" clause for asking the ques      7
          Create a new clause named "Parent Query" with 1 ar      7
               Create a "query" clause with two arguments and two      7
          Create a new clause named "Parent Query" with 1 ar      7
               Create a "Parent Query" clause for asking the ques      7
          Create a coreference link including variable with       7
               Create a "Parent Query" clause for asking the ques      7
          Create a coreference link including variable with       7
               Create a "Parent Query" clause for asking the ques      7
          Create a coreference link including variable with       7
               Create a "Parent Query" clause for asking the ques      7
          Create a coreference link including variable with       7
               Create a "Parent Query" clause for asking the ques      7
          Create a coreference link including variable with       7
               Create a "Parent Query" clause for asking the ques      7
          Create a "Parent Query" clause for asking the ques      7
               This script creates clauses for querying the paren      7
          Create a "Parent Query" clause for asking the ques      7
               This script creates clauses for querying the paren      7
          Create a "Parent Query" clause for asking the ques      7
               This script creates clauses for querying the paren      7
          Close program "Sex - long".                             7
               Rules - extending the Parents program                   7
          Close program "Set Types".                              7
               Set types discussion                                    7
         Close program "Offspring".                              7
               Rules - extending the Parents program                   7
          Close program "Family Relationships".                   7
               Rules - extending the Parents program                   7
          Close program "Fallible Socrates".                      7
               This script discusses *how* SPARCL works.               7
          Close program "Exercise 1.2".                           7
               Rules Exercise (1.2)                                    7
          This script creates clauses for querying the paren      6
               Create a program which describes the "parent" rela      6
          Open the program in the file ":Sex - table".            6
               Rules - extending the Parents program                   6
          Open the program in the file ":Predecessor "How" E      6
               This script discusses *how* SPARCL works.               6
          Open the program in the file ":Predecessor "How" E      6
               This script discusses *how* SPARCL works.               6
          Make program "Sex - table" the front window.            6
               Rules - extending the Parents program                   6
          Make program "Predecessor "How" Example" the front      6
              This script discusses *how* SPARCL works.               6
          General comments about SPARCL and the tutorial scr      6
               Tutorial introduction to SPARCL                         6
          Exercise 1.1                                            6
               Create a program which describes the "parent" rela      6
          Execute a query of clause with ID Parent Query:78,      6
               This script creates clauses for querying the paren      6
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          Execute a query of clause with ID Parent Query:59,      6
               This script creates clauses for querying the paren      6
          Edit the value of ur with ID Parent:6 to "Bob".         6
               Create a new ur constant of value Bob in the argum      6
          Edit the value of ur with ID Parent:24 to "Ann".        6
               Create a new ur constant of value Ann in the argum      6
          Edit the value of ur with ID Parent:17 to "Tom".        6
               Create a new ur constant of value Tom in the argum      6
          Edit the value of ur with ID Parent Query:56 to "J      6
               Create a new ur constant of value Jim in the argum      6
          Edit the value of ur with ID Parent Query:23 to "L      6
               Create a new ur constant of value Liz in the argum      6
          Edit the value of comment with ID Parent Query:43       6
               Create a new comment ""Who is a grandparent of Jim      6
          Create a program of six clauses. These clauses des      6
               Create a program which describes the "parent" rela      6
          Create a new variable in the argument with ID Pare      6
               Create a "query" clause with two arguments and two      6
          Create a new ur in the argument with ID Parent:4.       6
               Create a new ur constant of value Bob in the argum      6
          Create a new ur in the argument with ID Parent:15.      6
               Create a new ur constant of value Tom in the argum      6
          Create a new ur in the argument with ID Parent Que      6
               Create a new ur constant of value Jim in the argum      6
          Create a new ur constant of value Tom in the argum      6
               Create a clause with arguments Tom and Liz in prog      6
          Create a new ur constant of value Jim in the argum      6
               Create an ur object.                                    6
          Create a new ur constant of value Bob in the argum      6
               Create a clause with arguments Pam and Bob in prog      6
         Create a new program (and window) named "Parent Qu      6
               This script creates clauses for querying the paren      6
          Create a new literal with name Parent and 2 argume      6
               Create a literal with two arguments.                    6
          Create a new clause in program "Parent" with its t      6
               Create a clause with arguments Bob and Pat in prog      6
          Create a new clause in program "Parent" with its t      6
               Create a clause with arguments Bob and Ann in prog      6
          Create a new clause in program "Parent" with its t      6
               Create a clause with arguments Tom and Liz in prog      6
          Create a coreference link including variable with       6
               Create a "Parent Query" clause for asking the ques      5
               **** SKIP 1 types. ****                                 1
          Create a clause with arguments Tom and Liz in prog      6
               Create a program of six clauses. These clauses des      6
          Create a clause with arguments Tom and Bob in prog      6
               Create a program of six clauses. These clauses des      6
          Create a clause with arguments Pat and Jim in prog      6
               Create a program of six clauses. These clauses des      6
          Create a clause with arguments Bob and Pat in prog      6
               Create a program of six clauses. These clauses des      6
          Create a clause with arguments Bob and Ann in prog      6
               Create a program of six clauses. These clauses des      6
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          Create a "Parent Query" clause for asking the ques      6
               This script creates clauses for querying the paren      6
          Create a "Parent Query" clause for asking the ques      6
               This script creates clauses for querying the paren      6
          Close program "Term Types".                             6
               Term types discussion                                   6
          Close program "Parent".                                 6
               Create a program which describes the "parent" rela      6
          This script discusses *how* SPARCL works.               5
               Introduction to SPARCL                                  4
               **** SKIP 1 types. ****                                 1
          Open the program in the file ":Line Segments".          5
               Discuss term matching.                                  5
          Make program "Predecessor "How" Ex, 2" the front w      5
               This script discusses *how* SPARCL works.               5
          Make program "Line Segments" the front window.          5
               Discuss term matching.                                  5
          Edit the value of ur with ID Parent:5 to "Pam".         5
               Create a new ur constant of value Pam in the argum      5
          Edit the value of ur with ID Parent:30 to "Pat".        5
               Create a new ur constant of value Pat in the argum      5
          Edit the value of ur with ID Parent:29 to "Bob".        5
               Create a new ur constant of value Bob in the argum      5
          Edit the value of ur with ID Parent:23 to "Bob".        5
               Create a new ur constant of value Bob in the argum      5
          Edit the value of ur with ID Parent:18 to "Liz".        5
               Create a new ur constant of value Liz in the argum      5
          Edit the value of ur with ID Parent:12 to "Bob".        5
               Create a new ur constant of value Bob in the argum      5
          Edit the value of ur with ID Parent:11 to "Tom".        5
               Create a new ur constant of value Tom in the argum      5
          Edit the value of ur with ID Column Sum temp:45 to      5
               Create a new ur constant of value data in the term      5
          Data objects section                                    5
               Chapter of tutorial detailing SPARCL representatio      5
          Create the comments and variables of the arguments      5
               Create the "Column Sum" clause.                         5
          Create the argument term for the "Column Sum Query      5
               Create the "Column Sum Query" clause.                   5
          Create the "Column Sum Query" clause.                   5
               Presentation of an application of SPARCL                5
          Create a new variable in the argument with ID Pare      5
               Create a "query" clause with two arguments and two      5
          Create a new variable in the argument with ID Pare      5
               Create a variable.                                      5
          Create a new variable in the argument with ID Pare      5
               Create a variable.                                      5
          Create a new variable in the argument with ID Pare      5
               Create a variable.                                      5
          Create a new ur in the term_table_cell with ID Col      5
               Create a new ur constant of value data in the term      5
          Create a new ur in the argument with ID Parent:9.       5
               Create a new ur constant of value Tom in the argum      5
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          Create a new ur in the argument with ID Parent:33.      5
               Create a new ur constant of value Pat in the argum      5
          Create a new ur in the argument with ID Parent:3.       5
               Create a new ur constant of value Pam in the argum      5
          Create a new ur in the argument with ID Parent:28.      5
               Create a new ur constant of value Pat in the argum      5
          Create a new ur in the argument with ID Parent:27.      5
               Create a new ur constant of value Bob in the argum      5
          Create a new ur in the argument with ID Parent:22.      5
               Create a new ur constant of value Ann in the argum      5
          Create a new ur in the argument with ID Parent:21.      5
               Create a new ur constant of value Bob in the argum      5
          Create a new ur in the argument with ID Parent:16.      5
               Create a new ur constant of value Liz in the argum      5
          Create a new ur in the argument with ID Parent:10.      5
               Create a new ur constant of value Bob in the argum      5
          Create a new ur constant of value Tom in the argum      5
               Create a clause with arguments Tom and Bob in prog      5
          Create a new ur constant of value Pat in the argum      5
               Create a clause with arguments Pat and Jim in prog      5
          Create a new ur constant of value Pat in the argum      5
               Create a clause with arguments Bob and Pat in prog      5
          Create a new ur constant of value Pam in the argum      5
               Create a clause with arguments Pam and Bob in prog      5
          Create a new ur constant of value Liz in the argum      5
               Create a clause with arguments Tom and Liz in prog      5
          Create a new ur constant of value data in the term      5
               Create the argument term for the "Column Sum Query      5
          Create a new ur constant of value Bob in the argum      5
               Create a clause with arguments Bob and Pat in prog      5
          Create a new ur constant of value Bob in the argum      5
               Create a clause with arguments Bob and Ann in prog      5
          Create a new ur constant of value Bob in the argum      5
               Create a clause with arguments Tom and Bob in prog      5
          Create a new ur constant of value Ann in the argum      5
               Create a clause with arguments Bob and Ann in prog      5
         Create a new term table in the argument with ID Co      5
               Create the argument term for the "Column Sum Query      4
               **** SKIP 1 types. ****                                 1
          Create a new program (and window) named "Parent".       5
               Create a program of six clauses. These clauses des      5
          Create a new program (and window) named "Exercise       5
               Exercise 3.1                                            5
          Create a new clause named "Column Sum Query" with       5
               Create the "Column Sum Query" clause.                   5
          Create a new clause in program "Parent" with its t      5
               Create a clause with arguments Pat and Jim in prog      5
          Create a new clause in program "Parent" with its t      5
               Create a clause with arguments Tom and Bob in prog      5
          Create a new clause in program "Parent" with its t      5
               Create a clause with arguments Pam and Bob in prog      5
          Create a coreference link including variable with       5
               Create a "Parent Query" clause for asking the ques      5
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          Create a coreference link including variable with       5
               Create a "Parent Query" clause for asking the ques      5
          Create a coreference link including variable with       5
               Create a "Parent Query" clause for asking the ques      5
          Create a clause with arguments Pam and Bob in prog      5
               Create a program of six clauses. These clauses des      5
          Close program "Fallible Socrates RESULT".               5
               This script discusses *how* SPARCL works.               5
          This script describes what SPARCL programs mean.        4
              **** SKIP 2 types. ****                                 4
          Set the "table type" of term_table with ID Column       4
               Create the argument term for the "Column Sum Query      4
          Set the "result type" of intensional_set with ID C      4
               Create the literal of the "Column Sum" clause.          4
          Presentation of an application of SPARCL                4
               Presentation of an application of SPARCL                4
          Open the program in the file ":Union".                  4
               Discuss term matching.                                  4
          Open the program in the file ":Declarative Example      4
               The declarative meaning of SPARCL                       4
          Make program "Union" the front window.                  4
               Discuss term matching.                                  4
          Make program "Declarative Example" the front windo      4
               The declarative meaning of SPARCL                       4
          Extend an N-tuple, creating a new set term as the       4
               Create the literal of the "Column Sum" clause.          4
          Execute a query of clause with ID Line Segments:35      4
               Discuss term matching.                                  4
          Execute a query of clause with ID Column Sum temp:      4
               Presentation of an application of SPARCL                4
          Edit the value of ur with ID Parent:36 to "Jim".        4
               Create a new ur constant of value Jim in the argum      4
          Edit the value of ur with ID Parent:35 to "Pat".        4
               Create a new ur constant of value Pat in the argum      4
          Edit the value of ur with ID Parent Query:88 to "A      4
               Create a new ur constant of value Ann in the argum      4
          Edit the value of ur with ID Column Sum temp:22 to      4
               Create the literal of the "Column Sum" clause.          4
         Edit the value of ur with ID Column Sum temp:17 to      4
               Create a new ur constant of value + in the argumen      4
          Edit the value of comment with ID Parent Query:81       4
               Create a new comment ""Who is a common parent of A      4
          Edit the value of comment with ID Column Sum temp:      4
               Create a new comment "Function Table" in the argum      4
          Create the literal of the "Column Sum" clause.          4
               Create the "Column Sum" clause.                         4
          Create the "Column Sum" clause.                         4
               Presentation of an application of SPARCL                4
          Create an N-tuple with variable with ID Column Sum      4
               Create the literal of the "Column Sum" clause.          4
          Create an N-tuple with ur with ID Column Sum temp:      4
               Create the literal of the "Column Sum" clause.          4
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          Create an N-tuple with ur with ID Column Sum temp:      4
               Create the literal of the "Column Sum" clause.          4
          Create a row at the bottom of term_table with ID C      4
               Create the argument term for the "Column Sum Query      4
          Create a new variable in the term_table_cell with       4
               Create the argument term for the "Column Sum Query      4
          Create a new variable in the set with ID Column Su      4
               Create the literal of the "Column Sum" clause.          4
          Create a new variable in the intensional_set_templ      4
               Create the literal of the "Column Sum" clause.          4
          Create a new variable in the argument with ID Pare      4
               Create a variable.                                      4
          Create a new variable in the argument with ID Pare      4
               Create a variable.                                      4
          Create a new variable in the argument with ID Pare      4
              Create a variable.                                      4
          Create a new variable in the argument with ID Pare      4
               Create a variable.                                      4
          Create a new variable in the argument with ID Pare      4
               Create a variable.                                      4
          Create a new variable in the argument with ID Colu      4
               Create the comments and variables of the arguments      4
          Create a new variable in the argument with ID Colu      4
               Create the comments and variables of the arguments      4
          Create a new variable in the argument with ID Colu      4
               Create the literal of the "Column Sum" clause.          4
          Create a new ur in the argument with ID Parent:34.      4
               Create a new ur constant of value Jim in the argum      4
          Create a new ur in the argument with ID Parent Que      4
               Create a new ur constant of value Ann in the argum      4
          Create a new ur in the argument with ID Column Sum      4
               Create a new ur constant of value + in the argumen      4
          Create a new ur constant of value Jim in the argum      4
               Create a clause with arguments Pat and Jim in prog      4
          Create a new ur constant of value Ann in the argum      4
               Create an ur object.                                    4
          Create a new ur constant of value + in the argumen      4
               Create the literal of the "Column Sum" clause.          4
          Create a new set in the set with ID Column Sum tem      4
               Create the literal of the "Column Sum" clause.          4
          Create a new program (and window) named "Column Su      4
               Presentation of an application of SPARCL                4
          Create a new partitioned set part in the set with       4
               Create the literal of the "Column Sum" clause.          4
          Create a new partitioned set part in the set with       4
               Create the literal of the "Column Sum" clause.          4
          Create a new literal with ur predicate name in the      4
               Create the literal of the "Column Sum" clause.          4
          Create a new literal with name is and 2 arguments       4
               Create the literal of the "Column Sum" clause.          4
          Create a new comment in the clause with ID Parent       4
               Create a new comment ""Who is a common parent of A      4
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          Create a new comment in the argument with ID Colum      4
               Create a new comment "Function Table" in the argum      4
          Create a new comment "Sum of Identified Range Valu      4
               Create the comments and variables of the arguments      4
          Create a new comment "Function Table" in the argum      4
               Create the comments and variables of the arguments      4
          Create a new comment "Domain Value Identifying Ran      4
               Create the comments and variables of the arguments      4
          Create a new comment ""Who is a common parent of A      4
               Create a "query" clause with two arguments and two      4
          Create a new clause named "Parent Query" with 1 ar      4
               Create a "query" clause with two arguments and two      4
          Create a new clause named "Column Sum" with 3 argu      4
               Create the "Column Sum" clause.                         4
          Create a coreference link including variable with       4
               Create a "Parent Query" clause for asking the ques      4
          Create a coreference link including variable with       4
               Create the "Column Sum" clause.                         4
          Create a coreference link including variable with       4
               Create the "Column Sum" clause.                         4
          Create a coreference link including variable with       4
              Create the literal of the "Column Sum" clause.          4
          Create a coreference link including variable with       4
               Create the "Column Sum" clause.                         4
          Close program "Union".                                  4
               Discuss term matching.                                  4
          Close program "Line Segments".                          4
               Discuss term matching.                                  4
          Close program "Line Segments RESULT".                   4
               Discuss term matching.                                  4
          Close program "Declarative Example".                    4
               The declarative meaning of SPARCL                       4
          Close program "Column Sum temp".                        4
               Presentation of an application of SPARCL                4
          Chapter of tutorial detailing SPARCL representatio      4
               **** SKIP 2 types. ****                                 4
          **** SKIP 88 types. ****                              159
     runvb                                                  38
          **** SKIP 31 types. ****                               38
     runbf                                                  35
          << (Please read the Script Commentary) >>               8
               **** SKIP 5 types. ****                                 8
          **** SKIP 26 types. ****                               27
    registered_scripts                                     26
          << (Please read the Script Commentary) >>              15
               Tutorial introduction to SPARCL                         8
               **** SKIP 7 types. ****                                 7
          **** SKIP 7 types. ****                                11
     done                                                   15
          << (Please read the Script Commentary) >>               6
               **** SKIP 6 types. ****                                 6
          **** SKIP 9 types. ****                                 9

461



Table 2 (part 13 of 18): Interaction type counts
general_tool                                          459
     activate                                              334
          ›Parent Query {Program}                                45
          ›Exercise 1.2 {Program}                                33
          ›Exercise 1.1 {Program}                                30
          Predecessor {Program}                                  23
          †Parent Query {Program}                                17
          ›Column Sum temp {Program}                             14
          ›Parent {Program}                                      10
          Sex - long {Program}                                   10
          Set Types {Term Set}                                   10
          Geometry Example {Term Set}                            10
          ›Parent Query RESULT {Term Set}                         9
          ›Exercise 2.1 {Program}                                 8
          Term Types {Term Set}                                   8
          Sex - table {Program}                                   8
          Offspring {Program}                                     8
          Family Relationships {Program}                          8
          Fallible Socrates {Program}                             7
          ›Fallible Socrates RESULT {Term Set}                    6
          ›Exercise 3.1 {Program}                                 6
          †Exercise 1.1 {Program}                                 6
          Predecessor "How" Example {Program}                     6
          Predecessor "How" Ex, 2 {Program}                       6
          Parent {Program}                                        6
          Union {Program}                                         5
          Line Segments {Program}                                 5
          ›Line Segments RESULT {Term Set}                        4
          ›Exercise 1.1 RESULT {Term Set}                         4
          ›Column Sum temp RESULT {Term Set}                      4
          Declarative Example {Program}                           4
          **** SKIP 7 types. ****                                14
     close_edit                                            125
          Pat                                                    13
               Exercise 1.1                                           12
               **** SKIP 1 types. ****                                 1
          new_ur                                                 11
               Exercise 2.1                                            6
               Exercise 3.1                                            4
               **** SKIP 1 types. ****                                 1
          Pat
                                                    8
               Exercise 1.1                                            8
          2                                                       6
               Exercise 2.1                                            6
          1                                                       6
               Exercise 2.1                                            6
          Happy                                                   5
               Exercise 1.2                                            5
          Liz                                                     4
               Exercise 1.1                                            4
          **** SKIP 56 types. ****                               72

462



Table 2 (part 14 of 18): Interaction type counts
window                                                360
     activate                                              360
          Exercise 1.1                                           92
          Exercise 1.2                                           76
          Exercise 2.1                                           38
          Exercise 1.1 RESULT                                    23
          Family Relationships                                   21
          Parent                                                 18
          Exercise 3.1                                           16
          Exercise 1.2 RESULT                                    14
          Geometry Example                                       12
          Predecessor                                            10
          Column Sum temp                                         9
          Parent Query                                            7
          Parent Query RESULT                                     5
          Set Types                                               4
          **** SKIP 9 types. ****                                15

Argument Ops                                          212
     Insert:Variable                                       149
          argument(3)                                             9
               Exercise 1.2                                            5
               **** SKIP 2 types. ****                                 4
          argument(6)                                             8
               Exercise 1.1                                            4
               **** SKIP 2 types. ****                                 4
          argument(7)                                             6
               Exercise 1.2                                            4
               **** SKIP 1 types. ****                                 2
          argument(33)                                            5
               **** SKIP 2 types. ****                                 5
         argument(36)                                            4
               **** SKIP 2 types. ****                                 4
          argument(30)                                            4
               **** SKIP 2 types. ****                                 4
          argument(22)                                            4
               **** SKIP 2 types. ****                                 4
          argument(18)                                            4
               **** SKIP 2 types. ****                                 4
          argument(15)                                            4
               **** SKIP 2 types. ****                                 4
          **** SKIP 50 types. ****                              101
     Insert:Ur                                              31
          **** SKIP 22 types. ****                               31
     Delete                                                 16
          **** SKIP 14 types. ****                               16
     Insert:Set                                              7
          **** SKIP 6 types. ****                                 7
    Insert:Table                                            6
          **** SKIP 6 types. ****                                 6
     **** SKIP 1 types. ****                                 3
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Clause Ops                                            194
     Create Literal                                         82
          clause(1)                                              30
               Exercise 2.1                                            8
               Exercise 1.2                                            8
               Exercise 1.1                                            8
               Exercise 3.1                                            6
          clause(30)                                              8
               Exercise 1.2                                            4
               Exercise 1.1                                            4
          clause(51)                                              4
               Exercise 1.2                                            4
          clause(34)                                              4
               **** SKIP 2 types. ****                                 4
          clause(25)                                              4
               Exercise 1.1                                            4
          clause(3)                                               4
               Exercise 1.1                                            4
          **** SKIP 14 types. ****                               28
     Create Argument                                        51
          clause(1)                                              27
               Exercise 2.1                                            9
               Exercise 1.1                                            9
               Exercise 1.2                                            5
               Exercise 3.1                                            4
          clause(30)                                              5
               Exercise 1.2                                            4
               **** SKIP 1 types. ****                                 1
          clause(51)                                              4
               Exercise 1.2                                            4
          **** SKIP 9 types. ****                                15
     Query:Brief                                            41
          clause(1)                                              21
               Exercise 1.1                                           14
               Exercise 1.2                                            7
          clause(25)                                              4
               Exercise 1.1                                            4
         **** SKIP 11 types. ****                               16
     Create Comment                                         10
          clause(1)                                               4
               **** SKIP 2 types. ****                                 4
          **** SKIP 6 types. ****                                 6
     Select                                                  4
          **** SKIP 2 types. ****                                 4
     **** SKIP 2 types. ****                                 6
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Table 2 (part 16 of 18): Interaction type counts
connect_tool                                          115
     activate                                              115
          Parent Query                                           51
          Exercise 1.2                                           30
          Exercise 1.1                                           25
          Column Sum temp                                         8
          **** SKIP 1 types. ****                                 1

File                                                  105
     Record Comment about SPARCL...                         74
          *script_control*                                       47
          *Output*                                                6
          Exercise 2.1                                            4
          Exercise 1.2                                            4
          Exercise 1.1                                            4
          **** SKIP 5 types. ****                                 8
     Quit                                                   17
          *script_control*                                       11
          **** SKIP 4 types. ****                                 5
     Open Program...                                         7
          **** SKIP 3 types. ****                                 7
     **** SKIP 5 types. ****                                 7

link                                                   77
     variable(46)                                            7
          variable(52)                                            4
               Exercise 1.2                                            4
          **** SKIP 3 types. ****                                 3
     variable(10)                                            6
          **** SKIP 4 types. ****                                 6
     variable(47)                                            4
          **** SKIP 3 types. ****                                 4
     **** SKIP 40 types. ****                               60

Program Ops                                            54
     Create Clause                                          53
          program(0)                                             53
               Exercise 1.1                                           23
               Exercise 1.2                                           19
               Exercise 2.1                                            9
               **** SKIP 1 types. ****                                 2
     **** SKIP 1 types. ****                                 1

Clause Name Ops                                        41
     Edit Clause Name                                       36
          name(2)                                                10
               Exercise 1.2                                            4
               **** SKIP 3 types. ****                                 6
          **** SKIP 21 types. ****                               26
    Select                                                  5
          **** SKIP 3 types. ****                                 5
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Table 2 (part 17 of 18): Interaction type counts
Windows                                                38
     Exercise 1.2                                            5
          **** SKIP 3 types. ****                                 5
     Parent                                                  4
          **** SKIP 4 types. ****                                 4
     Geometry Example                                        4
          Exercise 2.1                                            4
     Family Relationships                                    4
          **** SKIP 4 types. ****                                 4
     Exercise 1.1                                            4
          **** SKIP 3 types. ****                                 4
     **** SKIP 11 types. ****                               17

Tutorial Scripts                                       36
     3.0.Application of SPARCL                               6
          *Output*                                                4
     2.1.Data objects                                        4
          **** SKIP 3 types. ****                                 4
     **** SKIP 11 types. ****                               26

Literal Ops                                            29
     Create Argument                                        17
          literal(5)                                              4
               Exercise 1.1                                            4
          **** SKIP 8 types. ****                                13
     Delete                                                 10
          **** SKIP 9 types. ****                                10
     **** SKIP 1 types. ****                                 2

DISALLOWED                                             29
     File                                                   21
          New Program...                                         11
               *script_control*                                        9
               **** SKIP 1 types. ****                                 2
          Open Program...                                         4
               *script_control*                                        4
          **** SKIP 5 types. ****                                 6
     **** SKIP 3 types. ****                                 8

Set Ops                                                24
     Insert:Ur                                              10
          **** SKIP 6 types. ****                                10
     Create NTuple:Ur                                        4
          **** SKIP 3 types. ****                                 4
     Create NTuple:Set                                       4
          **** SKIP 3 types. ****                                 4
     **** SKIP 5 types. ****                                 6

Term Table Cell Ops                                    19
     Insert:Ur                                              15
          **** SKIP 14 types. ****                               15
     **** SKIP 2 types. ****                                 4
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Table 2 (part 18 of 18): Interaction type counts
START LOGGING                                          17
     K... C...                                           5
         **** SKIP 3 types. ****                                 5
     **** SKIP 7 types. ****                                12

Ur Ops                                                 15
     Delete                                                  8
          **** SKIP 7 types. ****                                 8
     Edit Ur Item                                            4
          **** SKIP 4 types. ****                                 4
     **** SKIP 1 types. ****                                 3

Variable Ops                                           12
     Unlink Variable                                         7
          **** SKIP 7 types. ****                                 7
     Delete Variable                                         5
          **** SKIP 4 types. ****                                 5

Partition Ops                                          12
     Delete Partition                                        5
          **** SKIP 5 types. ****                                 5
     **** SKIP 4 types. ****                                 7

Edit                                                    9
     Undo Most Recent                                        5
          Exercise 2.1                                            5
     **** SKIP 4 types. ****                                 4

Term Table Ops                                          7
     **** SKIP 5 types. ****                                 7

NTuple Ops                                              7
     **** SKIP 5 types. ****                                 7

**** SKIP 4 types. ****                                 8
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Table 3: Durations in minutes by section:
User Count Total 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1

ag 4 46.2 29.6 13.2 1.8 1.6 - - - - -
ca 9 154.1 26.6 31.1 10.3 1.4 33.2 4.7 2.9 1.7 42.2
el 6 77.5 22.4 33.2 5.2 2 13.8 0.9 - - -
jp 9 81.5 36.2 11.9 9.2 1.6 7.7 2.6 1.7 0.5 10
kc 9 130.3 44.8 28.9 9.6 3.6 11.2 3.1 4.4 3.2 21.4
rv 9 186.4 62.3 18.5 21 1.6 45.2 4.6 2.7 1.1 29.5
vn 3 79.5 51.6 21.9 6 - - - - - -

Table 4: The time in minutes spent in working on the exercises:
Exercise

User Count Total 1.1 1.2 2.1 3.1

ag 2 19.6 6.2 13.4 - -
ca 4 101 12.6 34.8 33.1 20.4
el 3 32.3 12.5 19.6 0.2 -
jp 3 25.4 18.4 2.6 4.4 -
kc 3 45.9 11.7 13.3 20.8 -
rv 3 60.6 25.1 27.2 8.2 -
vn 2 16 14.8 1.3 - -

Table 5: Statistics on the exercise durations:
Statistics count total 1.1 1.2 2.1 3.1

Count 7 7 7 7 5 1
Total 20 300.7 101.3 112.2 66.8 20.4
Avg 2.9 43 14.5 16 13.4 20.4
Dev 0.6 27.7 5.5 11.3 12.1 0
Median 3 32.3 12.6 13.4 8.2 20.4
Min 2 16 6.2 1.3 0.2 20.4
Max 4 101 25.1 34.8 33.1 20.4

Table 6: Total times
User All Sections All Exercises Other Total

ag 46.2 19.6 25.5 91.3
ca 154.1 101 8.7 263.7
el 77.5 32.3 11.4 121.2
jp 81.5 25.4 24.2 131
kc 130.3 45.9 19.9 196
rv 186.4 60.6 9 256
vn 79.5 16 20.1 115.6
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Appendix 5

Response Time Analysis

This appendix describes the result of a test to determine the response time of
SPARCL for common simple editing operations, and how much having other programs
loaded slows down these operations. In this test, the following simple program in
Figure A5 – 1 is constructed.

To test the observation that having unrelated programs loaded slows down the
editing process, the above program was constructed in SPARCL 2D6 once without any
other programs loaded, then a second time with the ID3 project loaded.

The Program Size Measurements for ID3 are shown in Figure A5 – 2.
In addition to the measurements, the number of “display objects” in SPARCL’s

internal database was 766. Note that this is very close to the “graphical size” of 764
(sum of graphical total operators and total operands). 

These tests were run on an Apple Macintosh 8500/120 with 32Meg RAM (64Meg
virtual RAM). The SPARCL application was assigned 16Meg memory. The results
without ID3 loaded are shown in Figure A5 – 3. The results of the test with ID3 loaded
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Figure A5 – 1: Program constructed for response time test.

foo4 bar4foo3 bar3

foo2 bar2
foo bar



are shown in .
Because the two tests have some minor unintended differences, it is useful to

adjust the totals for comparisons. The “without ID3” test has only 7 Literal Ops inter-
actions while the “with ID3” test has 9 Literal Ops interactions. The “without ID3”
window and general_tool types have 7 and 5 interactions, respectively, while the
“with ID3” test has 6 and 6 interactions, respectively. There are 2 interactions in the
final “SKIP” of the “with ID3” test and 3 interactions in the “without ID3”.

The direct comparison of the lengths of these test yields 159 seconds for the
“without ID3” test versus 385 seconds for the “with ID3” test. This is a slowdown of
more than a factor of two overall.

The “with ID3” number can be adjusted to approximate the same interactions as
the “without ID3” test by subtracting two average Literal Ops (2*4.9 = 9.8), subtract-
ing one average window (3.3), and adding one average general_tool (2.8). This gives
an adjusted total duration for the “with ID3” test of (approximately) 375. This is still
more than twice the duration of the “without ID3” test.
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Programs: [Cardinality, Classify
Examples, DE - Attribute Decisions,
DE - Attribute Value, DE - Attribute
Values, Determine Entropies,
Heterogeneous Examples, ID3 Tree,
ID3 Trees, Select Attribute]

literal_count : 34
clause_count : 36
procedure_count : 13
unique_operators : 23
total_operators : 242
unique_operands : 87
total_operands : 421
volume_special : 3983
graphical_unique_operators : 4
graphical_total_operators : 428
graphical_unique_operands : 32
graphical_total_operands : 336
graphical_volume : 3950
unique_ntuples : 1
total_ntuples : 116
max_ntuple_items : 6

unique_references : 67
total_references : 150
unique_sets : 1
total_sets : 19
max_parts : 2
unique_parts : 1
total_parts : 36
max_parts_card : 3
unique_urs : 19
total_urs : 121
unique_names : 18
total_names : 56
unique_vars : 1
total_vars : 150
unique_empty_sets : 0
total_empty_sets : 0
unique_intensional_sets : 1
total_intensional_sets : 7
unique_fact_tables : 1
total_fact_tables : 8
max_facts : 3
unique_term_tables : 0
total_term_tables : 0

max_rows : 0
enclosures : 146
enclosure_present : 1
nodes : 159
node_types : 5
edges : 163
edge_types : 2
textual_tokens : 177
textual_token_types : 27
adjoinments : 119
adjoinments_present : 1
vocabulary : 110
size : 663
volume_basic : 4496
program_level_estimated : 0.018
effort_special : 221278
effort_special_hours : 7.68±4.61
effort_basic : 250202
effort_basic_hours : 8.69±5.21
language_level_special : 1.29
language_level_basic : 1.457

Figure A5 – 2: Program Size Measurements for ID3.
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operation count total avg std dev median min max

Argument Ops 19 38 2 0.9 2 0 4
     Insert:Variable 19 38 2 0.9 2 0 4
          **** SKIP 19 types. **** 19

Clause Ops 12 36 3 2 2 1 7
     Create Argument 8 15 1.9 0.3 2 1 2
          **** SKIP 4 types. **** 8
     Create Literal 4 21 5.2 2 7 2 7
          **** SKIP 4 types. **** 4

link 10 24 2.4 1.2 2 1 5
     **** SKIP 10 types. **** 10

Literal Ops 7 15 2.1 0.3 2 2 3
     Create Argument 7 15 2.1 0.3 2 2 3
          **** SKIP 3 types. **** 7

window 6 13 2.2 1.1 2 1 4
     activate 6 13 2.2 1.1 2 1 4
          foo 6 13 2.2 1.1 2 1 4

general_tool 6 10 1.7 0.7 2 0 2
     activate 4 6 1.5 0.9 2 0 2
          †foo {Program} 4 6 1.5 0.9 2 0 2
     **** SKIP 1 types. **** 2

Program Ops 4 14 3.5 1.1 4 2 5
     Create Clause 4 14 3.5 1.1 4 2 5
          program(0) 4 14 3.5 1.1 4 2 5
               foo 4 14 3.5 1.1 4 2 5

connect_tool 4 9 2.2 0.8 3 1 3
     activate 4 9 2.2 0.8 3 1 3
          foo 4 9 2.2 0.8 3 1 3

**** SKIP 2 types. ****  4

Totals: 72 159

Figure A5 – 3: Without ID3 loaded.
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operation count total avg std dev median min max

Argument Ops 19 127 6.7 1.4 7 5 11
     Insert:Variable 19 127 6.7 1.4 7 5 11
          **** SKIP 19 types. **** 19

Clause Ops 12 78 6.5 2.9 5 4 11
     Create Argument 8 36 4.5 0.7 4 4 6
          **** SKIP 4 types. **** 8
     Create Literal 4 42 10.5 0.5 11 10 11
          **** SKIP 4 types. **** 4

link 10 57 5.7 1.3 5 4 9
     **** SKIP 10 types. **** 10

Literal Ops 9 44 4.9 0.9 5 4 7
     Create Argument 9 44 4.9 0.9 5 4 7
          **** SKIP 4 types. **** 9

window 7 23 3.3 2.4 2 2 9
     activate 7 23 3.3 2.4 2 2 9
          foo 7 23 3.3 2.4 2 2 9

general_tool 5 14 2.8 1.7 2 1 6
     activate 4 8 2 0.7 2 1 3
          †foo {Program} 4 8 2 0.7 2 1 3
     **** SKIP 1 types. **** 1

Program Ops 4 35 8.8 1.3 10 7 10
     Create Clause 4 35 8.8 1.3 10 7 10
          program(0) 4 35 8.8 1.3 10 7 10
               foo 4 35 8.8 1.3 10 7 10

connect_tool 4 7 1.8 0.4 2 1 2
     activate 4 7 1.8 0.4 2 1 2
          foo 4 7 1.8 0.4 2 1 2

**** SKIP 2 types. **** 3

Totals: 73 385

Figure A5 – 4: With ID3 loaded.


